organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Piperidinium 4-(4-chloro­phen­yl)-3-cyano-5-eth­­oxy­carbonyl-6-methyl­pyridine-2-thiol­ate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 15 April 2016; accepted 18 April 2016; online 22 April 2016)

In the crystal of the title salt, C5H12N+·C16H12ClN2O2S, the cation adopts a chair conformation, and N—H⋯N and N—H⋯S hydrogen bonds form chains of alternating cations and anions running parallel to the c axis. The crystal structure contains a solvent-accessible void of 50 Å3, but no solvent mol­ecule is located there.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine derivatives continue to attract great inter­est due to the wide variety of inter­esting biological activities observed for these compounds, such as anti­cancer, analgesic, anti­microbial and anti­depressant activities (Kumar et al., 2011[Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv. 2, 71-78.]). In addition, pyridines are used in the pharmaceutical industry as raw materials for the synthesis of various drugs, vitamins and fungicides (Kumar et al., 2011[Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv. 2, 71-78.]). These facts prompted us to synthesize the title compound, which contains both pyridine and piperidine moieties, and confirm its crystal structure by X-ray analysis.

In the anion (Fig. 1[link]), the dihedral angle between the pyridine and chloro­benze rings is 69.48 (7)°. The cation has a chair conformation with puckering parameters of QT = 0.5684 (16) Å, θ = 176.46 (16) and φ = 199 (3)°.

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids.

In the crystal, the cations and anions are linked by N—H⋯N and N—H⋯S hydrogen bonds (Table 1[link]), forming chains of alternating cations and anions parallel to the c axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1 0.92 (2) 2.01 (2) 2.9288 (17) 174.5 (17)
N3—H3B⋯S1i 0.93 (2) 2.64 (2) 3.4249 (12) 142.6 (15)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the a axis with N—H⋯N and N—H⋯S hydrogen bonds shown as blue and brown dashed lines, respectively.

Synthesis and crystallization

The title compound was prepared by refluxing equimolar qu­anti­ties of ethyl 3-cyano-1,2-di­hydro-6-methyl-4-(4-chloro­phen­yl)-2-thioxo­pyridine-5-carboxyl­ate and piperidine (10 mmol) in absolute ethanol (25 ml) for 5 min. The product that formed on cooling was collected and recrystallized from ethanol (95%) as yellow needles. Yield: 83%, m. p. 433–435 K.

IR: 3410, 2520, 2400 (N+H2), 2964 (C—H, aliphatic), 2217 (C N), 1713 (C=O) cm-1. 1H NMR (CDCl3) δ: 7.35 (s, 2H, N+H2), 7.19–7.33 (m, 4H, Ar—H), 3.89–3.90 (q, 2H, OCH2), 3.17 (t, 4H, CH2NCH2), 2.41 (s, 3H, CH3), 1.79 (m, 2H, CH2), 1.61 (m, 2H, CH2), 1.19–1.25 (m, 2H, CH2), 0.84 (t, 3H, CH3). Elemental analysis calculated for C21H24ClN3O2S (%): C, 60.35; H, 5.79; N, 10.05; S, 7.67. Found (%): C, 60.28; H, 5.68; N, 10.09; S, 7.33.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H12N+·C16H12ClN2O2S
Mr 417.94
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 7.2363 (2), 24.2600 (7), 12.9049 (4)
β (°) 105.603 (1)
V3) 2182.00 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.61
Crystal size (mm) 0.26 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.61, 0.72
No. of measured, independent and observed [I > 2σ(I)] reflections 16665, 4350, 3985
Rint 0.028
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections 4350
No. of parameters 263
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

The title compound was prepared by refluxing equimolar quantities of ethyl 3-cyano-1,2-dihydro-6-methyl-4-(4-chlorophenyl)-2-thioxopyridine-5-carboxylate and piperidine (10 mmol) in absolute ethanol (25 ml) for 5 min. The product that formed on cooling was collected and recrystallized from ethanol (95%) as yellow needles. Yield: 83%, m. p. 433–435 K.

IR: 3410, 2520, 2400 (N+H2), 2964 (C—H, aliphatic), 2217 (CN), 1713 (C=O) cm-1. 1H NMR (CDCl3) δ: 7.35 (s, 2H, N+H2), 7.19–7.33 (m, 4H, Ar—H), 3.89–3.90 (q, 2H, OCH2), 3.17 (t, 4H, CH2NCH2), 2.41 (s, 3H, CH3), 1.79 (m, 2H, CH2), 1.61 (m, 2H, CH2), 1.19–1.25 (m, 2H, CH2), 0.84 (t, 3H, CH3). Elemental analysis calculated for C21H24ClN3O2S (%): C, 60.35; H, 5.79; N, 10.05; S, 7.67. Found (%): C, 60.28; H, 5.68; N, 10.09; S, 7.33.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Pyridine derivatives continue to attract great interest due to the wide variety of interesting biological activities observed for these compounds, such as anticancer, analgesic, antimicrobial and antidepressant activities (Kumar et al., 2011). In addition, pyridines are used in the pharmaceutical industry as raw materials for various drugs, vitamins and fungicides (Kumar et al., 2011). These facts promoted us to synthesize the title compound, which contains both pyridine and piperidine moieties, and confirm its crystal structure by X-ray analysis.

In the anion (Fig. 1), the dihedral angle between the pyridine and chlorobenze rings is 69.48 (7)°. The cation has a chair conformation with puckering parameters of QT = 0.5684 (16) Å, θ = 176.46 (16) and φ = 199 (3)°.

In the crystal, the cations and anions are linked by N—H···N and N—H···S hydrogen bonds (Table 1), forming chains of alternating cations and anions parallel to the c axis (Fig. 2).

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the a axis with N—H···N and N—H···S hydrogen bonds shown as blue and brown dashed lines, respectively.
Piperidin-1-ium [4-(4-chlorophenyl)-3-cyano-5-(ethoxycarbonyl)-6-methylpyridin-2-yl]sulfanide top
Crystal data top
C5H12N+·C16H12ClN2O2SF(000) = 880
Mr = 417.94Dx = 1.272 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 7.2363 (2) ÅCell parameters from 9892 reflections
b = 24.2600 (7) Åθ = 3.6–74.3°
c = 12.9049 (4) ŵ = 2.61 mm1
β = 105.603 (1)°T = 150 K
V = 2182.00 (11) Å3Block, colourless
Z = 40.26 × 0.14 × 0.13 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4350 independent reflections
Radiation source: INCOATEC IµS micro–focus source3985 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 3.6°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 3029
Tmin = 0.61, Tmax = 0.72l = 1616
16665 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.8348P]
where P = (Fo2 + 2Fc2)/3
4350 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C5H12N+·C16H12ClN2O2SV = 2182.00 (11) Å3
Mr = 417.94Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.2363 (2) ŵ = 2.61 mm1
b = 24.2600 (7) ÅT = 150 K
c = 12.9049 (4) Å0.26 × 0.14 × 0.13 mm
β = 105.603 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4350 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
3985 reflections with I > 2σ(I)
Tmin = 0.61, Tmax = 0.72Rint = 0.028
16665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
4350 reflectionsΔρmin = 0.46 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39999 (7)0.47748 (2)0.81495 (4)0.04801 (14)
S10.59234 (5)0.72882 (2)0.82912 (3)0.02541 (11)
O10.01709 (18)0.59943 (6)0.41297 (10)0.0469 (3)
O20.21430 (15)0.63592 (5)0.50149 (9)0.0366 (3)
N10.37767 (17)0.71321 (5)0.62901 (9)0.0245 (2)
N20.3246 (2)0.63295 (6)0.96028 (10)0.0395 (3)
C10.4064 (2)0.69910 (6)0.73433 (11)0.0226 (3)
C20.2804 (2)0.66016 (6)0.76156 (10)0.0230 (3)
C30.13227 (19)0.63537 (6)0.68331 (10)0.0223 (3)
C40.1123 (2)0.64998 (6)0.57583 (10)0.0231 (3)
C50.2355 (2)0.68969 (6)0.55271 (11)0.0246 (3)
C60.2084 (2)0.71053 (7)0.43991 (11)0.0333 (3)
H6A0.21030.67940.39180.050*
H6B0.31230.73610.43820.050*
H6C0.08490.72970.41610.050*
C70.3071 (2)0.64525 (6)0.87240 (11)0.0270 (3)
C80.0020 (2)0.59527 (6)0.71526 (10)0.0229 (3)
C90.1251 (2)0.61412 (6)0.77162 (11)0.0270 (3)
H90.12680.65210.78910.032*
C100.2488 (2)0.57806 (6)0.80233 (12)0.0300 (3)
H100.33610.59100.84010.036*
C110.2431 (2)0.52261 (6)0.77703 (12)0.0295 (3)
C120.1176 (2)0.50282 (6)0.72201 (12)0.0291 (3)
H120.11500.46470.70570.035*
C130.0050 (2)0.53949 (6)0.69076 (11)0.0261 (3)
H130.09140.52640.65240.031*
C140.0433 (2)0.62493 (6)0.48768 (11)0.0265 (3)
C150.3827 (3)0.61023 (9)0.42940 (14)0.0456 (4)
H15A0.34320.58500.37890.055*
H15B0.46820.63880.38700.055*
C160.4853 (3)0.57877 (8)0.49676 (16)0.0458 (4)
H16A0.60790.56520.45120.069*
H16B0.50900.60300.55260.069*
H16C0.40620.54750.53070.069*
N30.65498 (18)0.79520 (5)0.59790 (9)0.0248 (3)
H3A0.572 (3)0.7694 (8)0.6125 (15)0.038 (5)*
H3B0.604 (3)0.8040 (8)0.5259 (16)0.036 (5)*
C170.6606 (2)0.84628 (6)0.66329 (11)0.0286 (3)
H17A0.71350.83750.74050.034*
H17B0.52880.86070.65270.034*
C180.7836 (2)0.88953 (6)0.63022 (13)0.0323 (3)
H18A0.79040.92260.67610.039*
H18B0.72410.90050.55470.039*
C190.9854 (2)0.86807 (7)0.64069 (13)0.0343 (3)
H19A1.05200.86240.71760.041*
H19B1.05860.89570.61150.041*
C200.9797 (2)0.81383 (7)0.57999 (13)0.0333 (3)
H20A0.93290.82090.50170.040*
H20B1.11130.79870.59470.040*
C210.8506 (2)0.77161 (6)0.61209 (12)0.0299 (3)
H21A0.84240.73820.56700.036*
H21B0.90540.76090.68820.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0480 (3)0.0416 (2)0.0606 (3)0.01460 (19)0.0251 (2)0.00572 (19)
S10.02572 (18)0.02913 (19)0.02096 (17)0.00411 (13)0.00555 (13)0.00248 (12)
O10.0394 (7)0.0654 (9)0.0355 (6)0.0050 (6)0.0094 (5)0.0263 (6)
O20.0245 (5)0.0521 (7)0.0311 (5)0.0041 (5)0.0038 (4)0.0120 (5)
N10.0267 (6)0.0266 (6)0.0211 (5)0.0012 (5)0.0080 (5)0.0011 (4)
N20.0400 (8)0.0512 (9)0.0247 (7)0.0119 (7)0.0044 (6)0.0053 (6)
C10.0240 (7)0.0237 (6)0.0210 (6)0.0028 (5)0.0076 (5)0.0017 (5)
C20.0249 (7)0.0249 (6)0.0197 (6)0.0011 (5)0.0070 (5)0.0000 (5)
C30.0230 (7)0.0228 (6)0.0219 (6)0.0022 (5)0.0073 (5)0.0017 (5)
C40.0241 (7)0.0256 (6)0.0194 (6)0.0007 (5)0.0056 (5)0.0029 (5)
C50.0265 (7)0.0274 (7)0.0206 (6)0.0008 (6)0.0073 (5)0.0015 (5)
C60.0392 (9)0.0400 (8)0.0206 (7)0.0076 (7)0.0079 (6)0.0014 (6)
C70.0257 (7)0.0302 (7)0.0240 (7)0.0046 (6)0.0049 (5)0.0006 (6)
C80.0236 (7)0.0255 (6)0.0189 (6)0.0001 (5)0.0043 (5)0.0004 (5)
C90.0300 (7)0.0253 (7)0.0275 (7)0.0014 (6)0.0107 (6)0.0037 (5)
C100.0297 (7)0.0341 (8)0.0292 (7)0.0012 (6)0.0131 (6)0.0017 (6)
C110.0290 (7)0.0300 (7)0.0288 (7)0.0053 (6)0.0066 (6)0.0045 (6)
C120.0336 (8)0.0225 (6)0.0296 (7)0.0002 (6)0.0057 (6)0.0011 (5)
C130.0277 (7)0.0264 (7)0.0245 (6)0.0020 (6)0.0074 (5)0.0005 (5)
C140.0292 (7)0.0290 (7)0.0209 (6)0.0022 (6)0.0059 (5)0.0013 (5)
C150.0298 (8)0.0668 (12)0.0345 (8)0.0117 (8)0.0014 (7)0.0086 (8)
C160.0367 (9)0.0450 (10)0.0478 (10)0.0083 (8)0.0021 (8)0.0044 (8)
N30.0275 (6)0.0272 (6)0.0200 (5)0.0009 (5)0.0069 (5)0.0001 (5)
C170.0329 (8)0.0297 (7)0.0233 (6)0.0028 (6)0.0078 (6)0.0046 (5)
C180.0369 (8)0.0273 (7)0.0306 (7)0.0002 (6)0.0058 (6)0.0031 (6)
C190.0333 (8)0.0364 (8)0.0322 (8)0.0066 (7)0.0069 (6)0.0037 (6)
C200.0292 (8)0.0393 (8)0.0332 (8)0.0001 (7)0.0113 (6)0.0062 (6)
C210.0306 (8)0.0291 (7)0.0295 (7)0.0044 (6)0.0070 (6)0.0023 (6)
Geometric parameters (Å, º) top
Cl1—C111.7398 (15)C12—H120.9500
S1—C11.7150 (14)C13—H130.9500
O1—C141.2027 (18)C15—C161.496 (3)
O2—C141.3238 (19)C15—H15A0.9900
O2—C151.4591 (19)C15—H15B0.9900
N1—C51.3447 (18)C16—H16A0.9800
N1—C11.3623 (17)C16—H16B0.9800
N2—C71.146 (2)C16—H16C0.9800
C1—C21.4212 (19)N3—C211.4918 (19)
C2—C31.3957 (19)N3—C171.4937 (18)
C2—C71.4371 (19)N3—H3A0.92 (2)
C3—C41.4009 (18)N3—H3B0.93 (2)
C3—C81.4877 (19)C17—C181.510 (2)
C4—C51.399 (2)C17—H17A0.9900
C4—C141.4973 (19)C17—H17B0.9900
C5—C61.5031 (19)C18—C191.522 (2)
C6—H6A0.9800C18—H18A0.9900
C6—H6B0.9800C18—H18B0.9900
C6—H6C0.9800C19—C201.526 (2)
C8—C131.3912 (19)C19—H19A0.9900
C8—C91.3945 (19)C19—H19B0.9900
C9—C101.383 (2)C20—C211.517 (2)
C9—H90.9500C20—H20A0.9900
C10—C111.387 (2)C20—H20B0.9900
C10—H100.9500C21—H21A0.9900
C11—C121.381 (2)C21—H21B0.9900
C12—C131.391 (2)
C14—O2—C15118.59 (13)C16—C15—H15A110.1
C5—N1—C1120.36 (12)O2—C15—H15B110.1
N1—C1—C2118.54 (12)C16—C15—H15B110.1
N1—C1—S1119.07 (10)H15A—C15—H15B108.4
C2—C1—S1122.38 (10)C15—C16—H16A109.5
C3—C2—C1121.77 (12)C15—C16—H16B109.5
C3—C2—C7118.90 (13)H16A—C16—H16B109.5
C1—C2—C7119.32 (12)C15—C16—H16C109.5
C2—C3—C4117.52 (13)H16A—C16—H16C109.5
C2—C3—C8120.11 (12)H16B—C16—H16C109.5
C4—C3—C8122.37 (12)C21—N3—C17111.59 (11)
C5—C4—C3118.92 (12)C21—N3—H3A111.3 (12)
C5—C4—C14120.65 (12)C17—N3—H3A111.6 (12)
C3—C4—C14120.39 (12)C21—N3—H3B108.7 (12)
N1—C5—C4122.83 (12)C17—N3—H3B108.5 (12)
N1—C5—C6116.19 (13)H3A—N3—H3B104.8 (17)
C4—C5—C6120.91 (13)N3—C17—C18110.21 (12)
C5—C6—H6A109.5N3—C17—H17A109.6
C5—C6—H6B109.5C18—C17—H17A109.6
H6A—C6—H6B109.5N3—C17—H17B109.6
C5—C6—H6C109.5C18—C17—H17B109.6
H6A—C6—H6C109.5H17A—C17—H17B108.1
H6B—C6—H6C109.5C17—C18—C19111.20 (13)
N2—C7—C2178.55 (16)C17—C18—H18A109.4
C13—C8—C9119.36 (13)C19—C18—H18A109.4
C13—C8—C3121.55 (12)C17—C18—H18B109.4
C9—C8—C3119.09 (12)C19—C18—H18B109.4
C10—C9—C8120.70 (14)H18A—C18—H18B108.0
C10—C9—H9119.7C18—C19—C20110.88 (13)
C8—C9—H9119.7C18—C19—H19A109.5
C9—C10—C11118.89 (14)C20—C19—H19A109.5
C9—C10—H10120.6C18—C19—H19B109.5
C11—C10—H10120.6C20—C19—H19B109.5
C12—C11—C10121.56 (14)H19A—C19—H19B108.1
C12—C11—Cl1119.68 (12)C21—C20—C19112.07 (13)
C10—C11—Cl1118.76 (12)C21—C20—H20A109.2
C11—C12—C13119.07 (14)C19—C20—H20A109.2
C11—C12—H12120.5C21—C20—H20B109.2
C13—C12—H12120.5C19—C20—H20B109.2
C12—C13—C8120.41 (13)H20A—C20—H20B107.9
C12—C13—H13119.8N3—C21—C20109.95 (12)
C8—C13—H13119.8N3—C21—H21A109.7
O1—C14—O2124.49 (14)C20—C21—H21A109.7
O1—C14—C4124.71 (14)N3—C21—H21B109.7
O2—C14—C4110.78 (12)C20—C21—H21B109.7
O2—C15—C16107.90 (14)H21A—C21—H21B108.2
O2—C15—H15A110.1
C5—N1—C1—C21.5 (2)C13—C8—C9—C100.6 (2)
C5—N1—C1—S1178.60 (10)C3—C8—C9—C10179.78 (13)
N1—C1—C2—C31.5 (2)C8—C9—C10—C110.6 (2)
S1—C1—C2—C3178.53 (11)C9—C10—C11—C120.1 (2)
N1—C1—C2—C7179.30 (13)C9—C10—C11—Cl1179.55 (12)
S1—C1—C2—C70.63 (19)C10—C11—C12—C130.4 (2)
C1—C2—C3—C40.4 (2)Cl1—C11—C12—C13179.03 (11)
C7—C2—C3—C4178.80 (13)C11—C12—C13—C80.4 (2)
C1—C2—C3—C8179.31 (12)C9—C8—C13—C120.1 (2)
C7—C2—C3—C81.5 (2)C3—C8—C13—C12179.68 (13)
C2—C3—C4—C52.29 (19)C15—O2—C14—O17.8 (2)
C8—C3—C4—C5177.38 (12)C15—O2—C14—C4173.92 (14)
C2—C3—C4—C14179.91 (12)C5—C4—C14—O159.9 (2)
C8—C3—C4—C140.4 (2)C3—C4—C14—O1122.30 (17)
C1—N1—C5—C40.5 (2)C5—C4—C14—O2118.34 (15)
C1—N1—C5—C6176.48 (13)C3—C4—C14—O259.42 (18)
C3—C4—C5—N12.5 (2)C14—O2—C15—C16123.12 (17)
C14—C4—C5—N1179.73 (13)C21—N3—C17—C1859.88 (15)
C3—C4—C5—C6174.38 (13)N3—C17—C18—C1956.81 (16)
C14—C4—C5—C63.4 (2)C17—C18—C19—C2053.36 (17)
C2—C3—C8—C13111.09 (15)C18—C19—C20—C2152.65 (18)
C4—C3—C8—C1369.24 (18)C17—N3—C21—C2058.50 (15)
C2—C3—C8—C968.53 (18)C19—C20—C21—N354.82 (17)
C4—C3—C8—C9111.14 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.92 (2)2.01 (2)2.9288 (17)174.5 (17)
N3—H3B···S1i0.93 (2)2.64 (2)3.4249 (12)142.6 (15)
Symmetry code: (i) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.92 (2)2.01 (2)2.9288 (17)174.5 (17)
N3—H3B···S1i0.93 (2)2.64 (2)3.4249 (12)142.6 (15)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H12N+·C16H12ClN2O2S
Mr417.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)7.2363 (2), 24.2600 (7), 12.9049 (4)
β (°) 105.603 (1)
V3)2182.00 (11)
Z4
Radiation typeCu Kα
µ (mm1)2.61
Crystal size (mm)0.26 × 0.14 × 0.13
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.61, 0.72
No. of measured, independent and
observed [I > 2σ(I)] reflections
16665, 4350, 3985
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections4350
No. of parameters263
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.46

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv. 2, 71–78.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds