organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(25R)-3β,16β-Diacet­­oxy-23-acetyl-22,26-ep­­oxy­cholesta-5,22-diene n-hexane 0.8-solvate

aLaboratorio de Investigación del Jardín Botánico, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 113 Complejo de Ciencias CU, San Manuel, 72570 Puebla, Pue., Mexico, bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and cCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, B.C., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 31 January 2016; accepted 13 April 2016; online 19 April 2016)

In the title solvate, C33H48O6·0.8C6H14, the steroid presents a conformation almost identical to that of its previously characterized benzene monosolvate [Sandoval-Ramírez et al. (1999[Sandoval-Ramírez, J., Castro-Méndez, A., Meza-Reyes, S., Reyes-Vázquez, F., Santillán, R. & Farfán, N. (1999). Tetrahedron Lett. 40, 5143-5146.]). Tetra­hedron Lett. 40, 5143–5146]. The n-hexane solvent of crystallization is agglomerated in channels parallel to [100] in the crystal. The solvent mol­ecule is disordered over two sites in the asymmetric unit, with occupancies of 0.46 and 0.34. A minor disorder for the carbonyl O atom of the acetyl substituent at position 16 in the steroid was also introduced, with two sites having occupancies of 0.7 and 0.3.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The crystallization process for the title steroid afforded a hexane solvate (Fig. 1[link]), which crystallizes in an ortho­rhom­bic cell close to that previously reported for the benzene monosolvate (Sandoval-Ramírez et al., 1999[Sandoval-Ramírez, J., Castro-Méndez, A., Meza-Reyes, S., Reyes-Vázquez, F., Santillán, R. & Farfán, N. (1999). Tetrahedron Lett. 40, 5143-5146.]; Refcode HOSKAB in the CSD). In both structures, the steroidal mol­ecule adopts the same conformation. HOSKAB was reported and deposited with the wrong configuration; however, after inversion, a fit with the steroid reported here gives an r.m.s. deviation between the two mol­ecules of 0.058 Å (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The pyran ring C22–C26/O5 in the title structure also adopts the same twisted conformation found in related steroids bearing this ring (Sandoval-Ramírez et al., 1999[Sandoval-Ramírez, J., Castro-Méndez, A., Meza-Reyes, S., Reyes-Vázquez, F., Santillán, R. & Farfán, N. (1999). Tetrahedron Lett. 40, 5143-5146.]; Castro-Méndez et al., 2002[Castro-Méndez, A., Sandoval-Ramírez, J. & Bernès, S. (2002). Acta Cryst. E58, o606-o608.]; Pérez-Díaz et al., 2010[Pérez-Díaz, J. O. H., Vega-Baez, J. L., Sandoval-Ramírez, J., Meza-Reyes, S., Montiel-Smith, S., Farfán, N. & Santillan, R. (2010). Steroids, 75, 1127-1136.]).

[Figure 1]
Figure 1
The structure of the title solvate, with displacement ellipsoids at the 30% probability level. Only one site for the disordered atom O4 has been retained. The inset represents the model used for the disordered solvent. The blue hexane mol­ecule has a site occupancy factor of 0.46, and the red mol­ecule has 0.34 occupancy.

Once the steroid is placed in the asymmetric unit, the refinement converges to R1 = 0.073 (observed data), but ca 24% of the cell volume is unoccupied. Difference maps show that residual density is present in these voids, which may be modelled as two disordered n-hexane mol­ecules, C101–C106 and C201–C206 (Fig. 1[link], inset). After refining occupancies for each part, the hexane content may be roughly estimated as 0.8 hexane per asymmetric unit, and the refinement converges to R1 = 0.040. Alternatively, starting from the unsolvated model, the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) retrieves a density of 76 electrons in the unit cell, within two voids of 423 Å3 (1.2 Å probe radius). Assuming that the solvent is hexane, these data correspond to a lower solvent content, ca 0.4 hexane per asymmetric unit. With the SQUEEZE-based data, the structure refinement converges to R1 = 0.042.

The actual steroid:solvent stoichiometry for this crystal should thus be in the range 1:0.4 to 1:0.8, but the latter ratio was retained for the present report, which is based on diffraction data: after location of atoms C101–C206, the geometry in each part was restrained (see Refinement details section) and the structure refined with isotropic solvent. Occupancies for each part were then freely refined. In the last cycles, the solvent was refined with anisotropic displacement parameters, and site occupancies were fixed, in order to prevent correlations with thermal factors. In the final model, displacement for C atoms of hexane are rather large (Fig. 1[link]), indicating that these disordered mol­ecules inter­act poorly with the host mol­ecules in the crystal. If, starting from this model, occupancies for solvent are decreased by 50%, residuals rise to R1 = 0.049 for observed data and wR2 = 0.137 for all data. On the other hand, the reported host:guest stoichiometry corresponds to the analysed single crystal, and solvent content may vary from crystal to crystal. The accurate stoichiometry and the reproducibility for a bulk preparation of this solvate remain unknown.

The model including coordinates for the solvent is severely disordered, as reflected in the high ADP's for atoms C101–C206. It is worth mentioning that attempts to include AcOEt as the solvent in the model were unsuccessful. It thus seems that this steroid is prone to inter­act with non-polar solvents, such as hexane and benzene. In the crystal, hexane is located in channels parallel to [100], and is arranged in such a way that a continuous electronic density is observed along the channels (Fig. 2[link]). The n-hexane conformation includes for both mol­ecules one cis torsion angle, C103—C104—C105—C106 = 8(7)°, and C202—C203—C204—C205 = −23 (8)°. This conformation is not common, compared to the full-trans conformer, but has been observed in many non-disordered solvate structures (e.g. Weberski et al., 2012[Weberski, M. P. Jr, Chen, C., Delferro, M., Zuccaccia, C., Macchioni, A. & Marks, T. J. (2012). Organometallics, 31, 3773-3789.]; Soki et al., 2008[Soki, F., Neudörfl, J.-M. & Goldfuss, B. (2008). J. Organomet. Chem. 693, 2139-2146.]). This bent conformation for n-hexane is reflected in the zigzag shape of the channels containing solvent mol­ecules.

[Figure 2]
Figure 2
Part of the crystal structure for the title solvate. Five steroids are represented, one of which with a spacefill model. Channels parallel to [100] containing disordered n-hexane mol­ecules are represented using the solvent accessible surface calculated using the non-solvated model (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). A probe radius of 1 Å was used, with a grid resolution of 0.25 Å.

Synthesis and crystallization

To a solution of diosgenin (2.0 g, 4.83 mmol) in acetic anhydride (10 ml) was added BF3–OEt2 (1.8 ml). The mixture was stirred for 10 min at room temperature. After 10 min, the mixture was poured into cold water (10 ml) and stirred for a further hour. The organic phase was neutralized with satur­ated NaHCO3 solution (2 ×15 ml), DCM was added (15 ml) and the mixture washed with H2O (2 ×10 ml). The organic phases were dried with Na2SO4 and evaporated under reduced pressure, affording a lacquer solid. This crude was purified by chromatography over silica gel (n-hexa­ne:AcOEt, 85:15), giving the title ep­oxy­cholestene as a white solid (1.30 g, 75%). This compound was recrystallized from hexane solution, giving single crystals of the title solvate, m.p. 95–96 °C, [αD] = −24 (c = 0.65, CHCl3). Crystals are apparently air-stable for months, and were stored in a non-controlled atmosphere prior to crystallographic study. The IR spectrum of the crystallized compound shows better resolved absorption bands, compared to the crude lacquer, and vibrations in the range 681–832 cm−1 confirm the presence of hexane in the crystals.

1H-NMR (500 MHz, CDCl3), δ: 5.35 (1H, d, J6–7e = 4.5 Hz, H-6), 5.14 (1H, ddd, J16–17 = J16–15e = 7.5 and J16–15a = 4.5 Hz, H-16), 4.59 (1H, m, H-3), 4.07 (1H, m, H-20), 3.48 (1H, dd, J26e–25 = 3.5 and J26e–26a=10.5 Hz, H-26e), 3.41 (1H, dd, J26a–25 = J26a–26e = 10.5 Hz, H-26a), 2.20 (3H, s, CH3-232), 2.02 (3H, s, CH3CO2-3), 1.84 (3H, s, CH3CO2-16), 1.18 (3H, d, J21–20 = 6.0 Hz, CH3-21), 1.03 (3H, s, CH3-19), 0.97 (3H, d, J27–25 = 6.0 Hz, CH3-27), 0.92 (3H, s, CH3-18). 13C-NMR (125 MHz, CDCl3), δ: 197.9 (C-231), 171.1 (C-22), 170.4 (CH3COO-3), 170.3 (CH3COO-16), 139.6 (C-5), 122.1 (C-6), 106.8 (C-23), 74.9 (C-16), 73.7 (C-3), 71.4 (C-26), 55.8 (C-17), 54.2 (C-14), 49.9 (C-9), 42.1 (C-13), 39.6 (C-12), 37.9 (C-4), 36.8 (C-1), 36.4 (C-10), 34.8 (C-15), 32.7 (C-20), 31.5 (C-24), 31.5 (C-7), 31.3 (C-8), 29.6 (C-232), 27.6 (C-2), 26.4 (C-25), 21.2 (CH3COO-3), 21.0 (CH3COO-16), 20.7 (C-11), 19.3 (C-21), 19.1 (C-19), 16.7 (C-27), 12.8 (C-18).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. For the disordered solvent, C—C bond lengths and 1,3-C⋯C distances were restrained to 1.53 (2) and 2.52 (3) Å, respectively. Moreover, C atoms were restrained with effective standard deviation of 0.1 Å2 to have their Uij components approximating an isotropic behaviour (ISOR command; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). Site occupancies for mol­ecules C101–C106 and C201–C206 were first refined, and then fixed in the final refinement cycles, to 0.46 and 0.34, respectively. A minor disorder in the steroidal mol­ecule was also considered for the carbonyl O atom O4, disordered over two sites O4A and O4B, with occupancies 0.7 and 0.3, respectively. The absolute configuration expected for the steroid is in agreement with the refined Flack parameter, x = 0.09 (6).

Table 1
Experimental details

Crystal data
Chemical formula C33H48O6·0.8C6H14
Mr 609.65
Crystal system, space group Orthorhombic, P212121
Temperature (K) 294
a, b, c (Å) 11.64797 (17), 12.20869 (17), 25.7274 (4)
V3) 3658.60 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.58
Crystal size (mm) 0.45 × 0.30 × 0.20
 
Data collection
Diffractometer Rigaku SuperNova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.])
Tmin, Tmax 0.663, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19071, 6767, 5885
Rint 0.020
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.01
No. of reflections 6767
No. of parameters 477
No. of restraints 90
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.11
Absolute structure Flack x determined using 2066 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.09 (6)
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

To a solution of diosgenin (2.0 g, 4.83 mmol) in acetic anhydride (10 ml) was added BF3–OEt2 (1.8 ml). The mixture was stirred for 10 min at room temperature. After 10 min, the mixture was poured into cold water (10 ml) and stirred for a further hour. The organic phase was neutralized with saturated NaHCO3 solution (2 ×15 ml), DCM was added (15 ml) and the mixture washed with H2O (2 ×10 ml). The organic phases were dried with Na2SO4 and evaporated under reduced pressure, affording a lacquer solid. This crude was purified by chromatography over silica gel (n-hexane:AcOEt, 85:15), giving the title epoxycholestene as a white solid (1.30 g, 75%). This compound was recrystallized from hexane, giving single crystals of the title solvate, m.p. 95–96 °C, [αD] = -24 (c = 0.65, CHCl3). Crystals are apparently air-stable for months, and were stored in a non-controlled atmosphere prior to crystallographic study. The IR spectrum of the crystallized compound shows better resolved absorption bands, compared to the crude lacquer, and vibrations in the range 681–832 cm-1 confirm the presence of hexane in the crystals.

1H-NMR (500 MHz, CDCl3), δ: 5.35 (1H, d, J6–7 e = 4.5 Hz, H-6), 5.14 (1H, ddd, J16–17 = J16–15 e = 7.5 and J16–15a = 4.5 Hz, H-16), 4.59 (1H, m, H-3), 4.07 (1H, m, H-20), 3.48 (1H, dd, J26 e-25 = 3.5 and J26 e-26a=10.5 Hz, H-26e), 3.41 (1H, dd, J26a-25 = J26a-26 e = 10.5 Hz, H-26a), 2.20 (3H, s, CH3-232), 2.02 (3H, s, CH3CO2-3), 1.84 (3H, s, CH3CO2-16), 1.18 (3H, d, J21–20 = 6.0 Hz, CH3-21), 1.03 (3H, s, CH3-19), 0.97 (3H, d, J27–25 = 6.0 Hz, CH3-27), 0.92 (3H, s, CH3-18). 13C-NMR (125 MHz, CDCl3), δ: 197.9 (C-231), 171.1 (C-22), 170.4 (CH3COO-3), 170.3 (CH3COO-16), 139.6 (C-5), 122.1 (C-6), 106.8 (C-23), 74.9 (C-16), 73.7 (C-3), 71.4 (C-26), 55.8 (C-17), 54.2 (C-14), 49.9 (C-9), 42.1 (C-13), 39.6 (C-12), 37.9 (C-4), 36.8 (C-1), 36.4 (C-10), 34.8 (C-15), 32.7 (C-20), 31.5 (C-24), 31.5 (C-7), 31.3 (C-8), 29.6 (C-232), 27.6 (C-2), 26.4 (C-25), 21.2 (CH3COO-3), 21.0 (CH3COO-16), 20.7 (C-11), 19.3 (C-21), 19.1 (C-19), 16.7 (C-27), 12.8 (C-18).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. For the disordered lattice solvent, C—C bond lengths and 1,3-C···C distances were restrained to 1.53 (2) and 2.52 (3) Å, respectively. Moreover, C atoms were restrained with effective standard deviation of 0.1 Å2 to have their Uij components approximating an isotropic behaviour (ISOR command; Sheldrick, 2015). Site occupancies for molecules C101–C106 and C201–C206 were first refined, and then fixed in the final refinement cycles, to 0.46 and 0.34, respectively. A minor disorder in the steroidal molecule was also considered for the carbonyl O atom O4, disordered over two sites O4A and O4B, with occupancies 0.7 and 0.3, respectively. The absolute configuration expected for the steroid is in agreement with the refined Flack parameter, x = 0.09 (6).

Structure description top

The crystallization process for the title steroid afforded a hexane solvate (Fig. 1), which crystallizes in an orthorhombic cell close to that previously reported for the benzene monosolvate (Sandoval-Ramírez et al., 1999; Refcode HOSKAB in the CSD). In both structures, the steroidal molecule adopts the same conformation. HOSKAB was reported and deposited with the wrong configuration; however, after inversion, a fit with the title steroid gives an r.m.s. deviation between the two molecules of 0.058 Å (Macrae et al., 2008). The pyran ring C22–C26/O5 in the title structure also adopts the same twisted conformation found in related steroids bearing this ring (Sandoval-Ramírez et al., 1999; Castro-Méndez et al., 2002; Pérez-Díaz et al., 2010).

Once the steroid is placed in the asymmetric unit, the refinement converges to R1 = 0.073 (observed data), but ca 24% of the cell volume is unoccupied. Difference maps show that residual density is present in these voids, which may be modeled as two disordered n-hexane molecules, C101–C106 and C201–C206 (Fig. 1, inset). After refining occupancies for each part, the hexane content may be roughly estimated as 0.8 hexane per asymmetric unit, and the refinement converges to R1 = 0.040. Alternatively, starting from the unsolvated model, the SQUEEZE procedure (Spek, 2015) retrieves a density of 76 electrons in the unit cell, within two voids of 423 Å3 (1.2 Å probe radius). Assuming that the lattice solvent is hexane, these data correspond to a lower solvent content, ca 0.4 hexane per asymmetric unit. With the SQUEEZE-based data, the structure refinement converges to R1 = 0.042.

The actual steroid:solvent stoichiometry for this crystal should thus be in the range 1:0.4 to 1:0.8, but the latter ratio was retained for the present report, which is based on diffraction data: after location of atoms C101–C206, the geometry in each part was restrained (see Refinement details section) and the structure refined with isotropic solvent. Occupancies for each part were then freely refined. In the last cycles, the solvent was refined with anisotropic displacement parameters, and site occupancies were fixed, in order to prevent correlations with thermal factors. In the final model, displacement for C atoms of hexane are rather large (Fig. 1), indicating that these disordered molecules interact poorly with the host molecules in the crystal. If, starting from this model, occupancies for solvent are decreased by 50%, residuals rise to R1 = 0.049 for observed data and wR2 = 0.137 for all data. On the other hand, the reported host:guest stoichiometry corresponds to the analysed single crystal, and solvent content may vary from crystal to crystal. The accurate stoichiometry and the reproducibility for a bulk preparation of this solvate remain unknown.

The model including coordinates for lattice solvent is severely disordered, as reflected in the high ADP's for atoms C101–C206. It is worth mentioning that attempts to include AcOEt as lattice solvent in the model were unsuccessful. It thus seems that this steroid is prone to interact with non-polar solvents, such as hexane and benzene. In the crystal, hexane is located in channels parallel to [100], and is arranged in such a way that a continuous electronic density is observed along the channels (Fig. 2). The n-hexane conformation includes for both molecules one cis torsion angle, C103—C104—C105—C106 = 8(7)°, and C202—C203—C204—C205 = -23 (8)°. This conformation is not common, compared to the full-trans conformer, but has been observed in many non-disordered solvate structures (e.g. Weberski et al., 2012; Soki et al., 2008). This bent conformation for n-hexane is reflected in the zigzag shape of the channels containing solvent molecules.

Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title solvate, with displacement ellipsoids at the 30% probability level. Only one site for the disordered atom O4 has been retained. The inset represents the model used for the disordered solvent. The blue hexane molecule has a site occupancy factor of 0.46, and the red molecule has 0.34 occupancy.
[Figure 2] Fig. 2. Part of the crystal structure for the title solvate. Five steroids are represented, one of which with a spacefill model. Channels parallel to [100] containing disordered n-hexane molecules are represented using the solvent accessible surface calculated using the non-solvated model (Macrae et al., 2008). A probe radius of 1 Å was used, with a grid resolution of 0.25 Å.
(25R)-3β,16β-Diacetoxy-23-acetyl-22,26-epoxycholesta-5,22-diene n-hexane 0.8-solvate top
Crystal data top
C33H48O6·0.8C6H14Dx = 1.107 Mg m3
Mr = 609.65Melting point: 368 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
a = 11.64797 (17) ÅCell parameters from 10211 reflections
b = 12.20869 (17) Åθ = 1.7–71.1°
c = 25.7274 (4) ŵ = 0.58 mm1
V = 3658.60 (9) Å3T = 294 K
Z = 4Irregular, colourless
F(000) = 13360.45 × 0.30 × 0.20 mm
Data collection top
Rigaku SuperNova
diffractometer
6767 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source5885 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 5.1980 pixels mm-1θmax = 71.7°, θmin = 3.4°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1412
Tmin = 0.663, Tmax = 1.000l = 3128
19071 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1048P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.15 e Å3
6767 reflectionsΔρmin = 0.11 e Å3
477 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
90 restraintsExtinction coefficient: 0.00090 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 2066 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (6)
Crystal data top
C33H48O6·0.8C6H14V = 3658.60 (9) Å3
Mr = 609.65Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 11.64797 (17) ŵ = 0.58 mm1
b = 12.20869 (17) ÅT = 294 K
c = 25.7274 (4) Å0.45 × 0.30 × 0.20 mm
Data collection top
Rigaku SuperNova
diffractometer
6767 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
5885 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 1.000Rint = 0.020
19071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.15 e Å3
S = 1.01Δρmin = 0.11 e Å3
6767 reflectionsAbsolute structure: Flack x determined using 2066 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
477 parametersAbsolute structure parameter: 0.09 (6)
90 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0960 (2)0.3162 (2)0.14991 (9)0.0593 (6)
H1A0.11790.38380.13270.071*
H1B0.16180.26760.14920.071*
C20.0657 (2)0.3415 (2)0.20665 (9)0.0658 (6)
H2A0.00300.39380.20790.079*
H2B0.13150.37390.22390.079*
C30.0314 (2)0.2386 (2)0.23421 (8)0.0603 (6)
H3A0.09720.18880.23630.072*
C40.0677 (2)0.1820 (2)0.20711 (9)0.0634 (6)
H4A0.08220.11210.22380.076*
H4B0.13630.22640.21060.076*
C50.04301 (19)0.1632 (2)0.14994 (9)0.0541 (5)
C60.0558 (2)0.0648 (2)0.12974 (9)0.0628 (6)
H6A0.07850.00860.15190.075*
C70.0365 (3)0.0368 (2)0.07381 (9)0.0662 (7)
H7A0.03600.00150.07030.079*
H7B0.09700.01180.06210.079*
C80.03482 (19)0.13903 (18)0.03968 (8)0.0503 (5)
H8A0.11320.16770.03720.060*
C90.04179 (17)0.22702 (18)0.06467 (8)0.0469 (5)
H9A0.11660.19250.07060.056*
C100.00335 (18)0.26254 (18)0.11905 (8)0.0488 (5)
C110.0635 (2)0.32403 (19)0.02824 (8)0.0563 (6)
H11A0.00560.36840.02690.068*
H11B0.12390.36890.04300.068*
C120.0976 (2)0.2932 (2)0.02766 (9)0.0551 (5)
H12A0.17350.26050.02740.066*
H12B0.10080.35890.04880.066*
C130.01193 (17)0.21232 (16)0.05185 (8)0.0448 (4)
C140.0082 (2)0.11360 (17)0.01492 (8)0.0500 (5)
H14A0.08790.08940.01090.060*
C150.0515 (3)0.0249 (2)0.04625 (9)0.0656 (7)
H15A0.03370.04730.03270.079*
H15B0.13410.03510.04610.079*
C160.0024 (2)0.04006 (17)0.10084 (8)0.0537 (5)
H16A0.05710.01510.10720.064*
C170.05149 (18)0.15607 (18)0.10319 (8)0.0480 (5)
H17A0.13470.14600.10030.058*
C180.1067 (2)0.2655 (2)0.05906 (9)0.0577 (6)
H18A0.13640.28720.02580.087*
H18B0.09960.32870.08100.087*
H18C0.15800.21380.07480.087*
C190.1025 (2)0.3444 (2)0.11385 (9)0.0671 (7)
H19A0.13900.35370.14700.101*
H19B0.07320.41360.10210.101*
H19C0.15740.31720.08920.101*
C200.03072 (19)0.21759 (17)0.15443 (8)0.0515 (5)
H20A0.05180.23220.15730.062*
C210.0939 (3)0.32813 (19)0.15666 (10)0.0680 (7)
H21A0.08310.36070.19030.102*
H21B0.06380.37600.13040.102*
H21C0.17440.31670.15070.102*
C220.06676 (18)0.15316 (18)0.20189 (8)0.0508 (5)
C230.0169 (2)0.15302 (19)0.24931 (8)0.0533 (5)
C240.0759 (2)0.0987 (2)0.29503 (9)0.0597 (6)
H24A0.06950.14560.32530.072*
H24B0.03750.03010.30290.072*
C250.2011 (2)0.0766 (2)0.28404 (10)0.0630 (6)
H25A0.24180.14680.28360.076*
C260.2101 (2)0.0263 (2)0.23068 (10)0.0700 (7)
H26A0.29000.01020.22310.084*
H26B0.16780.04210.23000.084*
C270.2561 (3)0.0042 (3)0.32510 (12)0.0888 (9)
H27A0.33690.00200.31830.133*
H27B0.22170.06720.32410.133*
H27C0.24460.03610.35880.133*
C280.0022 (3)0.1973 (2)0.32408 (10)0.0747 (7)
C290.0428 (4)0.2421 (3)0.37442 (12)0.1170 (15)
H29A0.02890.19020.40180.175*
H29B0.00440.30960.38230.175*
H29C0.12380.25510.37140.175*
C300.1137 (3)0.0708 (2)0.15718 (11)0.0731 (7)
C310.2033 (3)0.0710 (3)0.19839 (12)0.0910 (9)
H31A0.20100.13940.21680.137*
H31B0.27750.06190.18280.137*
H31C0.18930.01190.22220.137*
C320.0957 (2)0.2042 (2)0.25880 (10)0.0671 (7)
C330.1545 (3)0.1791 (3)0.30966 (11)0.0949 (11)
H33A0.23360.20080.30770.142*
H33B0.11740.21850.33720.142*
H33C0.15010.10190.31650.142*
O10.00373 (18)0.27141 (14)0.28652 (7)0.0729 (5)
O20.0358 (3)0.10678 (19)0.31779 (9)0.1093 (9)
O30.09271 (14)0.02925 (12)0.13953 (6)0.0584 (4)
O4A0.0784 (7)0.1523 (5)0.1346 (2)0.106 (2)0.7
O4B0.0395 (14)0.1374 (12)0.1589 (5)0.106 (4)0.3
O50.16551 (14)0.09843 (14)0.19159 (6)0.0634 (4)
O60.1443 (2)0.2660 (2)0.22891 (8)0.1006 (8)
C1010.286 (3)0.111 (2)0.0273 (17)0.293 (18)0.46
H10C0.31480.06390.05420.440*0.46
H10D0.23310.07100.00590.440*0.46
H10E0.34900.13630.00630.440*0.46
C1020.227 (3)0.205 (4)0.0508 (12)0.307 (16)0.46
H10I0.17800.17930.07860.369*0.46
H10J0.28420.25340.06620.369*0.46
C1030.156 (5)0.271 (4)0.0135 (17)0.51 (5)0.46
H10K0.09840.22260.00150.616*0.46
H10L0.20500.29530.01460.616*0.46
C1040.097 (4)0.368 (3)0.0355 (15)0.42 (4)0.46
H10M0.12510.42870.01520.500*0.46
H10N0.13010.37630.06980.500*0.46
C1050.026 (4)0.3922 (18)0.0431 (12)0.29 (2)0.46
H10O0.03530.39780.08050.354*0.46
H10P0.03570.46590.02980.354*0.46
C1060.132 (4)0.330 (4)0.025 (2)0.44 (4)0.46
H10F0.15760.28120.05140.665*0.46
H10G0.19250.38190.01700.665*0.46
H10H0.11410.28960.00620.665*0.46
C2010.333 (4)0.081 (3)0.014 (2)0.28 (2)0.34
H20B0.30180.00960.01990.423*0.34
H20C0.38180.10150.04230.423*0.34
H20D0.37610.08130.01780.423*0.34
C2020.236 (4)0.162 (3)0.0096 (18)0.31 (3)0.34
H20H0.17380.12980.00980.367*0.34
H20I0.20830.17980.04410.367*0.34
C2030.274 (3)0.264 (3)0.016 (2)0.267 (19)0.34
H20J0.30680.24560.05000.321*0.34
H20K0.33270.29880.00430.321*0.34
C2040.174 (3)0.345 (3)0.025 (2)0.30 (3)0.34
H20L0.17310.39920.00290.365*0.34
H20M0.18290.38280.05770.365*0.34
C2050.064 (4)0.278 (4)0.024 (3)0.52 (6)0.34
H20N0.05730.24320.05800.621*0.34
H20O0.07420.21980.00110.621*0.34
C2060.049 (4)0.334 (6)0.013 (4)0.60 (8)0.34
H20E0.07200.31750.02230.904*0.34
H20F0.10620.30890.03650.904*0.34
H20G0.03960.41200.01620.904*0.34
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0628 (13)0.0644 (14)0.0507 (12)0.0102 (12)0.0027 (11)0.0054 (11)
C20.0828 (16)0.0650 (15)0.0497 (12)0.0087 (14)0.0082 (12)0.0072 (12)
C30.0723 (15)0.0647 (14)0.0438 (11)0.0051 (12)0.0018 (10)0.0098 (11)
C40.0687 (14)0.0737 (16)0.0478 (12)0.0062 (13)0.0075 (11)0.0009 (12)
C50.0523 (11)0.0646 (14)0.0455 (11)0.0043 (11)0.0004 (9)0.0021 (10)
C60.0794 (16)0.0605 (14)0.0485 (12)0.0132 (13)0.0006 (11)0.0048 (11)
C70.0938 (18)0.0540 (13)0.0507 (13)0.0121 (13)0.0000 (12)0.0008 (11)
C80.0556 (11)0.0518 (12)0.0435 (11)0.0056 (10)0.0012 (9)0.0017 (10)
C90.0445 (9)0.0512 (11)0.0450 (10)0.0020 (9)0.0018 (8)0.0043 (9)
C100.0485 (10)0.0537 (12)0.0442 (10)0.0022 (10)0.0022 (8)0.0041 (9)
C110.0664 (13)0.0550 (13)0.0475 (11)0.0102 (11)0.0017 (10)0.0069 (10)
C120.0598 (12)0.0577 (13)0.0479 (11)0.0088 (11)0.0033 (10)0.0035 (10)
C130.0451 (10)0.0464 (11)0.0427 (10)0.0017 (9)0.0003 (8)0.0035 (9)
C140.0559 (11)0.0492 (11)0.0450 (11)0.0008 (10)0.0038 (9)0.0034 (9)
C150.0924 (18)0.0519 (13)0.0524 (13)0.0123 (13)0.0015 (13)0.0033 (11)
C160.0640 (12)0.0478 (11)0.0494 (12)0.0065 (11)0.0076 (10)0.0044 (10)
C170.0473 (10)0.0513 (11)0.0453 (11)0.0042 (9)0.0020 (9)0.0039 (9)
C180.0545 (12)0.0680 (15)0.0508 (12)0.0119 (11)0.0013 (10)0.0030 (11)
C190.0675 (14)0.0796 (17)0.0541 (13)0.0201 (14)0.0013 (11)0.0066 (13)
C200.0586 (12)0.0519 (12)0.0439 (11)0.0088 (10)0.0002 (9)0.0033 (9)
C210.0969 (19)0.0523 (13)0.0546 (13)0.0006 (14)0.0073 (13)0.0002 (11)
C220.0537 (11)0.0494 (11)0.0493 (11)0.0044 (10)0.0000 (9)0.0036 (10)
C230.0592 (12)0.0545 (12)0.0462 (11)0.0026 (11)0.0024 (9)0.0010 (10)
C240.0725 (14)0.0600 (13)0.0467 (11)0.0003 (12)0.0038 (11)0.0050 (11)
C250.0677 (14)0.0560 (13)0.0653 (14)0.0014 (12)0.0151 (12)0.0077 (12)
C260.0734 (16)0.0723 (16)0.0643 (15)0.0201 (14)0.0021 (13)0.0139 (13)
C270.103 (2)0.087 (2)0.0760 (18)0.0138 (18)0.0292 (17)0.0129 (16)
C280.109 (2)0.0649 (16)0.0504 (13)0.0007 (17)0.0046 (14)0.0018 (12)
C290.195 (4)0.105 (3)0.0506 (16)0.000 (3)0.008 (2)0.0054 (17)
C300.090 (2)0.0578 (15)0.0709 (17)0.0037 (15)0.0106 (15)0.0163 (14)
C310.103 (2)0.085 (2)0.084 (2)0.0164 (19)0.0232 (18)0.0194 (17)
C320.0706 (15)0.0810 (17)0.0498 (12)0.0131 (14)0.0009 (12)0.0039 (13)
C330.0777 (18)0.139 (3)0.0684 (18)0.020 (2)0.0171 (15)0.0072 (19)
O10.1068 (13)0.0673 (10)0.0445 (8)0.0106 (11)0.0007 (9)0.0058 (8)
O20.173 (3)0.0748 (14)0.0803 (14)0.0225 (16)0.0116 (15)0.0131 (11)
O30.0677 (9)0.0522 (9)0.0552 (9)0.0003 (8)0.0112 (8)0.0089 (7)
O4A0.169 (6)0.0501 (19)0.099 (4)0.003 (3)0.043 (3)0.002 (3)
O4B0.128 (10)0.065 (7)0.125 (11)0.030 (7)0.042 (8)0.040 (7)
O50.0620 (9)0.0723 (10)0.0560 (9)0.0210 (8)0.0059 (7)0.0161 (8)
O60.1014 (15)0.1323 (19)0.0680 (12)0.0602 (15)0.0140 (11)0.0117 (13)
C1010.21 (3)0.154 (19)0.52 (6)0.004 (18)0.05 (3)0.02 (3)
C1020.24 (3)0.35 (5)0.33 (4)0.08 (4)0.06 (3)0.02 (4)
C1030.62 (9)0.47 (9)0.45 (6)0.11 (7)0.36 (7)0.06 (6)
C1040.71 (10)0.28 (4)0.26 (3)0.14 (6)0.22 (5)0.05 (3)
C1050.51 (7)0.139 (14)0.23 (3)0.01 (3)0.11 (4)0.031 (15)
C1060.50 (8)0.37 (7)0.46 (7)0.25 (6)0.01 (7)0.04 (6)
C2010.27 (4)0.16 (2)0.41 (6)0.05 (3)0.07 (4)0.04 (3)
C2020.34 (5)0.25 (4)0.32 (5)0.01 (4)0.12 (5)0.08 (4)
C2030.26 (4)0.19 (3)0.35 (5)0.07 (3)0.04 (4)0.07 (3)
C2040.18 (3)0.37 (6)0.37 (6)0.01 (4)0.04 (3)0.16 (5)
C2050.80 (13)0.32 (6)0.44 (9)0.25 (8)0.04 (9)0.21 (6)
C2060.81 (15)0.43 (9)0.56 (11)0.17 (10)0.23 (10)0.22 (8)
Geometric parameters (Å, º) top
C1—C21.533 (3)C25—C261.507 (4)
C1—C101.549 (3)C25—C271.519 (4)
C1—H1A0.9700C25—H25A0.9800
C1—H1B0.9700C26—O51.434 (3)
C2—C31.498 (4)C26—H26A0.9700
C2—H2A0.9700C26—H26B0.9700
C2—H2B0.9700C27—H27A0.9600
C3—O11.462 (3)C27—H27B0.9600
C3—C41.515 (4)C27—H27C0.9600
C3—H3A0.9800C28—O21.183 (3)
C4—C51.516 (3)C28—O11.326 (3)
C4—H4A0.9700C28—C291.500 (4)
C4—H4B0.9700C29—H29A0.9600
C5—C61.317 (3)C29—H29B0.9600
C5—C101.522 (3)C29—H29C0.9600
C6—C71.496 (3)C30—O4B1.188 (15)
C6—H6A0.9300C30—O4A1.224 (7)
C7—C81.526 (3)C30—O31.326 (3)
C7—H7A0.9700C30—C311.488 (4)
C7—H7B0.9700C31—H31A0.9600
C8—C141.523 (3)C31—H31B0.9600
C8—C91.537 (3)C31—H31C0.9600
C8—H8A0.9800C32—O61.217 (3)
C9—C111.531 (3)C32—C331.509 (4)
C9—C101.556 (3)C33—H33A0.9600
C9—H9A0.9800C33—H33B0.9600
C10—C191.533 (3)C33—H33C0.9600
C11—C121.539 (3)C101—C1021.47 (2)
C11—H11A0.9700C101—H10C0.9600
C11—H11B0.9700C101—H10D0.9600
C12—C131.535 (3)C101—H10E0.9600
C12—H12A0.9700C102—C1031.50 (2)
C12—H12B0.9700C102—H10I0.9700
C13—C141.535 (3)C102—H10J0.9700
C13—C181.537 (3)C103—C1041.48 (2)
C13—C171.558 (3)C103—H10K0.9700
C14—C151.518 (3)C103—H10L0.9700
C14—H14A0.9800C104—C1051.47 (2)
C15—C161.527 (3)C104—H10M0.9700
C15—H15A0.9700C104—H10N0.9700
C15—H15B0.9700C105—C1061.53 (3)
C16—O31.454 (3)C105—H10O0.9700
C16—C171.551 (3)C105—H10P0.9700
C16—H16A0.9800C106—H10F0.9600
C17—C201.536 (3)C106—H10G0.9600
C17—H17A0.9800C106—H10H0.9600
C18—H18A0.9600C201—C2021.50 (2)
C18—H18B0.9600C201—H20B0.9600
C18—H18C0.9600C201—H20C0.9600
C19—H19A0.9600C201—H20D0.9600
C19—H19B0.9600C202—C2031.48 (2)
C19—H19C0.9600C202—H20H0.9700
C20—C221.512 (3)C202—H20I0.9700
C20—C211.538 (3)C203—C2041.54 (2)
C20—H20A0.9800C203—H20J0.9700
C21—H21A0.9600C203—H20K0.9700
C21—H21B0.9600C204—C2051.52 (3)
C21—H21C0.9600C204—H20L0.9700
C22—C231.351 (3)C204—H20M0.9700
C22—O51.356 (3)C205—C2061.52 (3)
C23—C321.472 (4)C205—H20N0.9700
C23—C241.515 (3)C205—H20O0.9700
C24—C251.510 (4)C206—H20E0.9600
C24—H24A0.9700C206—H20F0.9600
C24—H24B0.9700C206—H20G0.9600
C2—C1—C10113.7 (2)C25—C24—H24B109.3
C2—C1—H1A108.8C23—C24—H24B109.3
C10—C1—H1A108.8H24A—C24—H24B107.9
C2—C1—H1B108.8C26—C25—C24108.1 (2)
C10—C1—H1B108.8C26—C25—C27111.6 (2)
H1A—C1—H1B107.7C24—C25—C27112.4 (2)
C3—C2—C1110.0 (2)C26—C25—H25A108.2
C3—C2—H2A109.7C24—C25—H25A108.2
C1—C2—H2A109.7C27—C25—H25A108.2
C3—C2—H2B109.7O5—C26—C25111.3 (2)
C1—C2—H2B109.7O5—C26—H26A109.4
H2A—C2—H2B108.2C25—C26—H26A109.4
O1—C3—C2106.27 (19)O5—C26—H26B109.4
O1—C3—C4109.6 (2)C25—C26—H26B109.4
C2—C3—C4111.6 (2)H26A—C26—H26B108.0
O1—C3—H3A109.8C25—C27—H27A109.5
C2—C3—H3A109.8C25—C27—H27B109.5
C4—C3—H3A109.8H27A—C27—H27B109.5
C3—C4—C5111.77 (19)C25—C27—H27C109.5
C3—C4—H4A109.3H27A—C27—H27C109.5
C5—C4—H4A109.3H27B—C27—H27C109.5
C3—C4—H4B109.3O2—C28—O1123.7 (3)
C5—C4—H4B109.3O2—C28—C29125.0 (3)
H4A—C4—H4B107.9O1—C28—C29111.2 (3)
C6—C5—C4119.9 (2)C28—C29—H29A109.5
C6—C5—C10123.7 (2)C28—C29—H29B109.5
C4—C5—C10116.4 (2)H29A—C29—H29B109.5
C5—C6—C7124.8 (2)C28—C29—H29C109.5
C5—C6—H6A117.6H29A—C29—H29C109.5
C7—C6—H6A117.6H29B—C29—H29C109.5
C6—C7—C8111.6 (2)O4B—C30—O3120.6 (8)
C6—C7—H7A109.3O4A—C30—O3121.6 (4)
C8—C7—H7A109.3O4B—C30—C31118.9 (7)
C6—C7—H7B109.3O4A—C30—C31124.9 (4)
C8—C7—H7B109.3O3—C30—C31112.0 (3)
H7A—C7—H7B108.0C30—C31—H31A109.5
C14—C8—C7111.60 (18)C30—C31—H31B109.5
C14—C8—C9109.69 (17)H31A—C31—H31B109.5
C7—C8—C9109.76 (17)C30—C31—H31C109.5
C14—C8—H8A108.6H31A—C31—H31C109.5
C7—C8—H8A108.6H31B—C31—H31C109.5
C9—C8—H8A108.6O6—C32—C23124.9 (2)
C11—C9—C8112.35 (17)O6—C32—C33117.5 (3)
C11—C9—C10112.98 (18)C23—C32—C33117.5 (2)
C8—C9—C10111.99 (17)C32—C33—H33A109.5
C11—C9—H9A106.3C32—C33—H33B109.5
C8—C9—H9A106.3H33A—C33—H33B109.5
C10—C9—H9A106.3C32—C33—H33C109.5
C5—C10—C19109.64 (19)H33A—C33—H33C109.5
C5—C10—C1107.22 (18)H33B—C33—H33C109.5
C19—C10—C1109.38 (19)C28—O1—C3118.0 (2)
C5—C10—C9110.49 (18)C30—O3—C16116.84 (19)
C19—C10—C9110.96 (17)C22—O5—C26118.21 (17)
C1—C10—C9109.05 (17)C102—C101—C106i104 (3)
C9—C11—C12115.15 (18)C102—C101—H10C109.5
C9—C11—H11A108.5C106i—C101—H10C126.5
C12—C11—H11A108.5C102—C101—H10D109.5
C9—C11—H11B108.5C106i—C101—H10D96.7
C12—C11—H11B108.5H10C—C101—H10D109.5
H11A—C11—H11B107.5C102—C101—H10E109.5
C13—C12—C11111.63 (18)H10C—C101—H10E109.5
C13—C12—H12A109.3H10D—C101—H10E109.5
C11—C12—H12A109.3C101—C102—C103114 (3)
C13—C12—H12B109.3C101—C102—H10I108.7
C11—C12—H12B109.3C103—C102—H10I108.7
H12A—C12—H12B108.0C101—C102—H10J108.7
C12—C13—C14105.79 (17)C103—C102—H10J108.7
C12—C13—C18111.18 (18)H10I—C102—H10J107.6
C14—C13—C18112.38 (17)C104—C103—C102116 (3)
C12—C13—C17115.77 (17)C104—C103—H10K108.3
C14—C13—C17100.78 (15)C102—C103—H10K108.3
C18—C13—C17110.45 (17)C104—C103—H10L108.3
C15—C14—C8118.96 (19)C102—C103—H10L108.3
C15—C14—C13104.12 (17)H10K—C103—H10L107.4
C8—C14—C13114.83 (17)C105—C104—C103132 (3)
C15—C14—H14A106.0C105—C104—H10M104.3
C8—C14—H14A106.0C103—C104—H10M104.3
C13—C14—H14A106.0C105—C104—H10N104.3
C14—C15—C16103.34 (19)C103—C104—H10N104.3
C14—C15—H15A111.1H10M—C104—H10N105.6
C16—C15—H15A111.1C104—C105—C106130 (3)
C14—C15—H15B111.1C104—C105—H10O104.7
C16—C15—H15B111.1C106—C105—H10O104.7
H15A—C15—H15B109.1C104—C105—H10P104.7
O3—C16—C15110.4 (2)C106—C105—H10P104.7
O3—C16—C17110.43 (17)H10O—C105—H10P105.7
C15—C16—C17107.33 (18)C105—C106—H10F109.5
O3—C16—H16A109.6C105—C106—H10G109.5
C15—C16—H16A109.6H10F—C106—H10G109.5
C17—C16—H16A109.6C105—C106—H10H109.5
C20—C17—C16114.60 (17)H10F—C106—H10H109.5
C20—C17—C13117.73 (17)H10G—C106—H10H109.5
C16—C17—C13104.46 (17)C202—C201—H20B109.5
C20—C17—H17A106.4C202—C201—H20C109.5
C16—C17—H17A106.4H20B—C201—H20C109.5
C13—C17—H17A106.4C202—C201—H20D109.5
C13—C18—H18A109.5H20B—C201—H20D109.5
C13—C18—H18B109.5H20C—C201—H20D109.5
H18A—C18—H18B109.5C203—C202—C201112 (3)
C13—C18—H18C109.5C203—C202—H20H109.3
H18A—C18—H18C109.5C201—C202—H20H109.3
H18B—C18—H18C109.5C203—C202—H20I109.3
C10—C19—H19A109.5C201—C202—H20I109.3
C10—C19—H19B109.5H20H—C202—H20I108.0
H19A—C19—H19B109.5C202—C203—C204113 (2)
C10—C19—H19C109.5C202—C203—H20J109.1
H19A—C19—H19C109.5C204—C203—H20J109.1
H19B—C19—H19C109.5C202—C203—H20K109.1
C22—C20—C17113.26 (17)C204—C203—H20K109.1
C22—C20—C21107.06 (18)H20J—C203—H20K107.8
C17—C20—C21112.67 (18)C205—C204—C203107 (3)
C22—C20—H20A107.9C205—C204—H20L110.4
C17—C20—H20A107.9C203—C204—H20L110.4
C21—C20—H20A107.9C205—C204—H20M110.4
C20—C21—H21A109.5C203—C204—H20M110.4
C20—C21—H21B109.5H20L—C204—H20M108.6
H21A—C21—H21B109.5C206—C205—C204119 (3)
C20—C21—H21C109.5C206—C205—H20N107.5
H21A—C21—H21C109.5C204—C205—H20N107.5
H21B—C21—H21C109.5C206—C205—H20O107.5
C23—C22—O5122.72 (19)C204—C205—H20O107.5
C23—C22—C20127.61 (19)H20N—C205—H20O107.0
O5—C22—C20109.51 (17)C205—C206—H20E109.5
C22—C23—C32122.1 (2)C205—C206—H20F109.5
C22—C23—C24120.4 (2)H20E—C206—H20F109.5
C32—C23—C24117.4 (2)C205—C206—H20G109.5
C25—C24—C23111.8 (2)H20E—C206—H20G109.5
C25—C24—H24A109.3H20F—C206—H20G109.5
C23—C24—H24A109.3
C10—C1—C2—C358.5 (3)O3—C16—C17—C2019.7 (2)
C1—C2—C3—O1176.0 (2)C15—C16—C17—C20140.0 (2)
C1—C2—C3—C456.6 (3)O3—C16—C17—C13110.59 (18)
O1—C3—C4—C5170.4 (2)C15—C16—C17—C139.7 (2)
C2—C3—C4—C553.0 (3)C12—C13—C17—C2085.2 (2)
C3—C4—C5—C6128.3 (3)C14—C13—C17—C20161.23 (18)
C3—C4—C5—C1051.4 (3)C18—C13—C17—C2042.2 (2)
C4—C5—C6—C7178.7 (2)C12—C13—C17—C16146.38 (18)
C10—C5—C6—C71.7 (4)C14—C13—C17—C1632.8 (2)
C5—C6—C7—C816.8 (4)C18—C13—C17—C1686.2 (2)
C6—C7—C8—C14168.6 (2)C16—C17—C20—C2253.6 (2)
C6—C7—C8—C946.8 (3)C13—C17—C20—C22177.03 (18)
C14—C8—C9—C1147.4 (2)C16—C17—C20—C21175.31 (19)
C7—C8—C9—C11170.39 (19)C13—C17—C20—C2161.3 (3)
C14—C8—C9—C10175.84 (17)C17—C20—C22—C23145.6 (2)
C7—C8—C9—C1061.2 (2)C21—C20—C22—C2389.6 (3)
C6—C5—C10—C19111.6 (3)C17—C20—C22—O538.9 (2)
C4—C5—C10—C1968.7 (3)C21—C20—C22—O585.9 (2)
C6—C5—C10—C1129.8 (2)O5—C22—C23—C32174.2 (2)
C4—C5—C10—C149.9 (3)C20—C22—C23—C3210.9 (4)
C6—C5—C10—C911.0 (3)O5—C22—C23—C245.4 (4)
C4—C5—C10—C9168.65 (18)C20—C22—C23—C24169.5 (2)
C2—C1—C10—C553.1 (3)C22—C23—C24—C2515.4 (3)
C2—C1—C10—C1965.7 (3)C32—C23—C24—C25164.9 (2)
C2—C1—C10—C9172.8 (2)C23—C24—C25—C2646.1 (3)
C11—C9—C10—C5170.04 (18)C23—C24—C25—C27169.6 (2)
C8—C9—C10—C542.0 (2)C24—C25—C26—O560.1 (3)
C11—C9—C10—C1948.2 (3)C27—C25—C26—O5175.8 (2)
C8—C9—C10—C1979.9 (2)C22—C23—C32—O613.3 (4)
C11—C9—C10—C172.3 (2)C24—C23—C32—O6167.0 (3)
C8—C9—C10—C1159.58 (18)C22—C23—C32—C33167.4 (3)
C8—C9—C11—C1246.7 (3)C24—C23—C32—C3312.3 (3)
C10—C9—C11—C12174.63 (19)O2—C28—O1—C31.2 (5)
C9—C11—C12—C1352.4 (3)C29—C28—O1—C3176.9 (3)
C11—C12—C13—C1456.5 (2)C2—C3—O1—C28155.7 (3)
C11—C12—C13—C1865.8 (2)C4—C3—O1—C2883.5 (3)
C11—C12—C13—C17167.13 (19)O4B—C30—O3—C1629.4 (9)
C7—C8—C14—C1555.4 (3)O4A—C30—O3—C1615.8 (6)
C9—C8—C14—C15177.3 (2)C31—C30—O3—C16177.1 (2)
C7—C8—C14—C13179.72 (19)C15—C16—O3—C3088.5 (3)
C9—C8—C14—C1358.4 (2)C17—C16—O3—C30153.0 (2)
C12—C13—C14—C15165.85 (18)C23—C22—O5—C268.4 (3)
C18—C13—C14—C1572.6 (2)C20—C22—O5—C26175.9 (2)
C17—C13—C14—C1544.9 (2)C25—C26—O5—C2242.1 (3)
C12—C13—C14—C862.4 (2)C101—C102—C103—C104179 (4)
C18—C13—C14—C859.2 (2)C102—C103—C104—C105114 (5)
C17—C13—C14—C8176.73 (17)C103—C104—C105—C1068 (7)
C8—C14—C15—C16168.6 (2)C201—C202—C203—C204176 (5)
C13—C14—C15—C1639.2 (2)C202—C203—C204—C20523 (8)
C14—C15—C16—O3138.11 (19)C203—C204—C205—C206159 (7)
C14—C15—C16—C1717.7 (2)
Symmetry code: (i) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O60.982.172.859 (3)126
C26—H26B···O6ii0.972.593.431 (4)146
C33—H33B···O4Biii0.962.543.283 (15)135
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H48O6·0.8C6H14
Mr609.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)11.64797 (17), 12.20869 (17), 25.7274 (4)
V3)3658.60 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.45 × 0.30 × 0.20
Data collection
DiffractometerRigaku SuperNova
Absorption correctionMulti-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
Tmin, Tmax0.663, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19071, 6767, 5885
Rint0.020
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.01
No. of reflections6767
No. of parameters477
No. of restraints90
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.11
Absolute structureFlack x determined using 2066 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.09 (6)

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008).

 

Acknowledgements

This work was supported by CONACyT grant RET-250025 to MGHL. We thank VIEP–BUAP for financial support, and CONACyT for the scholarships to GGL (573785) and ACC.

References

First citationCastro-Méndez, A., Sandoval-Ramírez, J. & Bernès, S. (2002). Acta Cryst. E58, o606–o608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPérez-Díaz, J. O. H., Vega-Baez, J. L., Sandoval-Ramírez, J., Meza-Reyes, S., Montiel-Smith, S., Farfán, N. & Santillan, R. (2010). Steroids, 75, 1127–1136.  PubMed Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.  Google Scholar
First citationSandoval-Ramírez, J., Castro-Méndez, A., Meza-Reyes, S., Reyes-Vázquez, F., Santillán, R. & Farfán, N. (1999). Tetrahedron Lett. 40, 5143–5146.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoki, F., Neudörfl, J.-M. & Goldfuss, B. (2008). J. Organomet. Chem. 693, 2139–2146.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeberski, M. P. Jr, Chen, C., Delferro, M., Zuccaccia, C., Macchioni, A. & Marks, T. J. (2012). Organometallics, 31, 3773–3789.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds