organic compounds
6-Chloro-1H-indole-2,3-dione
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The molecule of the title compound, C8H4ClNO2, is planar, with the non-H atoms possessing an r.m.s. deviation from planarity of 0.062 Å. In the crystal, molecules are linked through N—H⋯O hydrogen bonds, forming chains along [010]. The chains are further linked through C—H⋯O hydrogen bonds, forming layers parallel to (001).
Keywords: crystal structure; isatins; 6-chloroisatin; hydrogen bonding.
CCDC reference: 1476175
Structure description
Herein, we report on the ). The molecule is almost planar with the non-H atoms possessing an r.m.s. deviation from planarity of 0.062 Å. The bond distances and angles are similar to those reported for 1H-indole-2,3-dione (Goldschmidt & Llewellyn, 1950).
of 6-chloroisatin (Fig. 1In the crystal, molecules are linked together through N1—H1⋯O1 hydrogen bonds, forming chains along [010]. The chains are connected through C7—H7⋯O2 hydrogen bonds, forming layers parallel to the ab plane (Table 1 and Fig. 2).
|
The two reported structures of 6-chloroisatin derivatives also demonstrate C—H⋯O interactions from the carbon on the 7 position of the isatin ring with the oxygen on the 2 position of an isatin ring (Liu et al., 2011, 2012). In contrast, the other reported 6-haloisatins possess intermolecular interactions through their halogen atoms, with 6-fluoroisatin possessing C—H⋯F close contacts (Golen & Manke, 2016) and 6-bromoisatin possessing Br⋯O interactions (Turbitt et al., 2016). Both 4-chloroisatin (Juma et al., 2016) and 7-chloroisatin (Sun & Cai, 2010) demonstrate C—H⋯Cl interactions which are not present in the crystal of the title isomer.
Synthesis and crystallization
A commercial sample (Matrix Scientific) of 6-chloro-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray difffraction analysis was grown by slow evaporation from a dimethylsulfoxide solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1476175
10.1107/S2414314616006908/su4040sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616006908/su4040Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616006908/su4040Isup3.cml
A commercial sample (Matrix Scientific) of 6-chloro-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray difffraction analysis was grown by slow evaporation from a dimethylsulfoxide solution.
Herein, we report on the
of 6-chloroisatin (Fig. 1). The molecule is almost planar with the non-H atoms possessing an r.m.s. deviation from planarity of 0.062 Å. The bond distances and angles are similar to those reported for 1H-indole-2,3-dione (Goldschmidt & Llewellyn, 1950).In the crystal, molecules are linked together through N1—H1···O1 hydrogen bonds, forming chains along [010]. The chains are connected through C7—H7···O2 hydrogen bonds, forming layers parallel to the ab plane (Table 1 and Fig. 2).
The two reported structures of 6-chloroisatin derivatives also demonstrate C—H···O interactions from the carbon on the 7 position of the isatin ring with the oxygen on the 2 position of an isatin ring (Liu et al., 2011, 2012). In contrast, the other reported 6-haloisatins possess intermolecular interactions through their halogen atoms, with 6-fluoroisatin possessing C—H···F close contacts (Golen & Manke, 2016) and 6-bromoisatin possessing Br···O interactions (Turbitt et al., 2016). Both 4-chloroisatin (Juma et al., 2016) and 7-chloroisatin (Sun & Cai, 2010) demonstrate C—H···Cl interactions which are not present in the crystal of the title isomer.
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The molecular packing of the title compound viewed along the b axis, with the hydrogen bonds shown as dashed lines (see Table 1). |
C8H4ClNO2 | F(000) = 184 |
Mr = 181.57 | Dx = 1.717 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 5.6231 (6) Å | Cell parameters from 3414 reflections |
b = 4.9930 (6) Å | θ = 3.5–68.5° |
c = 12.5145 (14) Å | µ = 4.41 mm−1 |
β = 91.916 (7)° | T = 120 K |
V = 351.16 (7) Å3 | Block, orange |
Z = 2 | 0.22 × 0.06 × 0.04 mm |
Bruker Venture D8 CMOS diffractometer | 1183 reflections with I > 2σ(I) |
Radiation source: Cu | Rint = 0.052 |
φ and ω scans | θmax = 68.5°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −6→6 |
Tmin = 0.349, Tmax = 0.467 | k = −6→6 |
4219 measured reflections | l = −15→14 |
1262 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0176P)2 + 0.0693P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
1262 reflections | Δρmax = 0.22 e Å−3 |
114 parameters | Δρmin = −0.20 e Å−3 |
2 restraints | Absolute structure: Refined as an inversion twin. |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.09 (3) |
C8H4ClNO2 | V = 351.16 (7) Å3 |
Mr = 181.57 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 5.6231 (6) Å | µ = 4.41 mm−1 |
b = 4.9930 (6) Å | T = 120 K |
c = 12.5145 (14) Å | 0.22 × 0.06 × 0.04 mm |
β = 91.916 (7)° |
Bruker Venture D8 CMOS diffractometer | 1262 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 1183 reflections with I > 2σ(I) |
Tmin = 0.349, Tmax = 0.467 | Rint = 0.052 |
4219 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | Δρmax = 0.22 e Å−3 |
S = 1.12 | Δρmin = −0.20 e Å−3 |
1262 reflections | Absolute structure: Refined as an inversion twin. |
114 parameters | Absolute structure parameter: 0.09 (3) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.09834 (14) | −0.01835 (18) | 0.08160 (7) | 0.0243 (2) | |
O1 | 0.2777 (4) | 1.0175 (6) | 0.49908 (19) | 0.0232 (6) | |
O2 | 0.6762 (4) | 1.0073 (6) | 0.35185 (18) | 0.0235 (5) | |
N1 | 0.1575 (5) | 0.6515 (6) | 0.3975 (2) | 0.0202 (7) | |
H1 | 0.035 (5) | 0.614 (9) | 0.434 (3) | 0.035 (13)* | |
C1 | 0.3027 (6) | 0.8549 (8) | 0.4278 (3) | 0.0192 (7) | |
C2 | 0.5114 (6) | 0.8531 (8) | 0.3481 (3) | 0.0190 (7) | |
C3 | 0.4503 (6) | 0.6351 (7) | 0.2732 (3) | 0.0185 (7) | |
C4 | 0.5569 (6) | 0.5441 (7) | 0.1822 (3) | 0.0206 (8) | |
H4 | 0.7019 | 0.6208 | 0.1602 | 0.025* | |
C5 | 0.4494 (6) | 0.3391 (8) | 0.1233 (3) | 0.0229 (8) | |
H5 | 0.5195 | 0.2729 | 0.0605 | 0.027* | |
C6 | 0.2363 (6) | 0.2324 (7) | 0.1582 (3) | 0.0198 (8) | |
C7 | 0.1259 (6) | 0.3158 (7) | 0.2494 (3) | 0.0196 (8) | |
H7 | −0.0174 | 0.2362 | 0.2721 | 0.024* | |
C8 | 0.2363 (5) | 0.5226 (8) | 0.3059 (3) | 0.0169 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0281 (4) | 0.0218 (4) | 0.0229 (4) | −0.0025 (4) | −0.0018 (3) | −0.0020 (5) |
O1 | 0.0223 (11) | 0.0237 (15) | 0.0238 (13) | 0.0034 (12) | 0.0045 (9) | −0.0029 (13) |
O2 | 0.0222 (11) | 0.0225 (13) | 0.0257 (13) | −0.0039 (13) | 0.0009 (9) | 0.0017 (14) |
N1 | 0.0180 (15) | 0.0224 (16) | 0.0204 (17) | −0.0005 (12) | 0.0066 (12) | 0.0002 (13) |
C1 | 0.0207 (17) | 0.0178 (16) | 0.019 (2) | 0.0042 (15) | 0.0005 (14) | 0.0035 (17) |
C2 | 0.0189 (16) | 0.0183 (16) | 0.0198 (19) | 0.0035 (15) | −0.0002 (13) | 0.0044 (16) |
C3 | 0.0171 (16) | 0.0171 (18) | 0.0213 (19) | 0.0015 (13) | 0.0001 (13) | 0.0012 (14) |
C4 | 0.0189 (15) | 0.023 (2) | 0.0204 (18) | 0.0001 (13) | 0.0034 (12) | 0.0039 (14) |
C5 | 0.0238 (18) | 0.0235 (19) | 0.022 (2) | 0.0046 (15) | 0.0050 (14) | 0.0011 (17) |
C6 | 0.0217 (17) | 0.0165 (17) | 0.0209 (19) | 0.0015 (13) | −0.0035 (14) | 0.0025 (14) |
C7 | 0.0165 (16) | 0.019 (2) | 0.024 (2) | 0.0008 (13) | 0.0010 (13) | 0.0058 (15) |
C8 | 0.0181 (15) | 0.018 (2) | 0.0141 (15) | 0.0013 (15) | 0.0014 (11) | 0.0031 (15) |
Cl1—C6 | 1.743 (4) | C3—C8 | 1.401 (5) |
O1—C1 | 1.218 (4) | C4—H4 | 0.9500 |
O2—C2 | 1.204 (4) | C4—C5 | 1.388 (5) |
N1—H1 | 0.859 (14) | C5—H5 | 0.9500 |
N1—C1 | 1.350 (5) | C5—C6 | 1.395 (5) |
N1—C8 | 1.400 (5) | C6—C7 | 1.382 (5) |
C1—C2 | 1.565 (5) | C7—H7 | 0.9500 |
C2—C3 | 1.470 (5) | C7—C8 | 1.386 (5) |
C3—C4 | 1.382 (5) | ||
C1—N1—H1 | 120 (3) | C5—C4—H4 | 120.4 |
C1—N1—C8 | 111.8 (3) | C4—C5—H5 | 120.7 |
C8—N1—H1 | 128 (3) | C4—C5—C6 | 118.6 (3) |
O1—C1—N1 | 128.6 (3) | C6—C5—H5 | 120.7 |
O1—C1—C2 | 125.3 (3) | C5—C6—Cl1 | 118.3 (3) |
N1—C1—C2 | 106.1 (3) | C7—C6—Cl1 | 117.8 (3) |
O2—C2—C1 | 124.4 (3) | C7—C6—C5 | 123.9 (3) |
O2—C2—C3 | 131.4 (3) | C6—C7—H7 | 122.0 |
C3—C2—C1 | 104.3 (3) | C6—C7—C8 | 116.1 (3) |
C4—C3—C2 | 132.1 (3) | C8—C7—H7 | 122.0 |
C4—C3—C8 | 120.6 (3) | N1—C8—C3 | 110.7 (3) |
C8—C3—C2 | 107.2 (3) | C7—C8—N1 | 127.7 (3) |
C3—C4—H4 | 120.4 | C7—C8—C3 | 121.6 (3) |
C3—C4—C5 | 119.2 (3) | ||
Cl1—C6—C7—C8 | −177.6 (3) | C2—C3—C8—C7 | 177.9 (3) |
O1—C1—C2—O2 | 3.3 (6) | C3—C4—C5—C6 | 0.2 (5) |
O1—C1—C2—C3 | −175.3 (3) | C4—C3—C8—N1 | −177.9 (3) |
O2—C2—C3—C4 | −2.5 (7) | C4—C3—C8—C7 | 0.7 (5) |
O2—C2—C3—C8 | −179.3 (4) | C4—C5—C6—Cl1 | 178.2 (3) |
N1—C1—C2—O2 | −179.4 (3) | C4—C5—C6—C7 | −1.0 (5) |
N1—C1—C2—C3 | 2.0 (4) | C5—C6—C7—C8 | 1.6 (5) |
C1—N1—C8—C3 | 2.2 (4) | C6—C7—C8—N1 | 177.0 (3) |
C1—N1—C8—C7 | −176.4 (3) | C6—C7—C8—C3 | −1.4 (5) |
C1—C2—C3—C4 | 176.0 (3) | C8—N1—C1—O1 | 174.7 (4) |
C1—C2—C3—C8 | −0.7 (4) | C8—N1—C1—C2 | −2.5 (4) |
C2—C3—C4—C5 | −176.4 (4) | C8—C3—C4—C5 | 0.0 (5) |
C2—C3—C8—N1 | −0.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 (1) | 2.03 (2) | 2.885 (4) | 172 (4) |
C7—H7···O2ii | 0.95 | 2.32 | 3.260 (4) | 170 |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x−1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.859 (14) | 2.031 (16) | 2.885 (4) | 172 (4) |
C7—H7···O2ii | 0.95 | 2.32 | 3.260 (4) | 170 |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C8H4ClNO2 |
Mr | 181.57 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 120 |
a, b, c (Å) | 5.6231 (6), 4.9930 (6), 12.5145 (14) |
β (°) | 91.916 (7) |
V (Å3) | 351.16 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 4.41 |
Crystal size (mm) | 0.22 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Bruker Venture D8 CMOS |
Absorption correction | Multi-scan (SADABS; Bruker, 2014) |
Tmin, Tmax | 0.349, 0.467 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4219, 1262, 1183 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.070, 1.12 |
No. of reflections | 1262 |
No. of parameters | 114 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.20 |
Absolute structure | Refined as an inversion twin. |
Absolute structure parameter | 0.09 (3) |
Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
Acknowledgements
We gratefully acknowledge support from the National Science Foundation (CHE-1429086).
References
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160165. Google Scholar
Juma, R. M., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160689. Google Scholar
Liu, H., Fan, D., Wang, D. & Ou-yang, P.-K. (2011). Acta Cryst. E67, o3427. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, H. Q., Tang, W., Wang, D. C. & Ou-yang, P. K. (2012). Acta Cryst. E68, o14. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.