organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Iodo-1H-indole-2,3-dione

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 April 2016; accepted 25 April 2016; online 29 April 2016)

The mol­ecule of the title compound, C8H4INO2, is almost planar, having an r.m.s. deviation from planarity of 0.019 Å for all non-H atoms. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are further linked by I⋯O close contacts of 3.078 (2) Å, forming chains along [10-1]. The nine-membered fused rings of the isatin mol­ecules stack along the b axis, with parallel slipped ππ inter­actions [inter­centroid distance = 3.594 (2) Å, inter­planar distance = 3.379 (1) Å and slippage = 1.243 Å]. These inter­actions lead to the formation of a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a continuing study of the structure of halogenated isatins, we report herein on the crystal structure of 6-iodo­isatin (Fig. 1[link]). The mol­ecule possesses bond lengths and angles similar to those observed in the parent isatin (Goldschmidt & Llewellyn, 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]). The isatins dimerize in the solid state through pairs N1—H1⋯O1 hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](8) ring motif. These dimers are further linked through I1⋯O1 close contacts of 3.078 (2) Å that result in infinite chains along [10[\overline{1}]]; see Fig. 2[link] and Table 1[link]. The nine-membered fused rings of the isatin stack along b with parallel slipped ππ inter­actions [Cg2⋯Cg1i = 3.594 (2) Å, inter-planar distance: 3.379 (1) Å, slippage: 1.243 Å; Cg1 and Cg2 are the centroids of rings N1/C1–C3/C8 and C3–C8, respectively; symmetry code: (i) − x + 1, − y + 1, − z + 1]. The result of these inter­actions is the formation of a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 2.10 (2) 2.888 (3) 152 (3)
Symmetry code: (i) -x+1, -y, -z.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis, with hydrogen bonds shown as dashed lines (see Table 1[link]), and Iodine-oxygen inter­actions shown as thin solid lines.

The I⋯O close contacts reported in the title compound are observed in the other three isomers of iodo­isatin (Garden et al., 2006[Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321-o323.]; Golen & Manke, 2016a[Golen, J. A. & Manke, D. R. (2016a). IUCrData, 1, x160215.],b[Golen, J. A. & Manke, D. R. (2016b). IUCrData, 1, x160412.]). The crystal structure of 6-bromo­isatin (Turbitt et al., 2016[Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.]) also exhibits a similar halogen–oxygen inter­action.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 6-iodo-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4INO2
Mr 273.02
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 6.4152 (12), 7.5089 (12), 8.9546 (15)
α, β, γ (°) 110.162 (7), 96.120 (8), 91.997 (8)
V3) 401.43 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.94
Crystal size (mm) 0.22 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker Venture D8 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.])
Tmin, Tmax 0.197, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 7043, 1533, 1428
Rint 0.030
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.044, 1.13
No. of reflections 1533
No. of parameters 112
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.74
Computer programs: APEX2and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Experimental top

A commercial sample (Matrix Scientific) of 6-iodo-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an acetone solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

In a continuing study of the structure of halogenated isatins, we report herein on the crystal structure of 6-iodoisatin (Fig. 1). The molecule possesses bond lengths and angles similar to those observed in the parent isatin (Goldschmidt & Llewellyn, 1950). The isatins dimerize in the solid state through pairs N1—H1···O1 hydrogen bonds, forming inversion dimers with an R22(8) ring motif. These dimers are further linked through I1···O1 close contacts of 3.078 (2) Å that result in infinite chains along [101]; see Fig. 2 and Table 1. The nine-membered rings of the isatin stack along b with parallel slipped ππ interactions [Cg2···Cg1i = 3.594 (2) Å, inter-planar distance: 3.379 (1) Å, slippage: 1.243 Å; Cg1 and Cg2 are the centroids of rings N1/C1–C3/C8 and C3–C8, respectively; symmetry code: (i) - x + 1, - y + 1, - z + 1]. The result of these interactions is the formation of a three-dimensional structure. The I···O close contacts reported in the title compound are observed in the other three isomers of iodoisatin (Garden et al., 2006; Golen & Manke, 2016a,b). The crystal structure of 6-bromoisatin (Turbitt et al., 2016) also exhibits a similar halogen–oxygen interaction.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis, with hydrogen bonds shown as dashed lines (see Table 1), and Iodine-oxygen interactions shown as thin solid lines.
6-Iodo-1H-indole-2,3-dione top
Crystal data top
C8H4INO2Z = 2
Mr = 273.02F(000) = 256
Triclinic, P1Dx = 2.259 Mg m3
a = 6.4152 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5089 (12) ÅCell parameters from 5053 reflections
c = 8.9546 (15) Åθ = 2.9–25.9°
α = 110.162 (7)°µ = 3.94 mm1
β = 96.120 (8)°T = 200 K
γ = 91.997 (8)°BLOCK, yellow
V = 401.43 (12) Å30.22 × 0.2 × 0.1 mm
Data collection top
Bruker Venture D8 CMOS
diffractometer
1428 reflections with I > 2σ(I)
Radiation source: MoRint = 0.030
φ and ω scansθmax = 25.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 77
Tmin = 0.197, Tmax = 0.259k = 99
7043 measured reflectionsl = 1010
1533 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0052P)2 + 0.5065P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
1533 reflectionsΔρmax = 1.12 e Å3
112 parametersΔρmin = 0.74 e Å3
Crystal data top
C8H4INO2γ = 91.997 (8)°
Mr = 273.02V = 401.43 (12) Å3
Triclinic, P1Z = 2
a = 6.4152 (12) ÅMo Kα radiation
b = 7.5089 (12) ŵ = 3.94 mm1
c = 8.9546 (15) ÅT = 200 K
α = 110.162 (7)°0.22 × 0.2 × 0.1 mm
β = 96.120 (8)°
Data collection top
Bruker Venture D8 CMOS
diffractometer
1533 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1428 reflections with I > 2σ(I)
Tmin = 0.197, Tmax = 0.259Rint = 0.030
7043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0201 restraint
wR(F2) = 0.044H-atom parameters constrained
S = 1.13Δρmax = 1.12 e Å3
1533 reflectionsΔρmin = 0.74 e Å3
112 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.88468 (3)0.23586 (3)0.83188 (2)0.03175 (8)
O10.2881 (4)0.1534 (3)0.0076 (2)0.0348 (5)
O20.0321 (3)0.3232 (3)0.2659 (3)0.0326 (5)
N10.5260 (4)0.1523 (4)0.2204 (3)0.0246 (5)
H10.621 (4)0.087 (4)0.168 (4)0.030*
C10.3425 (5)0.1870 (4)0.1497 (3)0.0244 (6)
C20.2080 (5)0.2776 (4)0.2872 (3)0.0230 (6)
C30.3404 (4)0.2856 (4)0.4329 (3)0.0208 (6)
C40.3091 (5)0.3516 (4)0.5932 (3)0.0263 (6)
H40.18250.40680.62480.032*
C50.4653 (5)0.3358 (4)0.7071 (3)0.0275 (7)
H50.44600.37880.81730.033*
C60.6502 (5)0.2565 (4)0.6580 (3)0.0242 (6)
C70.6862 (5)0.1905 (4)0.4976 (3)0.0229 (6)
H70.81370.13730.46620.028*
C80.5280 (5)0.2063 (4)0.3870 (3)0.0205 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03483 (13)0.03183 (12)0.02774 (12)0.00684 (8)0.01217 (8)0.01497 (9)
O10.0388 (13)0.0438 (13)0.0224 (11)0.0155 (11)0.0011 (9)0.0120 (10)
O20.0264 (12)0.0370 (12)0.0334 (12)0.0136 (10)0.0013 (9)0.0106 (10)
N10.0219 (13)0.0325 (13)0.0186 (12)0.0105 (11)0.0028 (10)0.0070 (10)
C10.0289 (16)0.0229 (14)0.0207 (15)0.0066 (12)0.0010 (12)0.0071 (12)
C20.0220 (16)0.0198 (13)0.0264 (15)0.0032 (12)0.0010 (12)0.0079 (12)
C30.0214 (15)0.0194 (13)0.0219 (14)0.0030 (11)0.0008 (11)0.0080 (11)
C40.0277 (17)0.0265 (15)0.0233 (15)0.0036 (13)0.0053 (12)0.0063 (12)
C50.0350 (18)0.0274 (15)0.0189 (14)0.0014 (13)0.0051 (13)0.0064 (12)
C60.0268 (17)0.0222 (14)0.0230 (14)0.0027 (12)0.0037 (12)0.0096 (12)
C70.0204 (15)0.0236 (14)0.0242 (14)0.0040 (11)0.0007 (12)0.0080 (12)
C80.0224 (15)0.0196 (13)0.0193 (14)0.0015 (11)0.0028 (11)0.0066 (11)
Geometric parameters (Å, º) top
I1—C62.096 (3)C3—C81.400 (4)
O1—C11.217 (3)C4—H40.9500
O2—C21.206 (3)C4—C51.390 (4)
N1—H10.867 (10)C5—H50.9500
N1—C11.354 (4)C5—C61.392 (4)
N1—C81.403 (4)C6—C71.396 (4)
C1—C21.553 (4)C7—H70.9500
C2—C31.460 (4)C7—C81.378 (4)
C3—C41.388 (4)
C1—N1—H1124 (2)C5—C4—H4120.4
C1—N1—C8111.5 (2)C4—C5—H5120.4
C8—N1—H1124 (2)C4—C5—C6119.3 (3)
O1—C1—N1128.2 (3)C6—C5—H5120.4
O1—C1—C2125.7 (3)C5—C6—I1118.7 (2)
N1—C1—C2106.1 (2)C5—C6—C7122.6 (3)
O2—C2—C1123.7 (3)C7—C6—I1118.7 (2)
O2—C2—C3131.6 (3)C6—C7—H7121.6
C3—C2—C1104.7 (2)C8—C7—C6116.9 (3)
C4—C3—C2132.3 (3)C8—C7—H7121.6
C4—C3—C8120.3 (3)C3—C8—N1110.3 (2)
C8—C3—C2107.4 (2)C7—C8—N1127.9 (3)
C3—C4—H4120.4C7—C8—C3121.8 (3)
C3—C4—C5119.2 (3)
I1—C6—C7—C8179.9 (2)C2—C3—C8—C7179.2 (3)
O1—C1—C2—O20.6 (5)C3—C4—C5—C60.8 (4)
O1—C1—C2—C3179.2 (3)C4—C3—C8—N1179.1 (3)
O2—C2—C3—C41.8 (6)C4—C3—C8—C70.2 (4)
O2—C2—C3—C8177.5 (3)C4—C5—C6—I1179.6 (2)
N1—C1—C2—O2178.5 (3)C4—C5—C6—C70.2 (4)
N1—C1—C2—C30.1 (3)C5—C6—C7—C80.3 (4)
C1—N1—C8—C31.5 (3)C6—C7—C8—N1179.5 (3)
C1—N1—C8—C7179.2 (3)C6—C7—C8—C30.4 (4)
C1—C2—C3—C4179.8 (3)C8—N1—C1—O1178.2 (3)
C1—C2—C3—C81.0 (3)C8—N1—C1—C20.8 (3)
C2—C3—C4—C5178.4 (3)C8—C3—C4—C50.7 (4)
C2—C3—C8—N11.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)2.10 (2)2.888 (3)152 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)2.095 (18)2.888 (3)152 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H4INO2
Mr273.02
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.4152 (12), 7.5089 (12), 8.9546 (15)
α, β, γ (°)110.162 (7), 96.120 (8), 91.997 (8)
V3)401.43 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.94
Crystal size (mm)0.22 × 0.2 × 0.1
Data collection
DiffractometerBruker Venture D8 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.197, 0.259
No. of measured, independent and
observed [I > 2σ(I)] reflections
7043, 1533, 1428
Rint0.030
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.044, 1.13
No. of reflections1533
No. of parameters112
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.74

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We gratefully acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016a). IUCrData, 1, x160215.  Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016b). IUCrData, 1, x160412.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds