organic compounds
6-Iodo-1H-indole-2,3-dione
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The molecule of the title compound, C8H4INO2, is almost planar, having an r.m.s. deviation from planarity of 0.019 Å for all non-H atoms. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are further linked by I⋯O close contacts of 3.078 (2) Å, forming chains along [10-1]. The nine-membered fused rings of the isatin molecules stack along the b axis, with parallel slipped π–π interactions [intercentroid distance = 3.594 (2) Å, interplanar distance = 3.379 (1) Å and slippage = 1.243 Å]. These interactions lead to the formation of a three-dimensional network.
Keywords: crystal structure; isatins; halogen–oxygen interactions; hydrogen bonding; π–π interactions.
CCDC reference: 1476500
Structure description
In a continuing study of the structure of halogenated isatins, we report herein on the ). The molecule possesses bond lengths and angles similar to those observed in the parent isatin (Goldschmidt & Llewellyn, 1950). The isatins dimerize in the solid state through pairs N1—H1⋯O1 hydrogen bonds, forming inversion dimers with an (8) ring motif. These dimers are further linked through I1⋯O1 close contacts of 3.078 (2) Å that result in infinite chains along [10]; see Fig. 2 and Table 1. The nine-membered fused rings of the isatin stack along b with parallel slipped π–π interactions [Cg2⋯Cg1i = 3.594 (2) Å, inter-planar distance: 3.379 (1) Å, slippage: 1.243 Å; Cg1 and Cg2 are the centroids of rings N1/C1–C3/C8 and C3–C8, respectively; symmetry code: (i) − x + 1, − y + 1, − z + 1]. The result of these interactions is the formation of a three-dimensional network.
of 6-iodoisatin (Fig. 1
|
The I⋯O close contacts reported in the title compound are observed in the other three isomers of iodoisatin (Garden et al., 2006; Golen & Manke, 2016a,b). The of 6-bromoisatin (Turbitt et al., 2016) also exhibits a similar halogen–oxygen interaction.
Synthesis and crystallization
A commercial sample (Matrix Scientific) of 6-iodo-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an acetone solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1476500
10.1107/S2414314616007008/su4042sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616007008/su4042Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616007008/su4042Isup3.cml
A commercial sample (Matrix Scientific) of 6-iodo-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an acetone solution.
In a continuing study of the structure of halogenated isatins, we report herein on the 1]; see Fig. 2 and Table 1. The nine-membered rings of the isatin stack along b with parallel slipped π–π interactions [Cg2···Cg1i = 3.594 (2) Å, inter-planar distance: 3.379 (1) Å, slippage: 1.243 Å; Cg1 and Cg2 are the centroids of rings N1/C1–C3/C8 and C3–C8, respectively; symmetry code: (i) - x + 1, - y + 1, - z + 1]. The result of these interactions is the formation of a three-dimensional structure. The I···O close contacts reported in the title compound are observed in the other three isomers of iodoisatin (Garden et al., 2006; Golen & Manke, 2016a,b). The of 6-bromoisatin (Turbitt et al., 2016) also exhibits a similar halogen–oxygen interaction.
of 6-iodoisatin (Fig. 1). The molecule possesses bond lengths and angles similar to those observed in the parent isatin (Goldschmidt & Llewellyn, 1950). The isatins dimerize in the solid state through pairs N1—H1···O1 hydrogen bonds, forming inversion dimers with an R22(8) ring motif. These dimers are further linked through I1···O1 close contacts of 3.078 (2) Å that result in infinite chains along [10Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Crystal packing of the title compound viewed along the b axis, with hydrogen bonds shown as dashed lines (see Table 1), and Iodine-oxygen interactions shown as thin solid lines. |
C8H4INO2 | Z = 2 |
Mr = 273.02 | F(000) = 256 |
Triclinic, P1 | Dx = 2.259 Mg m−3 |
a = 6.4152 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.5089 (12) Å | Cell parameters from 5053 reflections |
c = 8.9546 (15) Å | θ = 2.9–25.9° |
α = 110.162 (7)° | µ = 3.94 mm−1 |
β = 96.120 (8)° | T = 200 K |
γ = 91.997 (8)° | BLOCK, yellow |
V = 401.43 (12) Å3 | 0.22 × 0.2 × 0.1 mm |
Bruker Venture D8 CMOS diffractometer | 1428 reflections with I > 2σ(I) |
Radiation source: Mo | Rint = 0.030 |
φ and ω scans | θmax = 25.9°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −7→7 |
Tmin = 0.197, Tmax = 0.259 | k = −9→9 |
7043 measured reflections | l = −10→10 |
1533 independent reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.044 | w = 1/[σ2(Fo2) + (0.0052P)2 + 0.5065P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
1533 reflections | Δρmax = 1.12 e Å−3 |
112 parameters | Δρmin = −0.74 e Å−3 |
C8H4INO2 | γ = 91.997 (8)° |
Mr = 273.02 | V = 401.43 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.4152 (12) Å | Mo Kα radiation |
b = 7.5089 (12) Å | µ = 3.94 mm−1 |
c = 8.9546 (15) Å | T = 200 K |
α = 110.162 (7)° | 0.22 × 0.2 × 0.1 mm |
β = 96.120 (8)° |
Bruker Venture D8 CMOS diffractometer | 1533 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 1428 reflections with I > 2σ(I) |
Tmin = 0.197, Tmax = 0.259 | Rint = 0.030 |
7043 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 1 restraint |
wR(F2) = 0.044 | H-atom parameters constrained |
S = 1.13 | Δρmax = 1.12 e Å−3 |
1533 reflections | Δρmin = −0.74 e Å−3 |
112 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.88468 (3) | 0.23586 (3) | 0.83188 (2) | 0.03175 (8) | |
O1 | 0.2881 (4) | 0.1534 (3) | 0.0076 (2) | 0.0348 (5) | |
O2 | 0.0321 (3) | 0.3232 (3) | 0.2659 (3) | 0.0326 (5) | |
N1 | 0.5260 (4) | 0.1523 (4) | 0.2204 (3) | 0.0246 (5) | |
H1 | 0.621 (4) | 0.087 (4) | 0.168 (4) | 0.030* | |
C1 | 0.3425 (5) | 0.1870 (4) | 0.1497 (3) | 0.0244 (6) | |
C2 | 0.2080 (5) | 0.2776 (4) | 0.2872 (3) | 0.0230 (6) | |
C3 | 0.3404 (4) | 0.2856 (4) | 0.4329 (3) | 0.0208 (6) | |
C4 | 0.3091 (5) | 0.3516 (4) | 0.5932 (3) | 0.0263 (6) | |
H4 | 0.1825 | 0.4068 | 0.6248 | 0.032* | |
C5 | 0.4653 (5) | 0.3358 (4) | 0.7071 (3) | 0.0275 (7) | |
H5 | 0.4460 | 0.3788 | 0.8173 | 0.033* | |
C6 | 0.6502 (5) | 0.2565 (4) | 0.6580 (3) | 0.0242 (6) | |
C7 | 0.6862 (5) | 0.1905 (4) | 0.4976 (3) | 0.0229 (6) | |
H7 | 0.8137 | 0.1373 | 0.4662 | 0.028* | |
C8 | 0.5280 (5) | 0.2063 (4) | 0.3870 (3) | 0.0205 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.03483 (13) | 0.03183 (12) | 0.02774 (12) | −0.00684 (8) | −0.01217 (8) | 0.01497 (9) |
O1 | 0.0388 (13) | 0.0438 (13) | 0.0224 (11) | 0.0155 (11) | 0.0011 (9) | 0.0120 (10) |
O2 | 0.0264 (12) | 0.0370 (12) | 0.0334 (12) | 0.0136 (10) | 0.0013 (9) | 0.0106 (10) |
N1 | 0.0219 (13) | 0.0325 (13) | 0.0186 (12) | 0.0105 (11) | 0.0028 (10) | 0.0070 (10) |
C1 | 0.0289 (16) | 0.0229 (14) | 0.0207 (15) | 0.0066 (12) | 0.0010 (12) | 0.0071 (12) |
C2 | 0.0220 (16) | 0.0198 (13) | 0.0264 (15) | 0.0032 (12) | −0.0010 (12) | 0.0079 (12) |
C3 | 0.0214 (15) | 0.0194 (13) | 0.0219 (14) | 0.0030 (11) | 0.0008 (11) | 0.0080 (11) |
C4 | 0.0277 (17) | 0.0265 (15) | 0.0233 (15) | 0.0036 (13) | 0.0053 (12) | 0.0063 (12) |
C5 | 0.0350 (18) | 0.0274 (15) | 0.0189 (14) | 0.0014 (13) | 0.0051 (13) | 0.0064 (12) |
C6 | 0.0268 (17) | 0.0222 (14) | 0.0230 (14) | −0.0027 (12) | −0.0037 (12) | 0.0096 (12) |
C7 | 0.0204 (15) | 0.0236 (14) | 0.0242 (14) | 0.0040 (11) | 0.0007 (12) | 0.0080 (12) |
C8 | 0.0224 (15) | 0.0196 (13) | 0.0193 (14) | 0.0015 (11) | 0.0028 (11) | 0.0066 (11) |
I1—C6 | 2.096 (3) | C3—C8 | 1.400 (4) |
O1—C1 | 1.217 (3) | C4—H4 | 0.9500 |
O2—C2 | 1.206 (3) | C4—C5 | 1.390 (4) |
N1—H1 | 0.867 (10) | C5—H5 | 0.9500 |
N1—C1 | 1.354 (4) | C5—C6 | 1.392 (4) |
N1—C8 | 1.403 (4) | C6—C7 | 1.396 (4) |
C1—C2 | 1.553 (4) | C7—H7 | 0.9500 |
C2—C3 | 1.460 (4) | C7—C8 | 1.378 (4) |
C3—C4 | 1.388 (4) | ||
C1—N1—H1 | 124 (2) | C5—C4—H4 | 120.4 |
C1—N1—C8 | 111.5 (2) | C4—C5—H5 | 120.4 |
C8—N1—H1 | 124 (2) | C4—C5—C6 | 119.3 (3) |
O1—C1—N1 | 128.2 (3) | C6—C5—H5 | 120.4 |
O1—C1—C2 | 125.7 (3) | C5—C6—I1 | 118.7 (2) |
N1—C1—C2 | 106.1 (2) | C5—C6—C7 | 122.6 (3) |
O2—C2—C1 | 123.7 (3) | C7—C6—I1 | 118.7 (2) |
O2—C2—C3 | 131.6 (3) | C6—C7—H7 | 121.6 |
C3—C2—C1 | 104.7 (2) | C8—C7—C6 | 116.9 (3) |
C4—C3—C2 | 132.3 (3) | C8—C7—H7 | 121.6 |
C4—C3—C8 | 120.3 (3) | C3—C8—N1 | 110.3 (2) |
C8—C3—C2 | 107.4 (2) | C7—C8—N1 | 127.9 (3) |
C3—C4—H4 | 120.4 | C7—C8—C3 | 121.8 (3) |
C3—C4—C5 | 119.2 (3) | ||
I1—C6—C7—C8 | 179.9 (2) | C2—C3—C8—C7 | −179.2 (3) |
O1—C1—C2—O2 | 0.6 (5) | C3—C4—C5—C6 | 0.8 (4) |
O1—C1—C2—C3 | 179.2 (3) | C4—C3—C8—N1 | −179.1 (3) |
O2—C2—C3—C4 | −1.8 (6) | C4—C3—C8—C7 | 0.2 (4) |
O2—C2—C3—C8 | 177.5 (3) | C4—C5—C6—I1 | 179.6 (2) |
N1—C1—C2—O2 | −178.5 (3) | C4—C5—C6—C7 | −0.2 (4) |
N1—C1—C2—C3 | 0.1 (3) | C5—C6—C7—C8 | −0.3 (4) |
C1—N1—C8—C3 | −1.5 (3) | C6—C7—C8—N1 | 179.5 (3) |
C1—N1—C8—C7 | 179.2 (3) | C6—C7—C8—C3 | 0.4 (4) |
C1—C2—C3—C4 | 179.8 (3) | C8—N1—C1—O1 | −178.2 (3) |
C1—C2—C3—C8 | −1.0 (3) | C8—N1—C1—C2 | 0.8 (3) |
C2—C3—C4—C5 | 178.4 (3) | C8—C3—C4—C5 | −0.7 (4) |
C2—C3—C8—N1 | 1.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.87 (1) | 2.10 (2) | 2.888 (3) | 152 (3) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.87 (1) | 2.095 (18) | 2.888 (3) | 152 (3) |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C8H4INO2 |
Mr | 273.02 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 200 |
a, b, c (Å) | 6.4152 (12), 7.5089 (12), 8.9546 (15) |
α, β, γ (°) | 110.162 (7), 96.120 (8), 91.997 (8) |
V (Å3) | 401.43 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.94 |
Crystal size (mm) | 0.22 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Bruker Venture D8 CMOS |
Absorption correction | Multi-scan (SADABS; Bruker, 2014) |
Tmin, Tmax | 0.197, 0.259 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7043, 1533, 1428 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.613 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.044, 1.13 |
No. of reflections | 1533 |
No. of parameters | 112 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.12, −0.74 |
Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
Acknowledgements
We gratefully acknowledge support from the National Science Foundation (CHE-1429086).
References
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Golen, J. A. & Manke, D. R. (2016a). IUCrData, 1, x160215. Google Scholar
Golen, J. A. & Manke, D. R. (2016b). IUCrData, 1, x160412. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.