organic compounds
(25R)-3β,16β-Diacetoxy-23-acetyl-22,26-epoxycholesta-5,22-diene n-hexane 0.8-solvate
aLaboratorio de Investigación del Jardín Botánico, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. 113 Complejo de Ciencias CU, San Manuel, 72570 Puebla, Pue., Mexico, bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and cCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, B.C., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
In the title solvate, C33H48O6·0.8C6H14, the steroid presents a conformation almost identical to that of its previously characterized benzene monosolvate [Sandoval-Ramírez et al. (1999). Tetrahedron Lett. 40, 5143–5146]. The n-hexane solvent of crystallization is agglomerated in channels parallel to [100] in the crystal. The solvent molecule is disordered over two sites in the with occupancies of 0.46 and 0.34. A minor disorder for the carbonyl O atom of the acetyl substituent at position 16 in the steroid was also introduced, with two sites having occupancies of 0.7 and 0.3.
Keywords: crystal structure; steroid; diosgenin; solvate.
CCDC reference: 1473880
Structure description
The crystallization process for the title steroid afforded a hexane solvate (Fig. 1), which crystallizes in an orthorhombic cell close to that previously reported for the benzene monosolvate (Sandoval-Ramírez et al., 1999; Refcode HOSKAB in the CSD). In both structures, the steroidal molecule adopts the same conformation. HOSKAB was reported and deposited with the wrong configuration; however, after inversion, a fit with the steroid reported here gives an r.m.s. deviation between the two molecules of 0.058 Å (Macrae et al., 2008). The pyran ring C22–C26/O5 in the title structure also adopts the same twisted conformation found in related bearing this ring (Sandoval-Ramírez et al., 1999; Castro-Méndez et al., 2002; Pérez-Díaz et al., 2010).
Once the steroid is placed in the R1 = 0.073 (observed data), but ca 24% of the cell volume is unoccupied. Difference maps show that residual density is present in these voids, which may be modelled as two disordered n-hexane molecules, C101–C106 and C201–C206 (Fig. 1, inset). After refining occupancies for each part, the hexane content may be roughly estimated as 0.8 hexane per and the converges to R1 = 0.040. Alternatively, starting from the unsolvated model, the SQUEEZE procedure (Spek, 2015) retrieves a density of 76 electrons in the within two voids of 423 Å3 (1.2 Å probe radius). Assuming that the solvent is hexane, these data correspond to a lower solvent content, ca 0.4 hexane per With the SQUEEZE-based data, the structure converges to R1 = 0.042.
the converges toThe actual steroid:solvent stoichiometry for this crystal should thus be in the range 1:0.4 to 1:0.8, but the latter ratio was retained for the present report, which is based on diffraction data: after location of atoms C101–C206, the geometry in each part was restrained (see Refinement details section) and the structure refined with isotropic solvent. Occupancies for each part were then freely refined. In the last cycles, the solvent was refined with anisotropic displacement parameters, and site occupancies were fixed, in order to prevent correlations with thermal factors. In the final model, displacement for C atoms of hexane are rather large (Fig. 1), indicating that these disordered molecules interact poorly with the host molecules in the crystal. If, starting from this model, occupancies for solvent are decreased by 50%, residuals rise to R1 = 0.049 for observed data and wR2 = 0.137 for all data. On the other hand, the reported host:guest stoichiometry corresponds to the analysed single crystal, and solvent content may vary from crystal to crystal. The accurate stoichiometry and the reproducibility for a bulk preparation of this solvate remain unknown.
The model including coordinates for the solvent is severely disordered, as reflected in the high ADP's for atoms C101–C206. It is worth mentioning that attempts to include AcOEt as the solvent in the model were unsuccessful. It thus seems that this steroid is prone to interact with non-polar solvents, such as hexane and benzene. In the crystal, hexane is located in channels parallel to [100], and is arranged in such a way that a continuous electronic density is observed along the channels (Fig. 2). The n-hexane conformation includes for both molecules one cis torsion angle, C103—C104—C105—C106 = 8(7)°, and C202—C203—C204—C205 = −23 (8)°. This conformation is not common, compared to the full-trans conformer, but has been observed in many non-disordered solvate structures (e.g. Weberski et al., 2012; Soki et al., 2008). This bent conformation for n-hexane is reflected in the zigzag shape of the channels containing solvent molecules.
Synthesis and crystallization
To a solution of diosgenin (2.0 g, 4.83 mmol) in acetic anhydride (10 ml) was added BF3–OEt2 (1.8 ml). The mixture was stirred for 10 min at room temperature. After 10 min, the mixture was poured into cold water (10 ml) and stirred for a further hour. The organic phase was neutralized with saturated NaHCO3 solution (2 ×15 ml), DCM was added (15 ml) and the mixture washed with H2O (2 ×10 ml). The organic phases were dried with Na2SO4 and evaporated under reduced pressure, affording a lacquer solid. This crude was purified by over silica gel (n-hexane:AcOEt, 85:15), giving the title epoxycholestene as a white solid (1.30 g, 75%). This compound was recrystallized from hexane solution, giving single crystals of the title solvate, m.p. 95–96 °C, [αD] = −24 (c = 0.65, CHCl3). Crystals are apparently air-stable for months, and were stored in a non-controlled atmosphere prior to crystallographic study. The IR spectrum of the crystallized compound shows better resolved absorption bands, compared to the crude lacquer, and vibrations in the range 681–832 cm−1 confirm the presence of hexane in the crystals.
1H-NMR (500 MHz, CDCl3), δ: 5.35 (1H, d, J6–7e = 4.5 Hz, H-6), 5.14 (1H, ddd, J16–17 = J16–15e = 7.5 and J16–15a = 4.5 Hz, H-16), 4.59 (1H, m, H-3), 4.07 (1H, m, H-20), 3.48 (1H, dd, J26e–25 = 3.5 and J26e–26a=10.5 Hz, H-26e), 3.41 (1H, dd, J26a–25 = J26a–26e = 10.5 Hz, H-26a), 2.20 (3H, s, CH3-232), 2.02 (3H, s, CH3CO2-3), 1.84 (3H, s, CH3CO2-16), 1.18 (3H, d, J21–20 = 6.0 Hz, CH3-21), 1.03 (3H, s, CH3-19), 0.97 (3H, d, J27–25 = 6.0 Hz, CH3-27), 0.92 (3H, s, CH3-18). 13C-NMR (125 MHz, CDCl3), δ: 197.9 (C-231), 171.1 (C-22), 170.4 (CH3COO-3), 170.3 (CH3COO-16), 139.6 (C-5), 122.1 (C-6), 106.8 (C-23), 74.9 (C-16), 73.7 (C-3), 71.4 (C-26), 55.8 (C-17), 54.2 (C-14), 49.9 (C-9), 42.1 (C-13), 39.6 (C-12), 37.9 (C-4), 36.8 (C-1), 36.4 (C-10), 34.8 (C-15), 32.7 (C-20), 31.5 (C-24), 31.5 (C-7), 31.3 (C-8), 29.6 (C-232), 27.6 (C-2), 26.4 (C-25), 21.2 (CH3COO-3), 21.0 (CH3COO-16), 20.7 (C-11), 19.3 (C-21), 19.1 (C-19), 16.7 (C-27), 12.8 (C-18).
Refinement
Crystal data, data collection and structure . For the disordered solvent, C—C bond lengths and 1,3-C⋯C distances were restrained to 1.53 (2) and 2.52 (3) Å, respectively. Moreover, C atoms were restrained with effective standard deviation of 0.1 Å2 to have their Uij components approximating an isotropic behaviour (ISOR command; Sheldrick, 2015). Site occupancies for molecules C101–C106 and C201–C206 were first refined, and then fixed in the final cycles, to 0.46 and 0.34, respectively. A minor disorder in the steroidal molecule was also considered for the carbonyl O atom O4, disordered over two sites O4A and O4B, with occupancies 0.7 and 0.3, respectively. The expected for the steroid is in agreement with the refined x = 0.09 (6).
details are summarized in Table 1Structural data
CCDC reference: 1473880
10.1107/S2414314616006222/zp4003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616006222/zp4003Isup2.hkl
To a solution of diosgenin (2.0 g, 4.83 mmol) in acetic anhydride (10 ml) was added BF3–OEt2 (1.8 ml). The mixture was stirred for 10 min at room temperature. After 10 min, the mixture was poured into cold water (10 ml) and stirred for a further hour. The organic phase was neutralized with saturated NaHCO3 solution (2 ×15 ml), DCM was added (15 ml) and the mixture washed with H2O (2 ×10 ml). The organic phases were dried with Na2SO4 and evaporated under reduced pressure, affording a lacquer solid. This crude was purified by αD] = -24 (c = 0.65, CHCl3). Crystals are apparently air-stable for months, and were stored in a non-controlled atmosphere prior to crystallographic study. The IR spectrum of the crystallized compound shows better resolved absorption bands, compared to the crude lacquer, and vibrations in the range 681–832 cm-1 confirm the presence of hexane in the crystals.
over silica gel (n-hexane:AcOEt, 85:15), giving the title epoxycholestene as a white solid (1.30 g, 75%). This compound was recrystallized from hexane, giving single crystals of the title solvate, m.p. 95–96 °C, [1H-NMR (500 MHz, CDCl3), δ: 5.35 (1H, d, J6–7 e = 4.5 Hz, H-6), 5.14 (1H, ddd, J16–17 = J16–15 e = 7.5 and J16–15a = 4.5 Hz, H-16), 4.59 (1H, m, H-3), 4.07 (1H, m, H-20), 3.48 (1H, dd, J26 e-25 = 3.5 and J26 e-26a=10.5 Hz, H-26e), 3.41 (1H, dd, J26a-25 = J26a-26 e = 10.5 Hz, H-26a), 2.20 (3H, s, CH3-232), 2.02 (3H, s, CH3CO2-3), 1.84 (3H, s, CH3CO2-16), 1.18 (3H, d, J21–20 = 6.0 Hz, CH3-21), 1.03 (3H, s, CH3-19), 0.97 (3H, d, J27–25 = 6.0 Hz, CH3-27), 0.92 (3H, s, CH3-18). 13C-NMR (125 MHz, CDCl3), δ: 197.9 (C-231), 171.1 (C-22), 170.4 (CH3COO-3), 170.3 (CH3COO-16), 139.6 (C-5), 122.1 (C-6), 106.8 (C-23), 74.9 (C-16), 73.7 (C-3), 71.4 (C-26), 55.8 (C-17), 54.2 (C-14), 49.9 (C-9), 42.1 (C-13), 39.6 (C-12), 37.9 (C-4), 36.8 (C-1), 36.4 (C-10), 34.8 (C-15), 32.7 (C-20), 31.5 (C-24), 31.5 (C-7), 31.3 (C-8), 29.6 (C-232), 27.6 (C-2), 26.4 (C-25), 21.2 (CH3COO-3), 21.0 (CH3COO-16), 20.7 (C-11), 19.3 (C-21), 19.1 (C-19), 16.7 (C-27), 12.8 (C-18).
Crystal data, data collection and structure
details are summarized in Table 1. For the disordered lattice solvent, C—C bond lengths and 1,3-C···C distances were restrained to 1.53 (2) and 2.52 (3) Å, respectively. Moreover, C atoms were restrained with effective standard deviation of 0.1 Å2 to have their Uij components approximating an isotropic behaviour (ISOR command; Sheldrick, 2015). Site occupancies for molecules C101–C106 and C201–C206 were first refined, and then fixed in the final cycles, to 0.46 and 0.34, respectively. A minor disorder in the steroidal molecule was also considered for the carbonyl O atom O4, disordered over two sites O4A and O4B, with occupancies 0.7 and 0.3, respectively. The expected for the steroid is in agreement with the refined x = 0.09 (6).The crystallization process for the title steroid afforded a hexane solvate (Fig. 1), which crystallizes in an orthorhombic cell close to that previously reported for the benzene monosolvate (Sandoval-Ramírez et al., 1999; Refcode HOSKAB in the CSD). In both structures, the steroidal molecule adopts the same conformation. HOSKAB was reported and deposited with the wrong configuration; however, after inversion, a fit with the title steroid gives an r.m.s. deviation between the two molecules of 0.058 Å (Macrae et al., 2008). The pyran ring C22–C26/O5 in the title structure also adopts the same twisted conformation found in related
bearing this ring (Sandoval-Ramírez et al., 1999; Castro-Méndez et al., 2002; Pérez-Díaz et al., 2010).Once the steroid is placed in the
the converges to R1 = 0.073 (observed data), but ca 24% of the cell volume is unoccupied. Difference maps show that residual density is present in these voids, which may be modeled as two disordered n-hexane molecules, C101–C106 and C201–C206 (Fig. 1, inset). After refining occupancies for each part, the hexane content may be roughly estimated as 0.8 hexane per and the converges to R1 = 0.040. Alternatively, starting from the unsolvated model, the SQUEEZE procedure (Spek, 2015) retrieves a density of 76 electrons in the within two voids of 423 Å3 (1.2 Å probe radius). Assuming that the lattice solvent is hexane, these data correspond to a lower solvent content, ca 0.4 hexane per With the SQUEEZE-based data, the structure converges to R1 = 0.042.The actual steroid:solvent stoichiometry for this crystal should thus be in the range 1:0.4 to 1:0.8, but the latter ratio was retained for the present report, which is based on diffraction data: after location of atoms C101–C206, the geometry in each part was restrained (see
details section) and the structure refined with isotropic solvent. Occupancies for each part were then freely refined. In the last cycles, the solvent was refined with anisotropic displacement parameters, and site occupancies were fixed, in order to prevent correlations with thermal factors. In the final model, displacement for C atoms of hexane are rather large (Fig. 1), indicating that these disordered molecules interact poorly with the host molecules in the crystal. If, starting from this model, occupancies for solvent are decreased by 50%, residuals rise to R1 = 0.049 for observed data and wR2 = 0.137 for all data. On the other hand, the reported host:guest stoichiometry corresponds to the analysed single crystal, and solvent content may vary from crystal to crystal. The accurate stoichiometry and the reproducibility for a bulk preparation of this solvate remain unknown.The model including coordinates for lattice solvent is severely disordered, as reflected in the high ADP's for atoms C101–C206. It is worth mentioning that attempts to include AcOEt as lattice solvent in the model were unsuccessful. It thus seems that this steroid is prone to interact with non-polar solvents, such as hexane and benzene. In the crystal, hexane is located in channels parallel to [100], and is arranged in such a way that a continuous electronic density is observed along the channels (Fig. 2). The n-hexane conformation includes for both molecules one cis torsion angle, C103—C104—C105—C106 = 8(7)°, and C202—C203—C204—C205 = -23 (8)°. This conformation is not common, compared to the full-trans conformer, but has been observed in many non-disordered solvate structures (e.g. Weberski et al., 2012; Soki et al., 2008). This bent conformation for n-hexane is reflected in the zigzag shape of the channels containing solvent molecules.
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The structure of the title solvate, with displacement ellipsoids at the 30% probability level. Only one site for the disordered atom O4 has been retained. The inset represents the model used for the disordered solvent. The blue hexane molecule has a site occupancy factor of 0.46, and the red molecule has 0.34 occupancy. | |
Fig. 2. Part of the crystal structure for the title solvate. Five steroids are represented, one of which with a spacefill model. Channels parallel to [100] containing disordered n-hexane molecules are represented using the solvent accessible surface calculated using the non-solvated model (Macrae et al., 2008). A probe radius of 1 Å was used, with a grid resolution of 0.25 Å. |
C33H48O6·0.8C6H14 | Dx = 1.107 Mg m−3 |
Mr = 609.65 | Melting point: 368 K |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54184 Å |
a = 11.64797 (17) Å | Cell parameters from 10211 reflections |
b = 12.20869 (17) Å | θ = 1.7–71.1° |
c = 25.7274 (4) Å | µ = 0.58 mm−1 |
V = 3658.60 (9) Å3 | T = 294 K |
Z = 4 | Irregular, colourless |
F(000) = 1336 | 0.45 × 0.30 × 0.20 mm |
Rigaku SuperNova diffractometer | 6767 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 5885 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.020 |
Detector resolution: 5.1980 pixels mm-1 | θmax = 71.7°, θmin = 3.4° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | k = −14→12 |
Tmin = 0.663, Tmax = 1.000 | l = −31→28 |
19071 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1048P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.106 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 0.15 e Å−3 |
6767 reflections | Δρmin = −0.11 e Å−3 |
477 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
90 restraints | Extinction coefficient: 0.00090 (16) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 2066 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.09 (6) |
C33H48O6·0.8C6H14 | V = 3658.60 (9) Å3 |
Mr = 609.65 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 11.64797 (17) Å | µ = 0.58 mm−1 |
b = 12.20869 (17) Å | T = 294 K |
c = 25.7274 (4) Å | 0.45 × 0.30 × 0.20 mm |
Rigaku SuperNova diffractometer | 6767 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | 5885 reflections with I > 2σ(I) |
Tmin = 0.663, Tmax = 1.000 | Rint = 0.020 |
19071 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.106 | Δρmax = 0.15 e Å−3 |
S = 1.01 | Δρmin = −0.11 e Å−3 |
6767 reflections | Absolute structure: Flack x determined using 2066 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
477 parameters | Absolute structure parameter: 0.09 (6) |
90 restraints |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.0960 (2) | 0.3162 (2) | −0.14991 (9) | 0.0593 (6) | |
H1A | 0.1179 | 0.3838 | −0.1327 | 0.071* | |
H1B | 0.1618 | 0.2676 | −0.1492 | 0.071* | |
C2 | 0.0657 (2) | 0.3415 (2) | −0.20665 (9) | 0.0658 (6) | |
H2A | 0.0030 | 0.3938 | −0.2079 | 0.079* | |
H2B | 0.1315 | 0.3739 | −0.2239 | 0.079* | |
C3 | 0.0314 (2) | 0.2386 (2) | −0.23421 (8) | 0.0603 (6) | |
H3A | 0.0972 | 0.1888 | −0.2363 | 0.072* | |
C4 | −0.0677 (2) | 0.1820 (2) | −0.20711 (9) | 0.0634 (6) | |
H4A | −0.0822 | 0.1121 | −0.2238 | 0.076* | |
H4B | −0.1363 | 0.2264 | −0.2106 | 0.076* | |
C5 | −0.04301 (19) | 0.1632 (2) | −0.14994 (9) | 0.0541 (5) | |
C6 | −0.0558 (2) | 0.0648 (2) | −0.12974 (9) | 0.0628 (6) | |
H6A | −0.0785 | 0.0086 | −0.1519 | 0.075* | |
C7 | −0.0365 (3) | 0.0368 (2) | −0.07381 (9) | 0.0662 (7) | |
H7A | 0.0360 | −0.0015 | −0.0703 | 0.079* | |
H7B | −0.0970 | −0.0118 | −0.0621 | 0.079* | |
C8 | −0.03482 (19) | 0.13903 (18) | −0.03968 (8) | 0.0503 (5) | |
H8A | −0.1132 | 0.1677 | −0.0372 | 0.060* | |
C9 | 0.04179 (17) | 0.22702 (18) | −0.06467 (8) | 0.0469 (5) | |
H9A | 0.1166 | 0.1925 | −0.0706 | 0.056* | |
C10 | −0.00335 (18) | 0.26254 (18) | −0.11905 (8) | 0.0488 (5) | |
C11 | 0.0635 (2) | 0.32403 (19) | −0.02824 (8) | 0.0563 (6) | |
H11A | −0.0056 | 0.3684 | −0.0269 | 0.068* | |
H11B | 0.1239 | 0.3689 | −0.0430 | 0.068* | |
C12 | 0.0976 (2) | 0.2932 (2) | 0.02766 (9) | 0.0551 (5) | |
H12A | 0.1735 | 0.2605 | 0.0274 | 0.066* | |
H12B | 0.1008 | 0.3589 | 0.0488 | 0.066* | |
C13 | 0.01193 (17) | 0.21232 (16) | 0.05185 (8) | 0.0448 (4) | |
C14 | 0.0082 (2) | 0.11360 (17) | 0.01492 (8) | 0.0500 (5) | |
H14A | 0.0879 | 0.0894 | 0.0109 | 0.060* | |
C15 | −0.0515 (3) | 0.0249 (2) | 0.04625 (9) | 0.0656 (7) | |
H15A | −0.0337 | −0.0473 | 0.0327 | 0.079* | |
H15B | −0.1341 | 0.0351 | 0.0461 | 0.079* | |
C16 | −0.0024 (2) | 0.04006 (17) | 0.10084 (8) | 0.0537 (5) | |
H16A | 0.0571 | −0.0151 | 0.1072 | 0.064* | |
C17 | 0.05149 (18) | 0.15607 (18) | 0.10319 (8) | 0.0480 (5) | |
H17A | 0.1347 | 0.1460 | 0.1003 | 0.058* | |
C18 | −0.1067 (2) | 0.2655 (2) | 0.05906 (9) | 0.0577 (6) | |
H18A | −0.1364 | 0.2872 | 0.0258 | 0.087* | |
H18B | −0.0996 | 0.3287 | 0.0810 | 0.087* | |
H18C | −0.1580 | 0.2138 | 0.0748 | 0.087* | |
C19 | −0.1025 (2) | 0.3444 (2) | −0.11385 (9) | 0.0671 (7) | |
H19A | −0.1390 | 0.3537 | −0.1470 | 0.101* | |
H19B | −0.0732 | 0.4136 | −0.1021 | 0.101* | |
H19C | −0.1574 | 0.3172 | −0.0892 | 0.101* | |
C20 | 0.03072 (19) | 0.21759 (17) | 0.15443 (8) | 0.0515 (5) | |
H20A | −0.0518 | 0.2322 | 0.1573 | 0.062* | |
C21 | 0.0939 (3) | 0.32813 (19) | 0.15666 (10) | 0.0680 (7) | |
H21A | 0.0831 | 0.3607 | 0.1903 | 0.102* | |
H21B | 0.0638 | 0.3760 | 0.1304 | 0.102* | |
H21C | 0.1744 | 0.3167 | 0.1507 | 0.102* | |
C22 | 0.06676 (18) | 0.15316 (18) | 0.20189 (8) | 0.0508 (5) | |
C23 | 0.0169 (2) | 0.15302 (19) | 0.24931 (8) | 0.0533 (5) | |
C24 | 0.0759 (2) | 0.0987 (2) | 0.29503 (9) | 0.0597 (6) | |
H24A | 0.0695 | 0.1456 | 0.3253 | 0.072* | |
H24B | 0.0375 | 0.0301 | 0.3029 | 0.072* | |
C25 | 0.2011 (2) | 0.0766 (2) | 0.28404 (10) | 0.0630 (6) | |
H25A | 0.2418 | 0.1468 | 0.2836 | 0.076* | |
C26 | 0.2101 (2) | 0.0263 (2) | 0.23068 (10) | 0.0700 (7) | |
H26A | 0.2900 | 0.0102 | 0.2231 | 0.084* | |
H26B | 0.1678 | −0.0421 | 0.2300 | 0.084* | |
C27 | 0.2561 (3) | 0.0042 (3) | 0.32510 (12) | 0.0888 (9) | |
H27A | 0.3369 | −0.0020 | 0.3183 | 0.133* | |
H27B | 0.2217 | −0.0672 | 0.3241 | 0.133* | |
H27C | 0.2446 | 0.0361 | 0.3588 | 0.133* | |
C28 | 0.0022 (3) | 0.1973 (2) | −0.32408 (10) | 0.0747 (7) | |
C29 | −0.0428 (4) | 0.2421 (3) | −0.37442 (12) | 0.1170 (15) | |
H29A | −0.0289 | 0.1902 | −0.4018 | 0.175* | |
H29B | −0.0044 | 0.3096 | −0.3823 | 0.175* | |
H29C | −0.1238 | 0.2551 | −0.3714 | 0.175* | |
C30 | −0.1137 (3) | −0.0708 (2) | 0.15718 (11) | 0.0731 (7) | |
C31 | −0.2033 (3) | −0.0710 (3) | 0.19839 (12) | 0.0910 (9) | |
H31A | −0.2010 | −0.1394 | 0.2168 | 0.137* | |
H31B | −0.2775 | −0.0619 | 0.1828 | 0.137* | |
H31C | −0.1893 | −0.0119 | 0.2222 | 0.137* | |
C32 | −0.0957 (2) | 0.2042 (2) | 0.25880 (10) | 0.0671 (7) | |
C33 | −0.1545 (3) | 0.1791 (3) | 0.30966 (11) | 0.0949 (11) | |
H33A | −0.2336 | 0.2008 | 0.3077 | 0.142* | |
H33B | −0.1174 | 0.2185 | 0.3372 | 0.142* | |
H33C | −0.1501 | 0.1019 | 0.3165 | 0.142* | |
O1 | −0.00373 (18) | 0.27141 (14) | −0.28652 (7) | 0.0729 (5) | |
O2 | 0.0358 (3) | 0.10678 (19) | −0.31779 (9) | 0.1093 (9) | |
O3 | −0.09271 (14) | 0.02925 (12) | 0.13953 (6) | 0.0584 (4) | |
O4A | −0.0784 (7) | −0.1523 (5) | 0.1346 (2) | 0.106 (2) | 0.7 |
O4B | −0.0395 (14) | −0.1374 (12) | 0.1589 (5) | 0.106 (4) | 0.3 |
O5 | 0.16551 (14) | 0.09843 (14) | 0.19159 (6) | 0.0634 (4) | |
O6 | −0.1443 (2) | 0.2660 (2) | 0.22891 (8) | 0.1006 (8) | |
C101 | 0.286 (3) | −0.111 (2) | 0.0273 (17) | 0.293 (18) | 0.46 |
H10C | 0.3148 | −0.0639 | 0.0542 | 0.440* | 0.46 |
H10D | 0.2331 | −0.0710 | 0.0059 | 0.440* | 0.46 |
H10E | 0.3490 | −0.1363 | 0.0063 | 0.440* | 0.46 |
C102 | 0.227 (3) | −0.205 (4) | 0.0508 (12) | 0.307 (16) | 0.46 |
H10I | 0.1780 | −0.1793 | 0.0786 | 0.369* | 0.46 |
H10J | 0.2842 | −0.2534 | 0.0662 | 0.369* | 0.46 |
C103 | 0.156 (5) | −0.271 (4) | 0.0135 (17) | 0.51 (5) | 0.46 |
H10K | 0.0984 | −0.2226 | −0.0015 | 0.616* | 0.46 |
H10L | 0.2050 | −0.2953 | −0.0146 | 0.616* | 0.46 |
C104 | 0.097 (4) | −0.368 (3) | 0.0355 (15) | 0.42 (4) | 0.46 |
H10M | 0.1251 | −0.4287 | 0.0152 | 0.500* | 0.46 |
H10N | 0.1301 | −0.3763 | 0.0698 | 0.500* | 0.46 |
C105 | −0.026 (4) | −0.3922 (18) | 0.0431 (12) | 0.29 (2) | 0.46 |
H10O | −0.0353 | −0.3978 | 0.0805 | 0.354* | 0.46 |
H10P | −0.0357 | −0.4659 | 0.0298 | 0.354* | 0.46 |
C106 | −0.132 (4) | −0.330 (4) | 0.025 (2) | 0.44 (4) | 0.46 |
H10F | −0.1576 | −0.2812 | 0.0514 | 0.665* | 0.46 |
H10G | −0.1925 | −0.3819 | 0.0170 | 0.665* | 0.46 |
H10H | −0.1141 | −0.2896 | −0.0062 | 0.665* | 0.46 |
C201 | 0.333 (4) | −0.081 (3) | −0.014 (2) | 0.28 (2) | 0.34 |
H20B | 0.3018 | −0.0096 | −0.0199 | 0.423* | 0.34 |
H20C | 0.3818 | −0.1015 | −0.0423 | 0.423* | 0.34 |
H20D | 0.3761 | −0.0813 | 0.0178 | 0.423* | 0.34 |
C202 | 0.236 (4) | −0.162 (3) | −0.0096 (18) | 0.31 (3) | 0.34 |
H20H | 0.1738 | −0.1298 | 0.0098 | 0.367* | 0.34 |
H20I | 0.2083 | −0.1798 | −0.0441 | 0.367* | 0.34 |
C203 | 0.274 (3) | −0.264 (3) | 0.016 (2) | 0.267 (19) | 0.34 |
H20J | 0.3068 | −0.2456 | 0.0500 | 0.321* | 0.34 |
H20K | 0.3327 | −0.2988 | −0.0043 | 0.321* | 0.34 |
C204 | 0.174 (3) | −0.345 (3) | 0.025 (2) | 0.30 (3) | 0.34 |
H20L | 0.1731 | −0.3992 | −0.0029 | 0.365* | 0.34 |
H20M | 0.1829 | −0.3828 | 0.0577 | 0.365* | 0.34 |
C205 | 0.064 (4) | −0.278 (4) | 0.024 (3) | 0.52 (6) | 0.34 |
H20N | 0.0573 | −0.2432 | 0.0580 | 0.621* | 0.34 |
H20O | 0.0742 | −0.2198 | −0.0011 | 0.621* | 0.34 |
C206 | −0.049 (4) | −0.334 (6) | 0.013 (4) | 0.60 (8) | 0.34 |
H20E | −0.0720 | −0.3175 | −0.0223 | 0.904* | 0.34 |
H20F | −0.1062 | −0.3089 | 0.0365 | 0.904* | 0.34 |
H20G | −0.0396 | −0.4120 | 0.0162 | 0.904* | 0.34 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0628 (13) | 0.0644 (14) | 0.0507 (12) | −0.0102 (12) | 0.0027 (11) | 0.0054 (11) |
C2 | 0.0828 (16) | 0.0650 (15) | 0.0497 (12) | −0.0087 (14) | 0.0082 (12) | 0.0072 (12) |
C3 | 0.0723 (15) | 0.0647 (14) | 0.0438 (11) | 0.0051 (12) | 0.0018 (10) | 0.0098 (11) |
C4 | 0.0687 (14) | 0.0737 (16) | 0.0478 (12) | −0.0062 (13) | −0.0075 (11) | 0.0009 (12) |
C5 | 0.0523 (11) | 0.0646 (14) | 0.0455 (11) | −0.0043 (11) | 0.0004 (9) | 0.0021 (10) |
C6 | 0.0794 (16) | 0.0605 (14) | 0.0485 (12) | −0.0132 (13) | 0.0006 (11) | −0.0048 (11) |
C7 | 0.0938 (18) | 0.0540 (13) | 0.0507 (13) | −0.0121 (13) | 0.0000 (12) | 0.0008 (11) |
C8 | 0.0556 (11) | 0.0518 (12) | 0.0435 (11) | −0.0056 (10) | 0.0012 (9) | 0.0017 (10) |
C9 | 0.0445 (9) | 0.0512 (11) | 0.0450 (10) | 0.0020 (9) | 0.0018 (8) | 0.0043 (9) |
C10 | 0.0485 (10) | 0.0537 (12) | 0.0442 (10) | 0.0022 (10) | 0.0022 (8) | 0.0041 (9) |
C11 | 0.0664 (13) | 0.0550 (13) | 0.0475 (11) | −0.0102 (11) | −0.0017 (10) | 0.0069 (10) |
C12 | 0.0598 (12) | 0.0577 (13) | 0.0479 (11) | −0.0088 (11) | −0.0033 (10) | 0.0035 (10) |
C13 | 0.0451 (10) | 0.0464 (11) | 0.0427 (10) | 0.0017 (9) | 0.0003 (8) | 0.0035 (9) |
C14 | 0.0559 (11) | 0.0492 (11) | 0.0450 (11) | 0.0008 (10) | 0.0038 (9) | 0.0034 (9) |
C15 | 0.0924 (18) | 0.0519 (13) | 0.0524 (13) | −0.0123 (13) | 0.0015 (13) | 0.0033 (11) |
C16 | 0.0640 (12) | 0.0478 (11) | 0.0494 (12) | 0.0065 (11) | 0.0076 (10) | 0.0044 (10) |
C17 | 0.0473 (10) | 0.0513 (11) | 0.0453 (11) | 0.0042 (9) | 0.0020 (9) | 0.0039 (9) |
C18 | 0.0545 (12) | 0.0680 (15) | 0.0508 (12) | 0.0119 (11) | −0.0013 (10) | 0.0030 (11) |
C19 | 0.0675 (14) | 0.0796 (17) | 0.0541 (13) | 0.0201 (14) | −0.0013 (11) | 0.0066 (13) |
C20 | 0.0586 (12) | 0.0519 (12) | 0.0439 (11) | 0.0088 (10) | −0.0002 (9) | 0.0033 (9) |
C21 | 0.0969 (19) | 0.0523 (13) | 0.0546 (13) | 0.0006 (14) | −0.0073 (13) | −0.0002 (11) |
C22 | 0.0537 (11) | 0.0494 (11) | 0.0493 (11) | 0.0044 (10) | 0.0000 (9) | 0.0036 (10) |
C23 | 0.0592 (12) | 0.0545 (12) | 0.0462 (11) | 0.0026 (11) | −0.0024 (9) | 0.0010 (10) |
C24 | 0.0725 (14) | 0.0600 (13) | 0.0467 (11) | 0.0003 (12) | −0.0038 (11) | 0.0050 (11) |
C25 | 0.0677 (14) | 0.0560 (13) | 0.0653 (14) | 0.0014 (12) | −0.0151 (12) | 0.0077 (12) |
C26 | 0.0734 (16) | 0.0723 (16) | 0.0643 (15) | 0.0201 (14) | −0.0021 (13) | 0.0139 (13) |
C27 | 0.103 (2) | 0.087 (2) | 0.0760 (18) | 0.0138 (18) | −0.0292 (17) | 0.0129 (16) |
C28 | 0.109 (2) | 0.0649 (16) | 0.0504 (13) | −0.0007 (17) | 0.0046 (14) | −0.0018 (12) |
C29 | 0.195 (4) | 0.105 (3) | 0.0506 (16) | 0.000 (3) | −0.008 (2) | 0.0054 (17) |
C30 | 0.090 (2) | 0.0578 (15) | 0.0709 (17) | −0.0037 (15) | 0.0106 (15) | 0.0163 (14) |
C31 | 0.103 (2) | 0.085 (2) | 0.084 (2) | −0.0164 (19) | 0.0232 (18) | 0.0194 (17) |
C32 | 0.0706 (15) | 0.0810 (17) | 0.0498 (12) | 0.0131 (14) | 0.0009 (12) | −0.0039 (13) |
C33 | 0.0777 (18) | 0.139 (3) | 0.0684 (18) | 0.020 (2) | 0.0171 (15) | 0.0072 (19) |
O1 | 0.1068 (13) | 0.0673 (10) | 0.0445 (8) | 0.0106 (11) | −0.0007 (9) | 0.0058 (8) |
O2 | 0.173 (3) | 0.0748 (14) | 0.0803 (14) | 0.0225 (16) | −0.0116 (15) | −0.0131 (11) |
O3 | 0.0677 (9) | 0.0522 (9) | 0.0552 (9) | 0.0003 (8) | 0.0112 (8) | 0.0089 (7) |
O4A | 0.169 (6) | 0.0501 (19) | 0.099 (4) | −0.003 (3) | 0.043 (3) | 0.002 (3) |
O4B | 0.128 (10) | 0.065 (7) | 0.125 (11) | 0.030 (7) | 0.042 (8) | 0.040 (7) |
O5 | 0.0620 (9) | 0.0723 (10) | 0.0560 (9) | 0.0210 (8) | 0.0059 (7) | 0.0161 (8) |
O6 | 0.1014 (15) | 0.1323 (19) | 0.0680 (12) | 0.0602 (15) | 0.0140 (11) | 0.0117 (13) |
C101 | 0.21 (3) | 0.154 (19) | 0.52 (6) | 0.004 (18) | −0.05 (3) | 0.02 (3) |
C102 | 0.24 (3) | 0.35 (5) | 0.33 (4) | 0.08 (4) | 0.06 (3) | 0.02 (4) |
C103 | 0.62 (9) | 0.47 (9) | 0.45 (6) | 0.11 (7) | −0.36 (7) | 0.06 (6) |
C104 | 0.71 (10) | 0.28 (4) | 0.26 (3) | −0.14 (6) | 0.22 (5) | −0.05 (3) |
C105 | 0.51 (7) | 0.139 (14) | 0.23 (3) | 0.01 (3) | 0.11 (4) | −0.031 (15) |
C106 | 0.50 (8) | 0.37 (7) | 0.46 (7) | −0.25 (6) | −0.01 (7) | −0.04 (6) |
C201 | 0.27 (4) | 0.16 (2) | 0.41 (6) | −0.05 (3) | 0.07 (4) | 0.04 (3) |
C202 | 0.34 (5) | 0.25 (4) | 0.32 (5) | −0.01 (4) | −0.12 (5) | −0.08 (4) |
C203 | 0.26 (4) | 0.19 (3) | 0.35 (5) | 0.07 (3) | −0.04 (4) | −0.07 (3) |
C204 | 0.18 (3) | 0.37 (6) | 0.37 (6) | 0.01 (4) | −0.04 (3) | 0.16 (5) |
C205 | 0.80 (13) | 0.32 (6) | 0.44 (9) | 0.25 (8) | −0.04 (9) | −0.21 (6) |
C206 | 0.81 (15) | 0.43 (9) | 0.56 (11) | −0.17 (10) | 0.23 (10) | 0.22 (8) |
C1—C2 | 1.533 (3) | C25—C26 | 1.507 (4) |
C1—C10 | 1.549 (3) | C25—C27 | 1.519 (4) |
C1—H1A | 0.9700 | C25—H25A | 0.9800 |
C1—H1B | 0.9700 | C26—O5 | 1.434 (3) |
C2—C3 | 1.498 (4) | C26—H26A | 0.9700 |
C2—H2A | 0.9700 | C26—H26B | 0.9700 |
C2—H2B | 0.9700 | C27—H27A | 0.9600 |
C3—O1 | 1.462 (3) | C27—H27B | 0.9600 |
C3—C4 | 1.515 (4) | C27—H27C | 0.9600 |
C3—H3A | 0.9800 | C28—O2 | 1.183 (3) |
C4—C5 | 1.516 (3) | C28—O1 | 1.326 (3) |
C4—H4A | 0.9700 | C28—C29 | 1.500 (4) |
C4—H4B | 0.9700 | C29—H29A | 0.9600 |
C5—C6 | 1.317 (3) | C29—H29B | 0.9600 |
C5—C10 | 1.522 (3) | C29—H29C | 0.9600 |
C6—C7 | 1.496 (3) | C30—O4B | 1.188 (15) |
C6—H6A | 0.9300 | C30—O4A | 1.224 (7) |
C7—C8 | 1.526 (3) | C30—O3 | 1.326 (3) |
C7—H7A | 0.9700 | C30—C31 | 1.488 (4) |
C7—H7B | 0.9700 | C31—H31A | 0.9600 |
C8—C14 | 1.523 (3) | C31—H31B | 0.9600 |
C8—C9 | 1.537 (3) | C31—H31C | 0.9600 |
C8—H8A | 0.9800 | C32—O6 | 1.217 (3) |
C9—C11 | 1.531 (3) | C32—C33 | 1.509 (4) |
C9—C10 | 1.556 (3) | C33—H33A | 0.9600 |
C9—H9A | 0.9800 | C33—H33B | 0.9600 |
C10—C19 | 1.533 (3) | C33—H33C | 0.9600 |
C11—C12 | 1.539 (3) | C101—C102 | 1.47 (2) |
C11—H11A | 0.9700 | C101—H10C | 0.9600 |
C11—H11B | 0.9700 | C101—H10D | 0.9600 |
C12—C13 | 1.535 (3) | C101—H10E | 0.9600 |
C12—H12A | 0.9700 | C102—C103 | 1.50 (2) |
C12—H12B | 0.9700 | C102—H10I | 0.9700 |
C13—C14 | 1.535 (3) | C102—H10J | 0.9700 |
C13—C18 | 1.537 (3) | C103—C104 | 1.48 (2) |
C13—C17 | 1.558 (3) | C103—H10K | 0.9700 |
C14—C15 | 1.518 (3) | C103—H10L | 0.9700 |
C14—H14A | 0.9800 | C104—C105 | 1.47 (2) |
C15—C16 | 1.527 (3) | C104—H10M | 0.9700 |
C15—H15A | 0.9700 | C104—H10N | 0.9700 |
C15—H15B | 0.9700 | C105—C106 | 1.53 (3) |
C16—O3 | 1.454 (3) | C105—H10O | 0.9700 |
C16—C17 | 1.551 (3) | C105—H10P | 0.9700 |
C16—H16A | 0.9800 | C106—H10F | 0.9600 |
C17—C20 | 1.536 (3) | C106—H10G | 0.9600 |
C17—H17A | 0.9800 | C106—H10H | 0.9600 |
C18—H18A | 0.9600 | C201—C202 | 1.50 (2) |
C18—H18B | 0.9600 | C201—H20B | 0.9600 |
C18—H18C | 0.9600 | C201—H20C | 0.9600 |
C19—H19A | 0.9600 | C201—H20D | 0.9600 |
C19—H19B | 0.9600 | C202—C203 | 1.48 (2) |
C19—H19C | 0.9600 | C202—H20H | 0.9700 |
C20—C22 | 1.512 (3) | C202—H20I | 0.9700 |
C20—C21 | 1.538 (3) | C203—C204 | 1.54 (2) |
C20—H20A | 0.9800 | C203—H20J | 0.9700 |
C21—H21A | 0.9600 | C203—H20K | 0.9700 |
C21—H21B | 0.9600 | C204—C205 | 1.52 (3) |
C21—H21C | 0.9600 | C204—H20L | 0.9700 |
C22—C23 | 1.351 (3) | C204—H20M | 0.9700 |
C22—O5 | 1.356 (3) | C205—C206 | 1.52 (3) |
C23—C32 | 1.472 (4) | C205—H20N | 0.9700 |
C23—C24 | 1.515 (3) | C205—H20O | 0.9700 |
C24—C25 | 1.510 (4) | C206—H20E | 0.9600 |
C24—H24A | 0.9700 | C206—H20F | 0.9600 |
C24—H24B | 0.9700 | C206—H20G | 0.9600 |
C2—C1—C10 | 113.7 (2) | C25—C24—H24B | 109.3 |
C2—C1—H1A | 108.8 | C23—C24—H24B | 109.3 |
C10—C1—H1A | 108.8 | H24A—C24—H24B | 107.9 |
C2—C1—H1B | 108.8 | C26—C25—C24 | 108.1 (2) |
C10—C1—H1B | 108.8 | C26—C25—C27 | 111.6 (2) |
H1A—C1—H1B | 107.7 | C24—C25—C27 | 112.4 (2) |
C3—C2—C1 | 110.0 (2) | C26—C25—H25A | 108.2 |
C3—C2—H2A | 109.7 | C24—C25—H25A | 108.2 |
C1—C2—H2A | 109.7 | C27—C25—H25A | 108.2 |
C3—C2—H2B | 109.7 | O5—C26—C25 | 111.3 (2) |
C1—C2—H2B | 109.7 | O5—C26—H26A | 109.4 |
H2A—C2—H2B | 108.2 | C25—C26—H26A | 109.4 |
O1—C3—C2 | 106.27 (19) | O5—C26—H26B | 109.4 |
O1—C3—C4 | 109.6 (2) | C25—C26—H26B | 109.4 |
C2—C3—C4 | 111.6 (2) | H26A—C26—H26B | 108.0 |
O1—C3—H3A | 109.8 | C25—C27—H27A | 109.5 |
C2—C3—H3A | 109.8 | C25—C27—H27B | 109.5 |
C4—C3—H3A | 109.8 | H27A—C27—H27B | 109.5 |
C3—C4—C5 | 111.77 (19) | C25—C27—H27C | 109.5 |
C3—C4—H4A | 109.3 | H27A—C27—H27C | 109.5 |
C5—C4—H4A | 109.3 | H27B—C27—H27C | 109.5 |
C3—C4—H4B | 109.3 | O2—C28—O1 | 123.7 (3) |
C5—C4—H4B | 109.3 | O2—C28—C29 | 125.0 (3) |
H4A—C4—H4B | 107.9 | O1—C28—C29 | 111.2 (3) |
C6—C5—C4 | 119.9 (2) | C28—C29—H29A | 109.5 |
C6—C5—C10 | 123.7 (2) | C28—C29—H29B | 109.5 |
C4—C5—C10 | 116.4 (2) | H29A—C29—H29B | 109.5 |
C5—C6—C7 | 124.8 (2) | C28—C29—H29C | 109.5 |
C5—C6—H6A | 117.6 | H29A—C29—H29C | 109.5 |
C7—C6—H6A | 117.6 | H29B—C29—H29C | 109.5 |
C6—C7—C8 | 111.6 (2) | O4B—C30—O3 | 120.6 (8) |
C6—C7—H7A | 109.3 | O4A—C30—O3 | 121.6 (4) |
C8—C7—H7A | 109.3 | O4B—C30—C31 | 118.9 (7) |
C6—C7—H7B | 109.3 | O4A—C30—C31 | 124.9 (4) |
C8—C7—H7B | 109.3 | O3—C30—C31 | 112.0 (3) |
H7A—C7—H7B | 108.0 | C30—C31—H31A | 109.5 |
C14—C8—C7 | 111.60 (18) | C30—C31—H31B | 109.5 |
C14—C8—C9 | 109.69 (17) | H31A—C31—H31B | 109.5 |
C7—C8—C9 | 109.76 (17) | C30—C31—H31C | 109.5 |
C14—C8—H8A | 108.6 | H31A—C31—H31C | 109.5 |
C7—C8—H8A | 108.6 | H31B—C31—H31C | 109.5 |
C9—C8—H8A | 108.6 | O6—C32—C23 | 124.9 (2) |
C11—C9—C8 | 112.35 (17) | O6—C32—C33 | 117.5 (3) |
C11—C9—C10 | 112.98 (18) | C23—C32—C33 | 117.5 (2) |
C8—C9—C10 | 111.99 (17) | C32—C33—H33A | 109.5 |
C11—C9—H9A | 106.3 | C32—C33—H33B | 109.5 |
C8—C9—H9A | 106.3 | H33A—C33—H33B | 109.5 |
C10—C9—H9A | 106.3 | C32—C33—H33C | 109.5 |
C5—C10—C19 | 109.64 (19) | H33A—C33—H33C | 109.5 |
C5—C10—C1 | 107.22 (18) | H33B—C33—H33C | 109.5 |
C19—C10—C1 | 109.38 (19) | C28—O1—C3 | 118.0 (2) |
C5—C10—C9 | 110.49 (18) | C30—O3—C16 | 116.84 (19) |
C19—C10—C9 | 110.96 (17) | C22—O5—C26 | 118.21 (17) |
C1—C10—C9 | 109.05 (17) | C102—C101—C106i | 104 (3) |
C9—C11—C12 | 115.15 (18) | C102—C101—H10C | 109.5 |
C9—C11—H11A | 108.5 | C106i—C101—H10C | 126.5 |
C12—C11—H11A | 108.5 | C102—C101—H10D | 109.5 |
C9—C11—H11B | 108.5 | C106i—C101—H10D | 96.7 |
C12—C11—H11B | 108.5 | H10C—C101—H10D | 109.5 |
H11A—C11—H11B | 107.5 | C102—C101—H10E | 109.5 |
C13—C12—C11 | 111.63 (18) | H10C—C101—H10E | 109.5 |
C13—C12—H12A | 109.3 | H10D—C101—H10E | 109.5 |
C11—C12—H12A | 109.3 | C101—C102—C103 | 114 (3) |
C13—C12—H12B | 109.3 | C101—C102—H10I | 108.7 |
C11—C12—H12B | 109.3 | C103—C102—H10I | 108.7 |
H12A—C12—H12B | 108.0 | C101—C102—H10J | 108.7 |
C12—C13—C14 | 105.79 (17) | C103—C102—H10J | 108.7 |
C12—C13—C18 | 111.18 (18) | H10I—C102—H10J | 107.6 |
C14—C13—C18 | 112.38 (17) | C104—C103—C102 | 116 (3) |
C12—C13—C17 | 115.77 (17) | C104—C103—H10K | 108.3 |
C14—C13—C17 | 100.78 (15) | C102—C103—H10K | 108.3 |
C18—C13—C17 | 110.45 (17) | C104—C103—H10L | 108.3 |
C15—C14—C8 | 118.96 (19) | C102—C103—H10L | 108.3 |
C15—C14—C13 | 104.12 (17) | H10K—C103—H10L | 107.4 |
C8—C14—C13 | 114.83 (17) | C105—C104—C103 | 132 (3) |
C15—C14—H14A | 106.0 | C105—C104—H10M | 104.3 |
C8—C14—H14A | 106.0 | C103—C104—H10M | 104.3 |
C13—C14—H14A | 106.0 | C105—C104—H10N | 104.3 |
C14—C15—C16 | 103.34 (19) | C103—C104—H10N | 104.3 |
C14—C15—H15A | 111.1 | H10M—C104—H10N | 105.6 |
C16—C15—H15A | 111.1 | C104—C105—C106 | 130 (3) |
C14—C15—H15B | 111.1 | C104—C105—H10O | 104.7 |
C16—C15—H15B | 111.1 | C106—C105—H10O | 104.7 |
H15A—C15—H15B | 109.1 | C104—C105—H10P | 104.7 |
O3—C16—C15 | 110.4 (2) | C106—C105—H10P | 104.7 |
O3—C16—C17 | 110.43 (17) | H10O—C105—H10P | 105.7 |
C15—C16—C17 | 107.33 (18) | C105—C106—H10F | 109.5 |
O3—C16—H16A | 109.6 | C105—C106—H10G | 109.5 |
C15—C16—H16A | 109.6 | H10F—C106—H10G | 109.5 |
C17—C16—H16A | 109.6 | C105—C106—H10H | 109.5 |
C20—C17—C16 | 114.60 (17) | H10F—C106—H10H | 109.5 |
C20—C17—C13 | 117.73 (17) | H10G—C106—H10H | 109.5 |
C16—C17—C13 | 104.46 (17) | C202—C201—H20B | 109.5 |
C20—C17—H17A | 106.4 | C202—C201—H20C | 109.5 |
C16—C17—H17A | 106.4 | H20B—C201—H20C | 109.5 |
C13—C17—H17A | 106.4 | C202—C201—H20D | 109.5 |
C13—C18—H18A | 109.5 | H20B—C201—H20D | 109.5 |
C13—C18—H18B | 109.5 | H20C—C201—H20D | 109.5 |
H18A—C18—H18B | 109.5 | C203—C202—C201 | 112 (3) |
C13—C18—H18C | 109.5 | C203—C202—H20H | 109.3 |
H18A—C18—H18C | 109.5 | C201—C202—H20H | 109.3 |
H18B—C18—H18C | 109.5 | C203—C202—H20I | 109.3 |
C10—C19—H19A | 109.5 | C201—C202—H20I | 109.3 |
C10—C19—H19B | 109.5 | H20H—C202—H20I | 108.0 |
H19A—C19—H19B | 109.5 | C202—C203—C204 | 113 (2) |
C10—C19—H19C | 109.5 | C202—C203—H20J | 109.1 |
H19A—C19—H19C | 109.5 | C204—C203—H20J | 109.1 |
H19B—C19—H19C | 109.5 | C202—C203—H20K | 109.1 |
C22—C20—C17 | 113.26 (17) | C204—C203—H20K | 109.1 |
C22—C20—C21 | 107.06 (18) | H20J—C203—H20K | 107.8 |
C17—C20—C21 | 112.67 (18) | C205—C204—C203 | 107 (3) |
C22—C20—H20A | 107.9 | C205—C204—H20L | 110.4 |
C17—C20—H20A | 107.9 | C203—C204—H20L | 110.4 |
C21—C20—H20A | 107.9 | C205—C204—H20M | 110.4 |
C20—C21—H21A | 109.5 | C203—C204—H20M | 110.4 |
C20—C21—H21B | 109.5 | H20L—C204—H20M | 108.6 |
H21A—C21—H21B | 109.5 | C206—C205—C204 | 119 (3) |
C20—C21—H21C | 109.5 | C206—C205—H20N | 107.5 |
H21A—C21—H21C | 109.5 | C204—C205—H20N | 107.5 |
H21B—C21—H21C | 109.5 | C206—C205—H20O | 107.5 |
C23—C22—O5 | 122.72 (19) | C204—C205—H20O | 107.5 |
C23—C22—C20 | 127.61 (19) | H20N—C205—H20O | 107.0 |
O5—C22—C20 | 109.51 (17) | C205—C206—H20E | 109.5 |
C22—C23—C32 | 122.1 (2) | C205—C206—H20F | 109.5 |
C22—C23—C24 | 120.4 (2) | H20E—C206—H20F | 109.5 |
C32—C23—C24 | 117.4 (2) | C205—C206—H20G | 109.5 |
C25—C24—C23 | 111.8 (2) | H20E—C206—H20G | 109.5 |
C25—C24—H24A | 109.3 | H20F—C206—H20G | 109.5 |
C23—C24—H24A | 109.3 | ||
C10—C1—C2—C3 | −58.5 (3) | O3—C16—C17—C20 | 19.7 (2) |
C1—C2—C3—O1 | 176.0 (2) | C15—C16—C17—C20 | 140.0 (2) |
C1—C2—C3—C4 | 56.6 (3) | O3—C16—C17—C13 | −110.59 (18) |
O1—C3—C4—C5 | −170.4 (2) | C15—C16—C17—C13 | 9.7 (2) |
C2—C3—C4—C5 | −53.0 (3) | C12—C13—C17—C20 | 85.2 (2) |
C3—C4—C5—C6 | −128.3 (3) | C14—C13—C17—C20 | −161.23 (18) |
C3—C4—C5—C10 | 51.4 (3) | C18—C13—C17—C20 | −42.2 (2) |
C4—C5—C6—C7 | −178.7 (2) | C12—C13—C17—C16 | −146.38 (18) |
C10—C5—C6—C7 | 1.7 (4) | C14—C13—C17—C16 | −32.8 (2) |
C5—C6—C7—C8 | 16.8 (4) | C18—C13—C17—C16 | 86.2 (2) |
C6—C7—C8—C14 | −168.6 (2) | C16—C17—C20—C22 | 53.6 (2) |
C6—C7—C8—C9 | −46.8 (3) | C13—C17—C20—C22 | 177.03 (18) |
C14—C8—C9—C11 | −47.4 (2) | C16—C17—C20—C21 | 175.31 (19) |
C7—C8—C9—C11 | −170.39 (19) | C13—C17—C20—C21 | −61.3 (3) |
C14—C8—C9—C10 | −175.84 (17) | C17—C20—C22—C23 | −145.6 (2) |
C7—C8—C9—C10 | 61.2 (2) | C21—C20—C22—C23 | 89.6 (3) |
C6—C5—C10—C19 | −111.6 (3) | C17—C20—C22—O5 | 38.9 (2) |
C4—C5—C10—C19 | 68.7 (3) | C21—C20—C22—O5 | −85.9 (2) |
C6—C5—C10—C1 | 129.8 (2) | O5—C22—C23—C32 | −174.2 (2) |
C4—C5—C10—C1 | −49.9 (3) | C20—C22—C23—C32 | 10.9 (4) |
C6—C5—C10—C9 | 11.0 (3) | O5—C22—C23—C24 | 5.4 (4) |
C4—C5—C10—C9 | −168.65 (18) | C20—C22—C23—C24 | −169.5 (2) |
C2—C1—C10—C5 | 53.1 (3) | C22—C23—C24—C25 | 15.4 (3) |
C2—C1—C10—C19 | −65.7 (3) | C32—C23—C24—C25 | −164.9 (2) |
C2—C1—C10—C9 | 172.8 (2) | C23—C24—C25—C26 | −46.1 (3) |
C11—C9—C10—C5 | −170.04 (18) | C23—C24—C25—C27 | −169.6 (2) |
C8—C9—C10—C5 | −42.0 (2) | C24—C25—C26—O5 | 60.1 (3) |
C11—C9—C10—C19 | −48.2 (3) | C27—C25—C26—O5 | −175.8 (2) |
C8—C9—C10—C19 | 79.9 (2) | C22—C23—C32—O6 | −13.3 (4) |
C11—C9—C10—C1 | 72.3 (2) | C24—C23—C32—O6 | 167.0 (3) |
C8—C9—C10—C1 | −159.58 (18) | C22—C23—C32—C33 | 167.4 (3) |
C8—C9—C11—C12 | 46.7 (3) | C24—C23—C32—C33 | −12.3 (3) |
C10—C9—C11—C12 | 174.63 (19) | O2—C28—O1—C3 | −1.2 (5) |
C9—C11—C12—C13 | −52.4 (3) | C29—C28—O1—C3 | 176.9 (3) |
C11—C12—C13—C14 | 56.5 (2) | C2—C3—O1—C28 | 155.7 (3) |
C11—C12—C13—C18 | −65.8 (2) | C4—C3—O1—C28 | −83.5 (3) |
C11—C12—C13—C17 | 167.13 (19) | O4B—C30—O3—C16 | 29.4 (9) |
C7—C8—C14—C15 | −55.4 (3) | O4A—C30—O3—C16 | −15.8 (6) |
C9—C8—C14—C15 | −177.3 (2) | C31—C30—O3—C16 | 177.1 (2) |
C7—C8—C14—C13 | −179.72 (19) | C15—C16—O3—C30 | 88.5 (3) |
C9—C8—C14—C13 | 58.4 (2) | C17—C16—O3—C30 | −153.0 (2) |
C12—C13—C14—C15 | 165.85 (18) | C23—C22—O5—C26 | 8.4 (3) |
C18—C13—C14—C15 | −72.6 (2) | C20—C22—O5—C26 | −175.9 (2) |
C17—C13—C14—C15 | 44.9 (2) | C25—C26—O5—C22 | −42.1 (3) |
C12—C13—C14—C8 | −62.4 (2) | C101—C102—C103—C104 | 179 (4) |
C18—C13—C14—C8 | 59.2 (2) | C102—C103—C104—C105 | 114 (5) |
C17—C13—C14—C8 | 176.73 (17) | C103—C104—C105—C106 | 8 (7) |
C8—C14—C15—C16 | −168.6 (2) | C201—C202—C203—C204 | 176 (5) |
C13—C14—C15—C16 | −39.2 (2) | C202—C203—C204—C205 | −23 (8) |
C14—C15—C16—O3 | 138.11 (19) | C203—C204—C205—C206 | 159 (7) |
C14—C15—C16—C17 | 17.7 (2) |
Symmetry code: (i) x+1/2, −y−1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20A···O6 | 0.98 | 2.17 | 2.859 (3) | 126 |
C26—H26B···O6ii | 0.97 | 2.59 | 3.431 (4) | 146 |
C33—H33B···O4Biii | 0.96 | 2.54 | 3.283 (15) | 135 |
Symmetry codes: (ii) −x, y−1/2, −z+1/2; (iii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C33H48O6·0.8C6H14 |
Mr | 609.65 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 294 |
a, b, c (Å) | 11.64797 (17), 12.20869 (17), 25.7274 (4) |
V (Å3) | 3658.60 (9) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.58 |
Crystal size (mm) | 0.45 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku SuperNova |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) |
Tmin, Tmax | 0.663, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19071, 6767, 5885 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.106, 1.01 |
No. of reflections | 6767 |
No. of parameters | 477 |
No. of restraints | 90 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.11 |
Absolute structure | Flack x determined using 2066 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Absolute structure parameter | 0.09 (6) |
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008).
Acknowledgements
This work was supported by CONACyT grant RET-250025 to MGHL. We thank VIEP–BUAP for financial support, and CONACyT for the scholarships to GGL (573785) and ACC.
References
Castro-Méndez, A., Sandoval-Ramírez, J. & Bernès, S. (2002). Acta Cryst. E58, o606–o608. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pérez-Díaz, J. O. H., Vega-Baez, J. L., Sandoval-Ramírez, J., Meza-Reyes, S., Montiel-Smith, S., Farfán, N. & Santillan, R. (2010). Steroids, 75, 1127–1136. PubMed Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA. Google Scholar
Sandoval-Ramírez, J., Castro-Méndez, A., Meza-Reyes, S., Reyes-Vázquez, F., Santillán, R. & Farfán, N. (1999). Tetrahedron Lett. 40, 5143–5146. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soki, F., Neudörfl, J.-M. & Goldfuss, B. (2008). J. Organomet. Chem. 693, 2139–2146. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Weberski, M. P. Jr, Chen, C., Delferro, M., Zuccaccia, C., Macchioni, A. & Marks, T. J. (2012). Organometallics, 31, 3773–3789. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.