metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Ferrocenylmethyl-2,2-di­methyl-5-(prop-2-yn­yl)-1,3-dioxane-4,6-dione

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 April 2016; accepted 6 April 2016; online 12 April 2016)

The title compound, [Fe(C5H5)(C15H15O4)], was obtained by hydrogenation and subsequent alkyl­ation of 5-ferrocenyl­methyl­ene-2,2-dimethyl-1,3-dioxane-4,6-dione. Apart from C—H⋯O=C hydrogen bonds, C C—H⋯π inter­actions forming crosswise chains of the mol­ecules are observed in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The cyclo­penta­dienyl groups in the ferrocene unit adopt an eclipsed conformation. The 1,3-dioxane ring is almost planar, with atom C14 displaying a maximum deviation of 0.098 (3) Å from the least-squares plane. In the crystal, weak C—H⋯O=C hydrogen bonds generate a three-dimensional network (Table 1[link], Fig. 2[link]). An intriguing inter­molecular inter­action between the acidic proton of the terminal alkyne group and the π system of the ferrocene moiety is observed. The pertinent distances are H18⋯Cg = 2.637 Å and C18⋯Cg = 3.533 Å, where Cg is the centroid of the unsubstituted cyclo­penta­dienyl group. This inter­action is directional with a C18—H18⋯Cg angle of 157°, and the resulting chains are arranged crosswise as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the unsubstituted cyclo­penta­dienyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20C⋯O3i 0.98 2.50 3.419 (3) 157
C3—H3⋯O3ii 0.95 2.50 3.431 (3) 167
C19—H19A⋯O3iii 0.98 2.54 3.460 (3) 157
C16—H16A⋯O4iv 0.99 2.57 3.114 (3) 114
C4—H4⋯O4v 0.95 2.60 3.372 (3) 139
C18—H18⋯Cgvi 0.95 2.64 3.533 157
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) [-x, y+{\script{1\over 2}}, -z+1]; (vi) x+1, y-1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b axis. C—H⋯O=C hydrogen bonds are shown as dotted lines (see Table 1[link] for numerical details.
[Figure 3]
Figure 3
Chains of the title compound formed by C C—H⋯π inter­actions. The centroids of the rings are drawn as red spheres, and the contacts are drawn as dashed lines. The symmetry code refers to Table 1[link].

Inter­actions involving cyclo­penta­dienide anions as hydrogen-bond acceptors have been reluctantly identified as hydrogen bonds (Harder, 1999[Harder, S. (1999). Chem. Eur. J. 5, 1852-1861.]). Using the query `C C—H⋯Cg(ferrocene) non-bonded contact with H⋯Cg distance ≤ 2.7 Å′, several related structures have been found in the Cambridge Structure Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), see: Lin et al. (1996[Lin, J. T., Wu, J. J., Li, C.-S., Wen, Y. S. & Lin, K.-J. (1996). Organometallics, 15, 5028-5034.]); Buchmeiser et al. (1998[Buchmeiser, M. R., Schuler, N., Kaltenhauser, G., Ongania, K.-H., Lagoja, I., Wurst, K. & Schottenberger, H. (1998). Macromolecules, 31, 3175-3183.]); Wong et al. (2001[Wong, W.-Y., Lu, G.-L., Ng, K.-F., Choi, K.-H. & Lin, Z. (2001). J. Chem. Soc. Dalton Trans. pp. 3250-3260.]); Li et al. (2006[Li, Z., Lam, J. W. Y., Dong, Y., Dong, Y., Sung, H. H. Y., Williams, I. D. & Tang, B. Z. (2006). Macromolecules, 39, 6458-6466.]); Busetto et al. (2012[Busetto, L., Mazzoni, R., Salmi, M., Zacchini, S. & Zanotti, V. (2012). Organometallics, 31, 2667-2674.]). Although not explicitly described as such by the respective authors, these structures exhibited the C C—H⋯π inter­actions mentioned, and the corresponding C⋯Cg distances are ≤ 3.58 Å with C—H⋯Cg angles ranging from 152 to 176°.

Synthesis and crystallization

(1) 5-Ferrocenyl­methyl­ene-2,2-dimethyl-1,3-dioxane-4,6-dione (2.50 g, 7.34 mmol) (Bai et al., 2004[Bai, Y., Lu, J., Gan, H., Wang, Z. & Shi, Z. (2004). Synth. React. Inorg. Met.-Org. Chem. 34, 1487-1496.]) in MeOH (80 ml) was hydrogenated (3 atm) for 30 min at room temperature using Pd/C (0.24 g, 5 wt.% Pd) as catalyst. Crystallization from MeOH yielded a brown product (1.66 g, 66%). 1H NMR (300 MHz, CDCl3): δ 4.20 (m, 2H), 4.13 (s, 5H), 4.04 (m, 2H), 3.60 (t, J = 4.3 Hz, 1H), 3.23 (d, J = 4.3 Hz, 2H), 1.67 (s, 3H), 1.52 (s, 3H) p.p.m. 13C NMR (75 MHz, CDCl3): δ 165.8, 105.4, 83.4, 70.2, 69.9, 69.1, 68.9, 68.3, 48.6, 28.8, 27.8, 27.6 p.p.m. IR (neat, ATR): ν 3086 (w), 2992 (w), 1560 (s), 1405 (m), 1258 (m), 1199 (m), 1103 (m), 1035 (w), 1019 (w), 996 (w), 925 (w), 879 (w), 815 (w), 785 (w), 755 (w), 744 (w), 654 (w), 525 (w), 479 (w), 446 (w) cm−1.

(2) A mixture of 5-ferrocenylmethyl-2,2-dimethyl-1,3-dioxane-4,6-dione (0.34 g, 1.0 mmol) and anhydrous K2CO3 (0.21 g, 1.5 mmol) in DMF (20 ml) was stirred for 30 min. A solution of 3-bromo-1-propyne (80 wt.% in toluene, 0.23 g, 1.5 mmol) was added, and stirring was continued for 48 h. After removal of the solvent, the residue was partitioned twice between CH2Cl2 (10 ml) and 2 M HCl (10 ml). The organic solution was concentrated and cooled at 278 K to yield yellow crystals (0.30 g, 76%). 1H NMR (300 MHz, CDCl3): δ 4.19 (m, 2H), 4.16 (m, 5H), 4.10 (m, 2H), 3.05 (s, 2H), 2.92 (d, J = 2.6 Hz, 2H), 2.11 (t, J = 2.6 Hz, 1H), 1.63 (s, 3H), 1.05 (s, 3H) p.p.m. 13C NMR (75 MHz, CDCl3): δ 168.1, 106.7, 80.5, 78.4, 77.4, 73.0, 70.2, 69.1, 57.0, 40.4, 30.4, 29.2, 28.4 p.p.m. IR (neat, ATR): ν 3266 (m), 3086 (w), 2934 (w), 1765 (m), 1732 (s), 1641 (m), 1431 (w), 1394 (m), 1381 (m), 1348 (s), 1269 (s), 1228 (s), 1199 (m), 1172 (m), 1054 (s), 1037 (m), 1022 (m), 1000 (m), 955 (m), 917 (w), 832 (m), 813 (m), 702 (m), 678 (m), 664 (m), 498 (s), 482 (m), 465 (m), 421 (s) cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C15H15O4)]
Mr 380.21
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 9.8263 (4), 7.4617 (2), 11.9888 (4)
β (°) 91.956 (1)
V3) 878.52 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.18 × 0.11 × 0.07
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.896, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 17890, 3215, 3078
Rint 0.031
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.05
No. of reflections 3215
No. of parameters 227
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.17
Absolute structure Flack x determined using 1346 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.009 (6)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Comment top

The molecular structure of the title compound is shown in Fig. 1. The cyclopentadienyl groups in the ferrocene unit adopt an eclipsed conformation. The 1,3-dioxane ring is almost planar, with atom C14 displaying a maximum deviation of 0.098 (3) Å from the least-squares plane. In the crystal, weak C—H···OC hydrogen bonds generate a three-dimensional network (Table 1, Fig. 2). An intriguing intermolecular interaction between the acidic proton of the terminal alkyne group and the π system of the ferrocene moiety is observed. The pertinent distances are H18···Cg = 2.637 Å and C18···Cg = 3.533 Å, where Cg is the centroid of the unsubstituted cyclopentadienyl group. This interaction is directional with a C18—H18···Cg angle of 157°, and the resulting chains are arranged crosswise as shown in Fig. 3.

Interactions involving cyclopentadienide anions as H bond acceptors have been reluctantly identified as hydrogen bonds (Harder, 1999). Using the query 'CC—H···Cg(ferrocene) non-bonded contact with H···Cg distance 2.7 Å', several related structures have been found in the Cambridge Structure Database (Groom & Allen, 2014), see: Lin et al. (1996); Buchmeiser et al. (1998); Wong et al. (2001); Li et al. (2006); Busetto et al. (2012). Although not explicitly described as such by the respective authors, these structures exhibited the CC—H···π interactions mentioned, and the corresponding C···Cg distances are 3.58 Å with C—H···Cg angles ranging from 152 to 176°.

Experimental top

(1) 5-Ferrocenylmethylene-2,2-dimethyl-1,3-dioxane-4,6-dione (2.50 g, 7.34 mmol) (Bai et al., 2004) in MeOH (80 ml) was hydrogenated (3 atm) for 30 min at room temperature using Pd/C (0.24 g, 5 wt.% Pd) as catalyst. Crystallization from MeOH yielded a brown product (1.66 g, 66%). 1H NMR (300 MHz, CDCl3): δ 4.20 (m, 2H), 4.13 (s, 5H), 4.04 (m, 2H), 3.60 (t, J = 4.3 Hz, 1H), 3.23 (d, J = 4.3 Hz, 2H), 1.67 (s, 3H), 1.52 (s, 3H) p.p.m. 13C NMR (75 MHz, CDCl3): δ 165.8, 105.4, 83.4, 70.2, 69.9, 69.1, 68.9, 68.3, 48.6, 28.8, 27.8, 27.6 p.p.m. IR (neat, ATR): ν 3086 (w), 2992 (w), 1560 (s), 1405 (m), 1258 (m), 1199 (m), 1103 (m), 1035 (w), 1019 (w), 996 (w), 925 (w), 879 (w), 815 (w), 785 (w), 755 (w), 744 (w), 654 (w), 525 (w), 479 (w), 446 (w) cm-1.

(2) A mixture of 5-ferrocenylmethyl-2,2-dimethyl-1,3-dioxane-4,6-dione (0.34 g, 1.0 mmol) and anhydrous K2CO3 (0.21 g, 1.5 mmol) in DMF (20 ml) was stirred for 30 min. A solution of 3-bromo-1-propyne (80 wt.% in toluene, 0.23 g, 1.5 mmol) was added, and stirring was continued for 48 h. After removal of the solvent, the residue was partitioned twice between CH2Cl2 (10 ml) and 2 M HCl (10 ml). The organic solution was concentrated and cooled at 278 K to yield yellow crystals (0.30 g, 76%). 1H NMR (300 MHz, CDCl3): δ 4.19 (m, 2H), 4.16 (m, 5H), 4.10 (m, 2H), 3.05 (s, 2H), 2.92 (d, J = 2.6 Hz, 2H), 2.11 (t, J = 2.6 Hz, 1H), 1.63 (s, 3H), 1.05 (s, 3H) p.p.m. 13C NMR (75 MHz, CDCl3): δ 168.1, 106.7, 80.5, 78.4, 77.4, 73.0, 70.2, 69.1, 57.0, 40.4, 30.4, 29.2, 28.4 p.p.m. IR (neat, ATR): ν 3266 (m), 3086 (w), 2934 (w), 1765 (m), 1732 (s), 1641 (m), 1431 (w), 1394 (m), 1381 (m), 1348 (s), 1269 (s), 1228 (s), 1199 (m), 1172 (m), 1054 (s), 1037 (m), 1022 (m), 1000 (m), 955 (m), 917 (w), 832 (m), 813 (m), 702 (m), 678 (m), 664 (m), 498 (s), 482 (m), 465 (m), 421 (s) cm-1.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The molecular structure of the title compound is shown in Fig. 1. The cyclopentadienyl groups in the ferrocene unit adopt an eclipsed conformation. The 1,3-dioxane ring is almost planar, with atom C14 displaying a maximum deviation of 0.098 (3) Å from the least-squares plane. In the crystal, weak C—H···OC hydrogen bonds generate a three-dimensional network (Table 1, Fig. 2). An intriguing intermolecular interaction between the acidic proton of the terminal alkyne group and the π system of the ferrocene moiety is observed. The pertinent distances are H18···Cg = 2.637 Å and C18···Cg = 3.533 Å, where Cg is the centroid of the unsubstituted cyclopentadienyl group. This interaction is directional with a C18—H18···Cg angle of 157°, and the resulting chains are arranged crosswise as shown in Fig. 3.

Interactions involving cyclopentadienide anions as hydrogen-bond acceptors have been reluctantly identified as hydrogen bonds (Harder, 1999). Using the query `CC—H···Cg(ferrocene) non-bonded contact with H···Cg distance 2.7 Å', several related structures have been found in the Cambridge Structure Database (Groom & Allen, 2014), see: Lin et al. (1996); Buchmeiser et al. (1998); Wong et al. (2001); Li et al. (2006); Busetto et al. (2012). Although not explicitly described as such by the respective authors, these structures exhibited the CC—H···π interactions mentioned, and the corresponding C···Cg distances are 3.58 Å with C—H···Cg angles ranging from 152 to 176°.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. C—H···OC hydrogen bonds are shown as dotted lines (see Table 1 for numerical details.
[Figure 3] Fig. 3. Chains of the title compound formed by CC—H···π interactions. The centroids of the rings are drawn as red spheres, and the contacts are drawn as dashed lines. The symmetry code refers to Table 1.
5-Ferrocenylmethyl-2,2-dimethyl-5-(prop-2-ynyl)-1,3-dioxane-4,6-dione top
Crystal data top
[Fe(C5H5)(C15H15O4)]F(000) = 396
Mr = 380.21Dx = 1.437 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.8263 (4) ÅCell parameters from 9930 reflections
b = 7.4617 (2) Åθ = 5.2–50.6°
c = 11.9888 (4) ŵ = 0.88 mm1
β = 91.956 (1)°T = 173 K
V = 878.52 (5) Å3Plate, yellow
Z = 20.18 × 0.11 × 0.07 mm
Data collection top
Bruker D8 Quest
diffractometer
3215 independent reflections
Radiation source: Incoatec Microfocus3078 reflections with I > 2σ(I)
Detector resolution: 10.4 pixels mm-1Rint = 0.031
phi– and ω–scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1111
Tmin = 0.896, Tmax = 0.942k = 99
17890 measured reflectionsl = 1414
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0281P)2 + 0.1144P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.052Δρmax = 0.28 e Å3
S = 1.05Δρmin = 0.16 e Å3
3215 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
227 parametersExtinction coefficient: 0.019 (2)
1 restraintAbsolute structure: Flack x determined using 1346 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.009 (6)
Crystal data top
[Fe(C5H5)(C15H15O4)]V = 878.52 (5) Å3
Mr = 380.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.8263 (4) ŵ = 0.88 mm1
b = 7.4617 (2) ÅT = 173 K
c = 11.9888 (4) Å0.18 × 0.11 × 0.07 mm
β = 91.956 (1)°
Data collection top
Bruker D8 Quest
diffractometer
3215 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3078 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.942Rint = 0.031
17890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.28 e Å3
S = 1.05Δρmin = 0.16 e Å3
3215 reflectionsAbsolute structure: Flack x determined using 1346 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
227 parametersAbsolute structure parameter: 0.009 (6)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.00210 (3)0.24448 (7)0.24251 (3)0.01943 (12)
O10.4427 (2)0.0935 (3)0.12458 (16)0.0345 (5)
O20.3366 (2)0.3154 (2)0.23702 (15)0.0353 (5)
O30.51239 (19)0.1619 (2)0.19227 (16)0.0319 (5)
O40.30812 (17)0.2766 (3)0.41503 (13)0.0308 (4)
C10.0061 (3)0.5163 (4)0.2564 (3)0.0325 (9)
H10.07020.59420.22390.039*
C20.1185 (3)0.4599 (4)0.2063 (2)0.0296 (6)
H20.15300.49330.13430.036*
C30.1829 (3)0.3452 (4)0.2818 (3)0.0320 (7)
H30.26840.28780.26950.038*
C40.0984 (3)0.3308 (4)0.3784 (2)0.0347 (7)
H40.11670.26180.44280.042*
C50.0192 (3)0.4373 (4)0.3630 (3)0.0328 (7)
H50.09340.45250.41510.039*
C60.1633 (3)0.1703 (4)0.1508 (2)0.0270 (6)
H60.22980.24750.12100.032*
C70.0384 (3)0.1171 (4)0.0963 (3)0.0369 (7)
H70.00690.15300.02390.044*
C80.0302 (3)0.0016 (4)0.1691 (3)0.0366 (7)
H80.11630.05320.15430.044*
C90.0515 (3)0.0183 (4)0.2677 (3)0.0286 (7)
H90.03030.09030.33010.034*
C100.1709 (3)0.0877 (3)0.2576 (2)0.0220 (6)
C110.2850 (3)0.1041 (4)0.3429 (2)0.0236 (6)
H11A0.24950.08050.41780.028*
H11B0.32010.22850.34250.028*
C120.4048 (2)0.0280 (3)0.32172 (19)0.0182 (5)
C130.4606 (2)0.0193 (3)0.2093 (2)0.0193 (5)
C140.4027 (3)0.2778 (4)0.13503 (18)0.0232 (6)
C150.3494 (2)0.2168 (3)0.32999 (19)0.0198 (6)
C160.5180 (3)0.0005 (4)0.4130 (2)0.0256 (6)
H16A0.54770.12720.41190.031*
H16B0.48030.02390.48700.031*
C170.6361 (3)0.1157 (4)0.3974 (2)0.0252 (6)
C180.7276 (3)0.2127 (4)0.3801 (2)0.0310 (7)
H180.80140.29090.36620.037*
C190.2962 (3)0.3082 (4)0.0440 (2)0.0392 (8)
H19A0.33540.28450.02870.059*
H19B0.26470.43270.04650.059*
H19C0.21920.22730.05460.059*
C200.5268 (3)0.3920 (4)0.1287 (3)0.0369 (7)
H20A0.57260.36690.05910.055*
H20B0.58880.36560.19240.055*
H20C0.50060.51870.13060.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01545 (17)0.01707 (17)0.02571 (19)0.00290 (14)0.00022 (12)0.00182 (17)
O10.0594 (14)0.0230 (10)0.0220 (10)0.0103 (10)0.0163 (9)0.0017 (8)
O20.0580 (13)0.0232 (10)0.0256 (10)0.0160 (9)0.0154 (9)0.0040 (8)
O30.0342 (11)0.0232 (9)0.0384 (12)0.0119 (9)0.0015 (9)0.0036 (9)
O40.0305 (9)0.0416 (12)0.0206 (8)0.0025 (10)0.0048 (7)0.0098 (9)
C10.0259 (19)0.0139 (15)0.059 (2)0.0020 (11)0.0155 (17)0.0054 (13)
C20.0258 (15)0.0260 (15)0.0369 (16)0.0116 (12)0.0006 (12)0.0005 (12)
C30.0150 (12)0.0284 (16)0.0530 (19)0.0018 (11)0.0062 (12)0.0071 (14)
C40.0404 (17)0.0325 (15)0.0323 (16)0.0081 (13)0.0165 (13)0.0016 (12)
C50.0257 (14)0.0328 (15)0.0397 (17)0.0091 (12)0.0044 (12)0.0156 (13)
C60.0261 (14)0.0316 (14)0.0235 (14)0.0125 (12)0.0035 (11)0.0019 (11)
C70.0359 (17)0.0468 (18)0.0272 (16)0.0220 (14)0.0113 (12)0.0136 (13)
C80.0275 (16)0.0256 (15)0.056 (2)0.0052 (13)0.0143 (15)0.0158 (15)
C90.0273 (17)0.0160 (14)0.0421 (17)0.0038 (13)0.0024 (13)0.0006 (12)
C100.0186 (13)0.0209 (13)0.0263 (14)0.0068 (11)0.0015 (10)0.0060 (11)
C110.0235 (14)0.0251 (13)0.0221 (14)0.0069 (11)0.0007 (11)0.0068 (11)
C120.0181 (12)0.0205 (13)0.0159 (12)0.0025 (10)0.0008 (9)0.0013 (10)
C130.0152 (11)0.0220 (13)0.0206 (12)0.0029 (10)0.0020 (10)0.0004 (10)
C140.0327 (13)0.0196 (15)0.0177 (11)0.0022 (12)0.0056 (9)0.0029 (11)
C150.0146 (11)0.0248 (16)0.0200 (12)0.0063 (9)0.0017 (9)0.0027 (10)
C160.0209 (13)0.0332 (15)0.0224 (13)0.0050 (11)0.0059 (10)0.0070 (11)
C170.0236 (14)0.0319 (14)0.0195 (13)0.0008 (12)0.0063 (10)0.0013 (11)
C180.0260 (13)0.0392 (19)0.0276 (13)0.0054 (12)0.0018 (11)0.0012 (12)
C190.0347 (16)0.047 (2)0.0361 (16)0.0046 (13)0.0032 (13)0.0043 (13)
C200.0330 (17)0.0367 (16)0.0406 (19)0.0070 (14)0.0037 (14)0.0018 (14)
Geometric parameters (Å, º) top
Fe—C102.032 (2)C6—H60.9500
Fe—C62.035 (2)C7—C81.414 (5)
Fe—C82.035 (3)C7—H70.9500
Fe—C22.035 (3)C8—C91.414 (5)
Fe—C12.035 (3)C8—H80.9500
Fe—C72.036 (3)C9—C101.423 (4)
Fe—C32.037 (3)C9—H90.9500
Fe—C42.038 (3)C10—C111.497 (4)
Fe—C92.040 (3)C11—C121.563 (3)
Fe—C52.041 (3)C11—H11A0.9900
O1—C131.326 (3)C11—H11B0.9900
O1—C141.437 (3)C12—C131.514 (3)
O2—C151.338 (3)C12—C151.515 (3)
O2—C141.432 (3)C12—C161.548 (3)
O3—C131.200 (3)C14—C201.492 (4)
O4—C151.196 (3)C14—C191.504 (4)
C1—C51.409 (4)C16—C171.466 (4)
C1—C21.409 (4)C16—H16A0.9900
C1—H10.9500C16—H16B0.9900
C2—C31.411 (4)C17—C181.178 (4)
C2—H20.9500C18—H180.9500
C3—C41.406 (4)C19—H19A0.9800
C3—H30.9500C19—H19B0.9800
C4—C51.420 (4)C19—H19C0.9800
C4—H40.9500C20—H20A0.9800
C5—H50.9500C20—H20B0.9800
C6—C101.420 (4)C20—H20C0.9800
C6—C71.427 (4)
C10—Fe—C640.87 (10)Fe—C5—H5126.3
C10—Fe—C868.95 (11)C10—C6—C7108.0 (3)
C6—Fe—C868.73 (12)C10—C6—Fe69.46 (14)
C10—Fe—C2160.22 (11)C7—C6—Fe69.51 (15)
C6—Fe—C2123.91 (11)C10—C6—H6126.0
C8—Fe—C2122.02 (12)C7—C6—H6126.0
C10—Fe—C1123.56 (11)Fe—C6—H6126.6
C6—Fe—C1107.58 (11)C8—C7—C6107.9 (3)
C8—Fe—C1157.70 (13)C8—C7—Fe69.65 (17)
C2—Fe—C140.51 (12)C6—C7—Fe69.45 (15)
C10—Fe—C769.00 (11)C8—C7—H7126.0
C6—Fe—C741.04 (12)C6—C7—H7126.0
C8—Fe—C740.64 (14)Fe—C7—H7126.4
C2—Fe—C7107.64 (12)C7—C8—C9108.1 (3)
C1—Fe—C7122.17 (13)C7—C8—Fe69.70 (16)
C10—Fe—C3157.47 (11)C9—C8—Fe69.88 (15)
C6—Fe—C3160.44 (11)C7—C8—H8126.0
C8—Fe—C3107.53 (12)C9—C8—H8126.0
C2—Fe—C340.55 (11)Fe—C8—H8126.0
C1—Fe—C368.17 (11)C8—C9—C10108.5 (3)
C7—Fe—C3123.72 (12)C8—C9—Fe69.52 (16)
C10—Fe—C4121.80 (11)C10—C9—Fe69.25 (15)
C6—Fe—C4157.64 (12)C8—C9—H9125.8
C8—Fe—C4123.67 (13)C10—C9—H9125.8
C2—Fe—C468.05 (12)Fe—C9—H9127.1
C1—Fe—C468.16 (12)C6—C10—C9107.4 (2)
C7—Fe—C4159.97 (13)C6—C10—C11126.5 (2)
C3—Fe—C440.37 (12)C9—C10—C11126.0 (3)
C10—Fe—C940.92 (12)C6—C10—Fe69.67 (14)
C6—Fe—C968.46 (12)C9—C10—Fe69.83 (15)
C8—Fe—C940.60 (13)C11—C10—Fe127.14 (17)
C2—Fe—C9157.63 (12)C10—C11—C12112.8 (2)
C1—Fe—C9160.38 (12)C10—C11—H11A109.0
C7—Fe—C968.33 (13)C12—C11—H11A109.0
C3—Fe—C9122.02 (12)C10—C11—H11B109.0
C4—Fe—C9107.76 (13)C12—C11—H11B109.0
C10—Fe—C5107.18 (11)H11A—C11—H11B107.8
C6—Fe—C5121.79 (12)C13—C12—C15114.63 (19)
C8—Fe—C5160.31 (13)C13—C12—C16108.9 (2)
C2—Fe—C568.12 (12)C15—C12—C16109.4 (2)
C1—Fe—C540.43 (13)C13—C12—C11107.2 (2)
C7—Fe—C5157.73 (13)C15—C12—C11107.58 (19)
C3—Fe—C568.23 (12)C16—C12—C11108.99 (19)
C4—Fe—C540.74 (12)O3—C13—O1118.6 (2)
C9—Fe—C5124.02 (13)O3—C13—C12121.8 (2)
C13—O1—C14124.78 (19)O1—C13—C12119.4 (2)
C15—O2—C14124.80 (19)O2—C14—O1113.30 (19)
C5—C1—C2108.2 (3)O2—C14—C20109.1 (2)
C5—C1—Fe70.02 (18)O1—C14—C20108.4 (2)
C2—C1—Fe69.74 (17)O2—C14—C19105.4 (2)
C5—C1—H1125.9O1—C14—C19105.5 (2)
C2—C1—H1125.9C20—C14—C19115.3 (2)
Fe—C1—H1125.9O4—C15—O2118.7 (2)
C1—C2—C3108.1 (3)O4—C15—C12122.4 (2)
C1—C2—Fe69.76 (17)O2—C15—C12118.7 (2)
C3—C2—Fe69.81 (15)C17—C16—C12112.5 (2)
C1—C2—H2126.0C17—C16—H16A109.1
C3—C2—H2126.0C12—C16—H16A109.1
Fe—C2—H2126.0C17—C16—H16B109.1
C4—C3—C2108.0 (2)C12—C16—H16B109.1
C4—C3—Fe69.84 (15)H16A—C16—H16B107.8
C2—C3—Fe69.64 (15)C18—C17—C16176.5 (3)
C4—C3—H3126.0C17—C18—H18180.0
C2—C3—H3126.0C14—C19—H19A109.5
Fe—C3—H3126.1C14—C19—H19B109.5
C3—C4—C5108.1 (3)H19A—C19—H19B109.5
C3—C4—Fe69.79 (15)C14—C19—H19C109.5
C5—C4—Fe69.76 (16)H19A—C19—H19C109.5
C3—C4—H4126.0H19B—C19—H19C109.5
C5—C4—H4126.0C14—C20—H20A109.5
Fe—C4—H4126.1C14—C20—H20B109.5
C1—C5—C4107.6 (3)H20A—C20—H20B109.5
C1—C5—Fe69.56 (18)C14—C20—H20C109.5
C4—C5—Fe69.50 (17)H20A—C20—H20C109.5
C1—C5—H5126.2H20B—C20—H20C109.5
C4—C5—H5126.2
C5—C1—C2—C30.1 (3)C8—C9—C10—Fe58.59 (19)
Fe—C1—C2—C359.52 (18)C6—C10—C11—C1283.2 (3)
C5—C1—C2—Fe59.7 (2)C9—C10—C11—C1294.8 (3)
C1—C2—C3—C40.0 (3)Fe—C10—C11—C12174.29 (17)
Fe—C2—C3—C459.53 (18)C10—C11—C12—C1361.6 (3)
C1—C2—C3—Fe59.49 (19)C10—C11—C12—C1562.1 (3)
C2—C3—C4—C50.1 (3)C10—C11—C12—C16179.3 (2)
Fe—C3—C4—C559.47 (19)C14—O1—C13—O3169.6 (2)
C2—C3—C4—Fe59.40 (18)C14—O1—C13—C1215.6 (4)
C2—C1—C5—C40.2 (3)C15—C12—C13—O3177.1 (2)
Fe—C1—C5—C459.31 (19)C16—C12—C13—O354.2 (3)
C2—C1—C5—Fe59.5 (2)C11—C12—C13—O363.6 (3)
C3—C4—C5—C10.1 (3)C15—C12—C13—O18.3 (3)
Fe—C4—C5—C159.3 (2)C16—C12—C13—O1131.2 (2)
C3—C4—C5—Fe59.49 (19)C11—C12—C13—O1111.1 (2)
C10—C6—C7—C80.3 (3)C15—O2—C14—O122.3 (3)
Fe—C6—C7—C859.23 (19)C15—O2—C14—C2098.5 (3)
C10—C6—C7—Fe58.95 (18)C15—O2—C14—C19137.1 (3)
C6—C7—C8—C90.5 (3)C13—O1—C14—O221.3 (4)
Fe—C7—C8—C959.57 (19)C13—O1—C14—C2099.9 (3)
C6—C7—C8—Fe59.10 (19)C13—O1—C14—C19136.1 (2)
C7—C8—C9—C101.0 (3)C14—O2—C15—O4167.7 (2)
Fe—C8—C9—C1058.42 (18)C14—O2—C15—C1217.4 (3)
C7—C8—C9—Fe59.45 (19)C13—C12—C15—O4176.3 (2)
C7—C6—C10—C90.9 (3)C16—C12—C15—O453.6 (3)
Fe—C6—C10—C959.89 (18)C11—C12—C15—O464.6 (3)
C7—C6—C10—C11179.2 (2)C13—C12—C15—O29.0 (3)
Fe—C6—C10—C11121.8 (2)C16—C12—C15—O2131.7 (2)
C7—C6—C10—Fe58.98 (18)C11—C12—C15—O2110.1 (2)
C8—C9—C10—C61.2 (3)C13—C12—C16—C1761.9 (3)
Fe—C9—C10—C659.79 (18)C15—C12—C16—C1764.1 (3)
C8—C9—C10—C11179.5 (2)C11—C12—C16—C17178.5 (2)
Fe—C9—C10—C11121.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the unsubstituted cyclopentadienyl ring.
D—H···AD—HH···AD···AD—H···A
C20—H20C···O3i0.982.503.419 (3)157
C3—H3···O3ii0.952.503.431 (3)167
C19—H19A···O3iii0.982.543.460 (3)157
C16—H16A···O4iv0.992.573.114 (3)114
C4—H4···O4v0.952.603.372 (3)139
C18—H18···Cgvi0.952.643.533157
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z+1; (v) x, y+1/2, z+1; (vi) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the unsubstituted cyclopentadienyl ring.
D—H···AD—HH···AD···AD—H···A
C20—H20C···O3i0.9802.4973.419 (3)157
C3—H3···O3ii0.9502.4993.431 (3)167
C19—H19A···O3iii0.9812.5383.460 (3)157
C16—H16A···O4iv0.9902.5743.114 (3)114
C4—H4···O4v0.9502.5973.372 (3)139
C18—H18···Cgvi0.9502.6373.533157
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z+1; (v) x, y+1/2, z+1; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H15O4)]
Mr380.21
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.8263 (4), 7.4617 (2), 11.9888 (4)
β (°) 91.956 (1)
V3)878.52 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.18 × 0.11 × 0.07
Data collection
DiffractometerBruker D8 Quest
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.896, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
17890, 3215, 3078
Rint0.031
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.05
No. of reflections3215
No. of parameters227
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.16
Absolute structureFlack x determined using 1346 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.009 (6)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

References

First citationBai, Y., Lu, J., Gan, H., Wang, Z. & Shi, Z. (2004). Synth. React. Inorg. Met.-Org. Chem. 34, 1487–1496.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchmeiser, M. R., Schuler, N., Kaltenhauser, G., Ongania, K.-H., Lagoja, I., Wurst, K. & Schottenberger, H. (1998). Macromolecules, 31, 3175–3183.  Web of Science CSD CrossRef CAS Google Scholar
First citationBusetto, L., Mazzoni, R., Salmi, M., Zacchini, S. & Zanotti, V. (2012). Organometallics, 31, 2667–2674.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarder, S. (1999). Chem. Eur. J. 5, 1852–1861.  CrossRef CAS Google Scholar
First citationLi, Z., Lam, J. W. Y., Dong, Y., Dong, Y., Sung, H. H. Y., Williams, I. D. & Tang, B. Z. (2006). Macromolecules, 39, 6458–6466.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, J. T., Wu, J. J., Li, C.-S., Wen, Y. S. & Lin, K.-J. (1996). Organometallics, 15, 5028–5034.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, W.-Y., Lu, G.-L., Ng, K.-F., Choi, K.-H. & Lin, Z. (2001). J. Chem. Soc. Dalton Trans. pp. 3250–3260.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds