organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4-Amino­sulfonyl­phen­yl)[(2-oxidonaphthalen-1-yl)imino]­aza­nium

aUnité de Recherche de Chimie de l'Environnement, et Moléculaire Structurale, Faculté du sciences exactes, Université des Fréres Mentouri 1, 25000 Constantine, Algeria
*Correspondence e-mail: king.ali@hotmail.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 March 2016; accepted 18 April 2016; online 22 April 2016)

The crystal structure of the title compound, C16H13N3O3S, shows that the two independent zwitterions in the asymmetric unit are approximately planar. Intra­molecular N—H⋯O hydrogen bonds occur and the aromatic rings have a trans configuration with respect to the azo double bond. In the crystal, the mol­ecules are linked via N—H⋯O hydrogen bonds and ππ stacking, forming a three-dimensional supra­molecular network, the ππ stacking inter­actions between adjacent benzene and naphthalene rings having centroid-to-centroid distances of 3.764 (3) and 3.775 (3) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Dyes are natural or synthetic coloured chemical compounds. Usually organic in nature, they have the ability to permanently stain the material to which they are applied. Azo pigments are widely used for the colouration of coatings, plastics and printing inks, with an annual sales volume of more than one billion Euros (Biswas & Umapathy, 2000[Biswas, N. & Umapathy, S. (2000). J. Phys. Chem. A, 104, 2734-2745.]). In the literature, most azo pigments are drawn with an N=N double bond (Olivieri et al., 1989[Olivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525-5532.]). However, all commercial pigments based on β-naphthol adopt the hydrazone tautomeric form in the solid state, as proven by many X-ray structure determinations of β-naphthol pigments.

There are two independent mol­ecules (A and B) in the asymmetric unit of the title compound (Fig. 1[link]), each consisting of a benzene ring linked to the first nitro­gen atom of the N=N chromophore and two aromatic rings of the core β-naphthol. The aromatic rings are in a trans configuration with respect to the azo double bond. The N1—C1 (mol­ecule A) and N4—C17 (mol­ecule B) bond lengths of 1.398 (3) and 1.393 (3) Å, respectively, indicate single-bond character. The N2—C7 (mol­ecule A) and N5—C23 (mol­ecule B) bond lengths of 1.332 (3) and 1.331 (3) Å, and the N=N bond lengths of 1.313 (3) and 1.315 (3) Å in mol­ecules A and B, respectively, are indicative of significant double-bond character.

[Figure 1]
Figure 1
The asymmetric unit of the two independent mol­ecules with 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary radii.

In the crystal, the A and B mol­ecules are linked via N—H⋯O hydrogen bonds, forming zigzag –ABAB– chains propagating along the b axis (see Table 1[link] and Fig. 2[link]). The chains are reinforced by ππ inter­actions, forming a three-dimensional network; see Fig. 3[link] [Cg1⋯Cg6i = 3.775 (3) Å, where Cg1 and Cg6 are the centroids of rings C1–C6 and C23–C28, respectively; symmetry code: (i) x, [{1\over 2}] − y, −[{1\over 2}] + z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.75 2.520 (3) 145
N3—H33⋯O2i 0.89 2.19 3.073 (4) 172
N3—H34⋯O3ii 0.89 2.23 3.023 (3) 147
N4—H4⋯O4 0.92 1.73 2.525 (3) 142
N6—H35⋯O5iii 0.93 2.09 2.993 (4) 162
N6—H36⋯O6iv 0.90 2.11 3.009 (4) 179
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+2, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
The packing of viewed along [010]. ππ inter­actions are shown as dashed lines, and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

For synthesis details, see: Jin et al. (2008[Jin, C.-M., Li, H., Zhong, Z.-X. & Wu, L.-Y. (2008). Acta Cryst. E64, o218.]); Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]). A mixture of 4-amino­benzene­sulonamide (0.02 mol), water (40 ml) and concentrated hydro­chloric acid (0.06 mol) was stirred. This solution was cooled to 273–278 K and a solution of sodium nitrite (0.02 mol) in water (10 ml) was added dropwise, while maintaining the temperature below 278 K. The resulting mixture was stirred for an additional 30 min in an ice bath and then buffered with solid sodium acetate. β-Naphthol (0.02 mol), dissolved with sodium hydroxide (0.02 mol) in water (10 ml), was cooled to 273–278 K in an ice bath and then gradually added to the above solution of 4-sulfamoyl­benzene­diazo­nium. The resulting mixture was stirred for 60 min. The crude precipitate was filtered off, washed several times with water and recrystallized from methanol. The compound was recrystallized from methanol to produce crystals of suitable quality for X-ray diffraction analysis.

IR spectroscopic data (ν, cm−1): 3433.1 (O—H), 1616 (C=O), 3745 (O_H) and 1496 (Ar). UV–Vis measurements [λ (nm), log (l/mol cm), CH2Cl2]: 308.8 (0.093), 477.86 (0.203). 1H NMR [500 MHz, DMSO-10 (1D 1H), σ]: 16 (s, 1H, NH), 740–7.85 (m, 10H, Ar), 2.29 (s, 3H, CH 3). 13C NMR [500 MHz, DMSO-11(1D 13 C), σ]: 177(C=O), 115(C=N), 144(C—N), 125(C aromatic).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H13N3O3S
Mr 327.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 26.289 (5), 15.132 (5), 7.403 (5)
β (°) 95.179 (5)
V3) 2933 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.09 × 0.04 × 0.02
 
Data collection
Diffractometer Enraf–Nonius FR590 CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 8680, 5356, 3577
Rint 0.031
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.06
No. of reflections 5356
No. of parameters 415
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker. (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2015 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

The dyes are chemical compounds colored natural or synthetic. Usually organic in nature, they have the ability to permanently stain the material in which they are applied. Azo pigments are widely used for the colouration of coatings, plastics and printing inks, with an annual sales volume of more than one billion Euros (Biswas & Umapathy, 2000). In the literature, most azo pigments are drawn with an N=N double bond (see scheme) (Olivieri et al., 1989). However, all commercial pigments based on β-naphthol adopt the hydrazone tautomeric form in the solid state, as proven by many X-ray structure determinations of β-naphthol pigments. This molecule consists of a benzene ring linked to the first nitrogen atom of the N=N chromophore and two aromatic rings of the core β-naphthol. The aromatic rings are in a trans configuration with respect to the azo double bond. The N1—C1 (molecule A) and N4—C17 (molecule B) bond lengths of 1.398 and 1.393 Å , respectively, indicate single-bond character. The N2—C7 (molecule A) and N5—C23 (molecule B) bond lengths of 1.332 and 1.331 Å, and the N=N bond length of 1.313 Å in the both molecules are indicative of significant double-bond character. The A and B molecules are linked via N—H···O hydrogen bonds, forming zigzag –A–B–A–B– chains propagating along b-axis (see Table 2 and Fig. 2). The chains are reinforced by π-π interactions, forming a three-dimensional network; see Fig. 3 [Cg1···Cg6i = 3.775 (3) Å , where Cg1 and Cg6 are the centroids of rings C1–C6 and C23–C28, respectively; symmetry code: (i) x,1/2-y,-1/2+z].

Related literature top

For general background, see: Biswas & Umapathy (2000). For synthesis details, see: Jin et al. (2008); Lee et al. (2004). For related structures, see: Olivieri et al. (1989).

Experimental top

For synthesis details, see: Jin et al. (2008); Lee et al. (2004). A mixture of 4-aminobenzenesulonamide (0.02 mol), water (40 ml) and concentrated hydrochloric acid (0.06 mol) was stirred. This solution was cooled to 273–278 K and a solution of sodium nitrite (0.02 mol) in water (10 ml) was added dropwise, while maintaining the temperature below 278 K. The resulting mixture was stirred for an additional 30 min in an ice bath and then buffered with solid sodium acetate. β-Naphthol (0.02 mol), dissolved with sodium hydroxide (0.02 mol) in water (10 ml), was cooled to 273–278 K in an ice bath and then gradually added to the above solution of 4-sulfamoylbenzenediazonium. The resulting mixture was stirred for 60 min. The crude precipitate was filtered off, washed several times with water and recrystallized from methanol. The compound was recrystallized from methanol to produce crystals of suitable quality for X-ray diffraction analysis.

The IR spectrum was recorded using an Shimatzu FTIR 8000 spectrophotometer. IR spectroscopic data (ν, cm-1): 3433.1 (O—H), 1616 (CO), 3745 (O_H) and 1496 (Ar). UV–Vis measurements [λ (nm), log ε (l/mol cm), CH2Cl2]: 308.8 (0.093), 477.86 (0.203). 1H NMR [500 MHz, DMSO-10 (1D 1H), σ]: 16 (s, 1H, NH), 740–7.85 (m, 10H, Ar), 2.29 (s, 3H, CH 3). 13C NMR [500 MHz, DMSO-11(1D 13 C), σ]: 177(CO), 115(CN), 144(C—N), 125(C aromatic).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Dyes are natural or synthetic coloured chemical compounds. Usually organic in nature, they have the ability to permanently stain the material to which they are applied. Azo pigments are widely used for the colouration of coatings, plastics and printing inks, with an annual sales volume of more than one billion Euros (Biswas & Umapathy, 2000). In the literature, most azo pigments are drawn with an NN double bond (Olivieri et al., 1989). However, all commercial pigments based on β-naphthol adopt the hydrazone tautomeric form in the solid state, as proven by many X-ray structure determinations of β-naphthol pigments.

There are two independent molecules (A and B) in the asymmetric unit of the title compound (Fig. 1), each consisting of a benzene ring linked to the first nitrogen atom of the NN chromophore and two aromatic rings of the core β-naphthol. The aromatic rings are in a trans configuration with respect to the azo double bond. The N1—C1 (molecule A) and N4—C17 (molecule B) bond lengths of 1.398 (3) and 1.393 (3) Å, respectively, indicate single-bond character. The N2—C7 (molecule A) and N5—C23 (molecule B) bond lengths of 1.332 (3) and 1.331 (3) Å, and the NN bond lengths of 1.313 (3) and 1.315 (3) Å in molecules A and B, respectively, are indicative of significant double-bond character.

In the crystal, the A and B molecules are linked via N—H···O hydrogen bonds, forming zigzag –ABAB– chains propagating along the b axis (see Table 1 and Fig. 2). The chains are reinforced by ππ interactions, forming a three-dimensional network; see Fig. 3 [Cg1···Cg6i = 3.775 (3) Å, where Cg1 and Cg6 are the centroids of rings C1–C6 and C23–C28, respectively; symmetry code: (i) x, 1/2 - y, -1/2 + z].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the two independent molecules with 50% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary radii. Atom labels should not overlap atoms or bonds
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The packing of viewed along [010]. ππ interactions are shown as dashed lines, and C-bound H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) top
Crystal data top
C16H13N3O3SF(000) = 1360
Mr = 327.35Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5463 reflections
a = 26.289 (5) Åθ = 2.9–25.4°
b = 15.132 (5) ŵ = 0.24 mm1
c = 7.403 (5) ÅT = 293 K
β = 95.179 (5)°Needle, colourless
V = 2933 (2) Å30.09 × 0.04 × 0.02 mm
Z = 8
Data collection top
Enraf–Nonius FR590 CCD
diffractometer
3577 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Horizonally mounted graphite crystal monochromatorθmax = 25.4°, θmin = 3.1°
Detector resolution: 9 pixels mm-1h = 3131
CCD rotation images, thick slices scansk = 1815
8680 measured reflectionsl = 88
5356 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.988P]
where P = (Fo2 + 2Fc2)/3
5356 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H13N3O3SV = 2933 (2) Å3
Mr = 327.35Z = 8
Monoclinic, P21/cMo Kα radiation
a = 26.289 (5) ŵ = 0.24 mm1
b = 15.132 (5) ÅT = 293 K
c = 7.403 (5) Å0.09 × 0.04 × 0.02 mm
β = 95.179 (5)°
Data collection top
Enraf–Nonius FR590 CCD
diffractometer
3577 reflections with I > 2σ(I)
8680 measured reflectionsRint = 0.031
5356 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
5356 reflectionsΔρmin = 0.34 e Å3
415 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52672 (2)0.13841 (4)0.47978 (9)0.0426 (2)
O10.81398 (8)0.14154 (13)0.9633 (3)0.0613 (8)
O20.52403 (7)0.22982 (12)0.4290 (3)0.0576 (7)
O30.50989 (7)0.07261 (12)0.3487 (2)0.0521 (7)
N10.73795 (8)0.06996 (14)0.7901 (3)0.0455 (8)
N20.76294 (8)0.00485 (14)0.7818 (3)0.0409 (7)
N30.49191 (8)0.12714 (14)0.6468 (3)0.0459 (8)
C10.68829 (10)0.08099 (17)0.7085 (3)0.0411 (9)
C20.65908 (9)0.01275 (17)0.6299 (3)0.0416 (9)
C30.60995 (10)0.03003 (17)0.5570 (3)0.0421 (9)
C40.59032 (9)0.11517 (16)0.5609 (3)0.0393 (8)
C50.61962 (11)0.18314 (18)0.6383 (4)0.0539 (10)
C60.66842 (11)0.16604 (18)0.7132 (4)0.0550 (10)
C70.81068 (10)0.00709 (17)0.8590 (3)0.0401 (9)
C80.83656 (10)0.06915 (19)0.9463 (4)0.0467 (10)
C90.88915 (11)0.0587 (2)1.0144 (4)0.0538 (11)
C100.91382 (11)0.0178 (2)0.9982 (4)0.0540 (10)
C110.89000 (10)0.0945 (2)0.9151 (3)0.0464 (9)
C120.83819 (10)0.09042 (18)0.8461 (3)0.0430 (9)
C130.81554 (11)0.16598 (19)0.7642 (4)0.0504 (10)
C140.84370 (12)0.2420 (2)0.7496 (4)0.0591 (11)
C150.89420 (13)0.2463 (2)0.8171 (4)0.0640 (11)
C160.91724 (11)0.1738 (2)0.8993 (4)0.0573 (10)
S20.96326 (3)0.11985 (4)0.61220 (9)0.0431 (2)
O40.66722 (8)0.12662 (13)0.2014 (3)0.0610 (8)
O50.98563 (7)0.04127 (12)0.6943 (2)0.0502 (7)
O60.96294 (8)0.19919 (13)0.7176 (3)0.0618 (8)
N40.75208 (8)0.05467 (15)0.2964 (3)0.0473 (8)
N50.73576 (8)0.02057 (14)0.2236 (3)0.0428 (8)
N60.99497 (8)0.14091 (15)0.4412 (3)0.0488 (8)
C170.80156 (9)0.06436 (17)0.3787 (3)0.0406 (9)
C180.83630 (10)0.00473 (17)0.4023 (3)0.0430 (9)
C190.88533 (10)0.01125 (17)0.4784 (3)0.0417 (9)
C200.89966 (9)0.09626 (17)0.5320 (3)0.0394 (8)
C210.86483 (11)0.16454 (18)0.5132 (4)0.0546 (10)
C220.81611 (11)0.14848 (18)0.4370 (4)0.0557 (10)
C230.68820 (10)0.02283 (17)0.1450 (3)0.0392 (8)
C240.65301 (10)0.05225 (19)0.1399 (4)0.0462 (10)
C250.60133 (10)0.0383 (2)0.0648 (4)0.0523 (10)
C260.58605 (11)0.0409 (2)0.0009 (4)0.0523 (10)
C270.61932 (10)0.11560 (19)0.0043 (3)0.0449 (9)
C280.67105 (10)0.10720 (18)0.0631 (3)0.0415 (9)
C290.70359 (11)0.17918 (19)0.0507 (4)0.0499 (10)
C300.68508 (12)0.2588 (2)0.0189 (4)0.0579 (11)
C310.63398 (13)0.2678 (2)0.0781 (4)0.0630 (11)
C320.60165 (12)0.1976 (2)0.0732 (4)0.0567 (11)
H10.755200.112600.848900.0550*
H20.672400.044100.626300.0500*
H30.589900.015500.505100.0500*
H50.606500.240200.639800.0650*
H60.688200.211500.767200.0660*
H90.906400.106201.071000.0640*
H100.948000.021301.042900.0650*
H130.781300.164800.719400.0600*
H140.828300.291400.693100.0710*
H150.912600.298300.806800.0770*
H160.951300.176900.945200.0690*
H330.499400.165700.736900.0550*
H340.489500.073400.694900.0550*
H40.728600.099800.290100.0570*
H180.826500.061700.366900.0520*
H190.908700.034900.493800.0500*
H210.874300.221200.551900.0660*
H220.792600.194500.424300.0670*
H250.578100.084800.061700.0630*
H260.552100.047700.046500.0630*
H290.738100.173600.089500.0600*
H300.707100.306500.025900.0690*
H310.621600.322100.121600.0760*
H320.567500.204100.115900.0680*
H351.001000.090200.374200.0590*
H360.984900.188300.374200.0590*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0367 (4)0.0394 (4)0.0501 (4)0.0035 (3)0.0045 (3)0.0035 (3)
O10.0557 (13)0.0468 (12)0.0784 (15)0.0017 (10)0.0108 (11)0.0044 (10)
O20.0520 (12)0.0417 (11)0.0769 (14)0.0070 (9)0.0055 (10)0.0181 (10)
O30.0499 (12)0.0551 (12)0.0490 (11)0.0023 (9)0.0086 (9)0.0075 (9)
N10.0361 (13)0.0427 (13)0.0561 (14)0.0028 (10)0.0040 (10)0.0006 (11)
N20.0352 (13)0.0427 (13)0.0448 (12)0.0041 (10)0.0032 (9)0.0063 (10)
N30.0413 (13)0.0438 (13)0.0524 (14)0.0010 (10)0.0031 (10)0.0055 (11)
C10.0334 (15)0.0434 (16)0.0458 (15)0.0005 (12)0.0002 (11)0.0017 (12)
C20.0369 (15)0.0359 (14)0.0515 (16)0.0069 (12)0.0014 (12)0.0011 (12)
C30.0383 (16)0.0369 (15)0.0502 (16)0.0013 (12)0.0003 (12)0.0023 (12)
C40.0344 (14)0.0372 (15)0.0456 (15)0.0009 (12)0.0008 (11)0.0017 (12)
C50.0443 (17)0.0354 (15)0.080 (2)0.0062 (13)0.0057 (15)0.0015 (14)
C60.0429 (17)0.0374 (16)0.082 (2)0.0003 (13)0.0086 (15)0.0065 (15)
C70.0341 (15)0.0482 (16)0.0376 (14)0.0003 (12)0.0007 (11)0.0055 (12)
C80.0443 (17)0.0497 (18)0.0454 (16)0.0022 (14)0.0002 (12)0.0077 (13)
C90.0454 (18)0.061 (2)0.0531 (17)0.0085 (15)0.0057 (13)0.0048 (15)
C100.0346 (16)0.080 (2)0.0454 (16)0.0032 (16)0.0069 (12)0.0128 (16)
C110.0357 (15)0.0646 (19)0.0390 (15)0.0061 (14)0.0032 (11)0.0128 (14)
C120.0384 (15)0.0528 (17)0.0379 (14)0.0066 (13)0.0047 (11)0.0086 (13)
C130.0420 (17)0.0536 (18)0.0543 (17)0.0081 (14)0.0028 (13)0.0010 (14)
C140.063 (2)0.0536 (19)0.0597 (19)0.0130 (16)0.0002 (15)0.0014 (15)
C150.066 (2)0.069 (2)0.0569 (19)0.0298 (18)0.0046 (16)0.0023 (17)
C160.0418 (17)0.082 (2)0.0480 (17)0.0185 (17)0.0034 (13)0.0111 (17)
S20.0389 (4)0.0396 (4)0.0488 (4)0.0031 (3)0.0072 (3)0.0020 (3)
O40.0544 (13)0.0439 (12)0.0825 (15)0.0029 (10)0.0064 (11)0.0047 (11)
O50.0459 (11)0.0499 (12)0.0525 (11)0.0026 (9)0.0089 (9)0.0091 (9)
O60.0572 (13)0.0518 (12)0.0737 (14)0.0058 (10)0.0087 (10)0.0245 (11)
N40.0364 (13)0.0413 (13)0.0623 (15)0.0011 (10)0.0054 (10)0.0037 (11)
N50.0391 (13)0.0434 (13)0.0450 (13)0.0053 (10)0.0004 (10)0.0010 (10)
N60.0440 (14)0.0416 (13)0.0604 (15)0.0025 (10)0.0028 (11)0.0127 (11)
C170.0339 (15)0.0414 (16)0.0456 (15)0.0019 (12)0.0016 (11)0.0015 (12)
C180.0440 (16)0.0358 (15)0.0483 (15)0.0073 (13)0.0015 (12)0.0035 (12)
C190.0405 (16)0.0357 (14)0.0479 (15)0.0036 (12)0.0007 (12)0.0001 (12)
C200.0389 (15)0.0352 (14)0.0427 (15)0.0004 (12)0.0044 (11)0.0019 (12)
C210.0476 (18)0.0339 (15)0.079 (2)0.0006 (13)0.0131 (15)0.0085 (14)
C220.0426 (18)0.0374 (16)0.084 (2)0.0048 (13)0.0113 (15)0.0054 (15)
C230.0330 (15)0.0441 (15)0.0400 (14)0.0062 (12)0.0001 (11)0.0021 (12)
C240.0422 (17)0.0487 (17)0.0471 (16)0.0011 (13)0.0012 (12)0.0039 (14)
C250.0389 (17)0.062 (2)0.0550 (17)0.0062 (14)0.0017 (13)0.0024 (15)
C260.0350 (16)0.072 (2)0.0484 (17)0.0020 (15)0.0041 (12)0.0029 (15)
C270.0399 (16)0.0564 (17)0.0376 (15)0.0071 (14)0.0008 (11)0.0018 (13)
C280.0391 (15)0.0493 (16)0.0362 (14)0.0052 (13)0.0045 (11)0.0017 (12)
C290.0446 (17)0.0550 (18)0.0496 (17)0.0027 (14)0.0009 (13)0.0024 (14)
C300.063 (2)0.0517 (18)0.0585 (19)0.0013 (16)0.0029 (15)0.0093 (15)
C310.072 (2)0.060 (2)0.0562 (19)0.0182 (18)0.0014 (16)0.0147 (16)
C320.0490 (18)0.069 (2)0.0502 (17)0.0163 (16)0.0067 (14)0.0080 (15)
Geometric parameters (Å, º) top
S1—O21.434 (2)C15—C161.369 (4)
S1—O31.432 (2)C2—H20.9300
S1—N31.612 (3)C3—H30.9300
S1—C41.760 (3)C5—H50.9300
S2—O51.437 (2)C6—H60.9300
S2—O61.432 (2)C9—H90.9300
S2—N61.609 (3)C10—H100.9300
S2—C201.760 (3)C13—H130.9300
O1—C81.258 (4)C14—H140.9300
O4—C241.258 (4)C15—H150.9300
N1—C11.398 (3)C16—H160.9300
N1—N21.313 (3)C17—C181.389 (4)
N2—C71.332 (3)C17—C221.387 (4)
N1—H10.8800C18—C191.381 (4)
N3—H340.8900C19—C201.388 (4)
N3—H330.8900C20—C211.379 (4)
N4—N51.315 (3)C21—C221.374 (4)
N4—C171.393 (3)C23—C241.464 (4)
N5—C231.331 (3)C23—C281.467 (4)
N4—H40.9200C24—C251.436 (4)
N6—H350.9300C25—C261.341 (4)
N6—H360.9000C26—C271.431 (4)
C1—C21.383 (4)C27—C321.405 (4)
C1—C61.391 (4)C27—C281.411 (4)
C2—C31.379 (4)C28—C291.393 (4)
C3—C41.389 (4)C29—C301.382 (4)
C4—C51.378 (4)C30—C311.382 (5)
C5—C61.375 (4)C31—C321.363 (5)
C7—C81.460 (4)C18—H180.9300
C7—C121.461 (4)C19—H190.9300
C8—C91.437 (4)C21—H210.9300
C9—C101.338 (4)C22—H220.9300
C10—C111.431 (4)C25—H250.9300
C11—C121.412 (4)C26—H260.9300
C11—C161.408 (4)C29—H290.9300
C12—C131.402 (4)C30—H300.9300
C13—C141.378 (4)C31—H310.9300
C14—C151.377 (5)C32—H320.9300
O1···N12.520 (3)C17···N23.403 (4)
O1···N22.861 (4)C18···C123.528 (4)
O1···C17i3.333 (4)C18···C8x3.557 (4)
O1···C21ii3.232 (4)C18···C9x3.438 (4)
O1···C22ii3.184 (4)C18···C73.507 (4)
O2···N3iii3.073 (4)C19···C73.587 (4)
O3···O3iv3.214 (3)C19···C9x3.520 (4)
O3···N3iv3.023 (3)C19···C123.453 (4)
O3···C253.373 (4)C19···C113.599 (4)
O4···C5iii3.157 (4)C21···O1iii3.232 (4)
O4···N42.525 (3)C22···O1iii3.184 (4)
O4···C6iii3.139 (4)C23···C1x3.593 (4)
O4···N52.860 (4)C23···N1x3.347 (4)
O5···C103.192 (4)C24···C33.400 (4)
O5···N6v2.993 (4)C24···C1x3.433 (4)
O5···C10vi3.348 (4)C25···O33.373 (4)
O6···N6ii3.009 (4)C26···C3x3.554 (4)
O1···H11.7500C26···C2x3.573 (4)
O1···H21ii2.6600C27···C2x3.565 (4)
O1···H22ii2.5500C28···C31ix3.471 (5)
O2···H33iii2.1900C29···C31ix3.529 (5)
O2···H52.5600C29···C30ix3.399 (5)
O3···H32.6700C30···C29viii3.399 (5)
O3···H26vii2.6700C31···C28viii3.471 (5)
O3···H34iv2.2300C31···C29viii3.529 (5)
O3···H252.9100C8···H12.2900
O4···H41.7300C16···H15ix3.0600
O4···H6iii2.5500C24···H42.3000
O4···H5iii2.5900C27···H31ix2.9800
O5···H192.6600C28···H31ix2.9700
O5···H35v2.0900H1···O11.7500
O5···H10vi2.5100H1···H62.3500
O6···H212.5600H1···C82.2900
O6···H36ii2.1100H2···N22.6200
N1···O12.520 (3)H3···O32.6700
N1···C23i3.347 (4)H3···N3iv2.8800
N2···O12.861 (4)H3···H34iv2.6000
N2···C173.403 (4)H4···O41.7300
N3···O2ii3.073 (4)H4···C242.3000
N3···O3iv3.023 (3)H4···H222.3600
N4···O42.525 (3)H5···O22.5600
N5···O42.860 (4)H5···O4ii2.5900
N6···O5v2.993 (4)H6···O4ii2.5500
N6···O6iii3.009 (4)H6···H12.3500
N2···H22.6200H10···O5vi2.5100
N2···H132.5200H10···H162.4700
N3···H3iv2.8800H13···N22.5200
N5···H292.5200H13···H30ix2.5800
N5···H182.6000H14···H18ix2.5700
C1···C23i3.593 (4)H14···H29ix2.4800
C1···C24i3.433 (4)H15···C16viii3.0600
C2···C27i3.565 (4)H16···H102.4700
C2···C26i3.573 (4)H18···N52.6000
C3···C243.400 (4)H18···H14viii2.5700
C3···C26i3.554 (4)H19···O52.6600
C5···O4ii3.157 (4)H21···O62.5600
C6···O4ii3.139 (4)H21···O1iii2.6600
C7···C183.507 (4)H22···H42.3600
C7···C193.587 (4)H22···O1iii2.5500
C8···C17i3.410 (4)H25···O32.9100
C8···C18i3.557 (4)H26···H322.4600
C9···C18i3.438 (4)H26···O3vii2.6700
C9···C19i3.520 (4)H29···N52.5200
C10···O53.192 (4)H29···H14viii2.4800
C10···O5vi3.348 (4)H30···H13viii2.5800
C11···C193.599 (4)H31···C27viii2.9800
C12···C183.528 (4)H31···C28viii2.9700
C12···C193.453 (4)H32···H262.4600
C14···C15viii3.580 (5)H33···O2ii2.1900
C15···C16viii3.425 (5)H34···O3iv2.2300
C15···C14ix3.580 (5)H34···H3iv2.6000
C16···C15ix3.425 (5)H35···O5v2.0900
C17···C8x3.410 (4)H36···O6iii2.1100
C17···O1x3.333 (4)
O2—S1—O3119.23 (12)C5—C6—H6120.00
O2—S1—N3106.57 (12)C10—C9—H9119.00
O2—S1—C4107.76 (11)C8—C9—H9119.00
O3—S1—N3106.50 (11)C9—C10—H10119.00
O3—S1—C4108.55 (11)C11—C10—H10119.00
N3—S1—C4107.74 (11)C12—C13—H13120.00
N6—S2—C20108.58 (11)C14—C13—H13120.00
O5—S2—C20108.36 (12)C15—C14—H14119.00
O5—S2—O6119.05 (12)C13—C14—H14119.00
O5—S2—N6105.98 (11)C14—C15—H15120.00
O6—S2—N6106.95 (12)C16—C15—H15120.00
O6—S2—C20107.56 (13)C11—C16—H16120.00
N2—N1—C1122.3 (2)C15—C16—H16120.00
N1—N2—C7117.3 (2)C18—C17—C22119.5 (2)
N2—N1—H1115.00N4—C17—C22116.9 (2)
C1—N1—H1123.00N4—C17—C18123.6 (2)
H33—N3—H34108.00C17—C18—C19119.9 (2)
S1—N3—H33114.00C18—C19—C20119.9 (2)
S1—N3—H34118.00S2—C20—C19120.63 (19)
N5—N4—C17121.8 (2)C19—C20—C21120.3 (2)
N4—N5—C23117.4 (2)S2—C20—C21119.0 (2)
N5—N4—H4115.00C20—C21—C22119.7 (3)
C17—N4—H4123.00C17—C22—C21120.7 (3)
S2—N6—H35112.00N5—C23—C28116.4 (2)
S2—N6—H36116.00C24—C23—C28119.7 (2)
H35—N6—H36115.00N5—C23—C24123.9 (2)
N1—C1—C6116.0 (2)O4—C24—C23121.3 (2)
N1—C1—C2123.6 (2)O4—C24—C25120.7 (3)
C2—C1—C6120.4 (2)C23—C24—C25118.0 (2)
C1—C2—C3119.2 (2)C24—C25—C26120.9 (3)
C2—C3—C4120.3 (2)C25—C26—C27123.3 (3)
S1—C4—C5118.08 (19)C26—C27—C32121.4 (3)
S1—C4—C3121.43 (19)C28—C27—C32119.0 (3)
C3—C4—C5120.4 (2)C26—C27—C28119.6 (3)
C4—C5—C6119.6 (2)C23—C28—C29122.7 (2)
C1—C6—C5120.2 (3)C27—C28—C29119.0 (2)
N2—C7—C12116.5 (2)C23—C28—C27118.4 (2)
N2—C7—C8123.6 (2)C28—C29—C30120.6 (3)
C8—C7—C12119.8 (2)C29—C30—C31120.3 (3)
O1—C8—C7121.8 (2)C30—C31—C32120.4 (3)
C7—C8—C9117.6 (2)C27—C32—C31120.8 (3)
O1—C8—C9120.6 (3)C17—C18—H18120.00
C8—C9—C10121.5 (3)C19—C18—H18120.00
C9—C10—C11122.9 (3)C18—C19—H19120.00
C12—C11—C16119.2 (3)C20—C19—H19120.00
C10—C11—C16121.4 (2)C20—C21—H21120.00
C10—C11—C12119.4 (3)C22—C21—H21120.00
C7—C12—C11118.8 (2)C17—C22—H22120.00
C11—C12—C13118.6 (3)C21—C22—H22120.00
C7—C12—C13122.6 (2)C24—C25—H25120.00
C12—C13—C14120.3 (3)C26—C25—H25119.00
C13—C14—C15121.2 (3)C25—C26—H26118.00
C14—C15—C16119.8 (3)C27—C26—H26118.00
C11—C16—C15120.8 (3)C28—C29—H29120.00
C1—C2—H2120.00C30—C29—H29120.00
C3—C2—H2120.00C29—C30—H30120.00
C2—C3—H3120.00C31—C30—H30120.00
C4—C3—H3120.00C30—C31—H31120.00
C4—C5—H5120.00C32—C31—H31120.00
C6—C5—H5120.00C27—C32—H32120.00
C1—C6—H6120.00C31—C32—H32120.00
O2—S1—C4—C3155.6 (2)C10—C11—C12—C71.1 (3)
O2—S1—C4—C528.0 (2)C10—C11—C12—C13179.6 (2)
O3—S1—C4—C325.2 (2)C16—C11—C12—C7178.4 (2)
O3—S1—C4—C5158.4 (2)C12—C11—C16—C150.5 (4)
N3—S1—C4—C389.8 (2)C16—C11—C12—C130.2 (4)
N3—S1—C4—C586.7 (2)C10—C11—C16—C15179.0 (3)
O6—S2—C20—C19158.62 (19)C11—C12—C13—C140.9 (4)
O5—S2—C20—C1928.7 (2)C7—C12—C13—C14177.6 (3)
O5—S2—C20—C21155.0 (2)C12—C13—C14—C151.1 (4)
N6—S2—C20—C2190.3 (2)C13—C14—C15—C160.5 (5)
O6—S2—C20—C2125.1 (2)C14—C15—C16—C110.3 (5)
N6—S2—C20—C1986.0 (2)N4—C17—C18—C19177.3 (2)
C1—N1—N2—C7177.7 (2)C22—C17—C18—C191.9 (4)
N2—N1—C1—C27.4 (4)N4—C17—C22—C21177.5 (3)
N2—N1—C1—C6174.0 (2)C18—C17—C22—C211.8 (4)
N1—N2—C7—C81.8 (4)C17—C18—C19—C200.4 (3)
N1—N2—C7—C12179.1 (2)C18—C19—C20—S2174.83 (18)
C17—N4—N5—C23178.7 (2)C18—C19—C20—C211.4 (4)
N5—N4—C17—C184.6 (4)S2—C20—C21—C22174.7 (2)
N5—N4—C17—C22174.6 (2)C19—C20—C21—C221.6 (4)
N4—N5—C23—C241.8 (4)C20—C21—C22—C170.0 (4)
N4—N5—C23—C28179.4 (2)N5—C23—C24—O44.6 (4)
C6—C1—C2—C30.3 (4)N5—C23—C24—C25174.5 (2)
N1—C1—C6—C5179.2 (3)C28—C23—C24—O4176.7 (2)
N1—C1—C2—C3178.3 (2)C28—C23—C24—C254.2 (4)
C2—C1—C6—C50.5 (4)N5—C23—C28—C27173.3 (2)
C1—C2—C3—C40.7 (3)N5—C23—C28—C296.2 (4)
C2—C3—C4—C50.3 (4)C24—C23—C28—C275.6 (3)
C2—C3—C4—S1176.65 (18)C24—C23—C28—C29174.9 (2)
S1—C4—C5—C6176.0 (2)O4—C24—C25—C26180.0 (3)
C3—C4—C5—C60.5 (4)C23—C24—C25—C260.9 (4)
C4—C5—C6—C10.9 (4)C24—C25—C26—C271.1 (5)
N2—C7—C12—C11175.8 (2)C25—C26—C27—C280.4 (4)
N2—C7—C12—C132.7 (4)C25—C26—C27—C32179.5 (3)
C8—C7—C12—C111.6 (3)C26—C27—C28—C233.7 (3)
C8—C7—C12—C13179.9 (3)C26—C27—C28—C29176.8 (2)
C12—C7—C8—O1178.6 (2)C32—C27—C28—C23176.2 (2)
N2—C7—C8—O14.2 (4)C32—C27—C28—C293.3 (4)
N2—C7—C8—C9176.3 (2)C26—C27—C32—C31179.0 (3)
C12—C7—C8—C90.9 (4)C28—C27—C32—C311.1 (4)
O1—C8—C9—C10179.8 (3)C23—C28—C29—C30176.6 (3)
C7—C8—C9—C100.3 (4)C27—C28—C29—C302.9 (4)
C8—C9—C10—C110.8 (5)C28—C29—C30—C310.4 (4)
C9—C10—C11—C16179.6 (3)C29—C30—C31—C321.9 (5)
C9—C10—C11—C120.1 (4)C30—C31—C32—C271.5 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x+2, y, z+1; (vi) x+2, y, z+2; (vii) x+1, y, z; (viii) x, y1/2, z1/2; (ix) x, y1/2, z+1/2; (x) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.752.520 (3)145
N3—H33···O2ii0.892.193.073 (4)172
N3—H34···O3iv0.892.233.023 (3)147
N4—H4···O40.921.732.525 (3)142
N6—H35···O5v0.932.092.993 (4)162
N6—H36···O6iii0.902.113.009 (4)179
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.752.520 (3)145
N3—H33···O2i0.892.193.073 (4)172
N3—H34···O3ii0.892.233.023 (3)147
N4—H4···O40.921.732.525 (3)142
N6—H35···O5iii0.932.092.993 (4)162
N6—H36···O6iv0.902.113.009 (4)179
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13N3O3S
Mr327.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)26.289 (5), 15.132 (5), 7.403 (5)
β (°) 95.179 (5)
V3)2933 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.09 × 0.04 × 0.02
Data collection
DiffractometerEnraf–Nonius FR590 CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8680, 5356, 3577
Rint0.031
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.06
No. of reflections5356
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.34

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL2015 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009).

 

Acknowledgements

We gratefully acknowledge all researchers of the CHEMS Research Unit of the University Freres Mentouri of Constantine 1, Algeria, for the valuable assistance they have provided us throughout the realisation of this work.

References

First citationBiswas, N. & Umapathy, S. (2000). J. Phys. Chem. A, 104, 2734–2745.  Web of Science CrossRef CAS Google Scholar
First citationBruker. (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJin, C.-M., Li, H., Zhong, Z.-X. & Wu, L.-Y. (2008). Acta Cryst. E64, o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525–5532.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds