organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Chloro-1H-indole-2,3-dione

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 April 2016; accepted 23 April 2016; online 29 April 2016)

The mol­ecule of the title compound, C8H4ClNO2, is planar, with the non-H atoms possessing an r.m.s. deviation from planarity of 0.062 Å. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds, forming chains along [010]. The chains are further linked through C—H⋯O hydrogen bonds, forming layers parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Herein, we report on the crystal structure of 6-chloro­isatin (Fig. 1[link]). The mol­ecule is almost planar with the non-H atoms possessing an r.m.s. deviation from planarity of 0.062 Å. The bond distances and angles are similar to those reported for 1H-indole-2,3-dione (Goldschmidt & Llewellyn, 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked together through N1—H1⋯O1 hydrogen bonds, forming chains along [010]. The chains are connected through C7—H7⋯O2 hydrogen bonds, forming layers parallel to the ab plane (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.03 (2) 2.885 (4) 172 (4)
C7—H7⋯O2ii 0.95 2.32 3.260 (4) 170
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y-1, z.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound viewed along the b axis, with the hydrogen bonds shown as dashed lines (see Table 1[link]).

The two reported structures of 6-chloro­isatin derivatives also demonstrate C—H⋯O inter­actions from the carbon on the 7 position of the isatin ring with the oxygen on the 2 position of an isatin ring (Liu et al., 2011[Liu, H., Fan, D., Wang, D. & Ou-yang, P.-K. (2011). Acta Cryst. E67, o3427.], 2012[Liu, H. Q., Tang, W., Wang, D. C. & Ou-yang, P. K. (2012). Acta Cryst. E68, o14.]). In contrast, the other reported 6-haloisatins possess inter­molecular inter­actions through their halogen atoms, with 6-fluoro­isatin possessing C—H⋯F close contacts (Golen & Manke, 2016[Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160165.]) and 6-bromo­isatin possessing Br⋯O inter­actions (Turbitt et al., 2016[Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.]). Both 4-chloro­isatin (Juma et al., 2016[Juma, R. M., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160689.]) and 7-chloro­isatin (Sun & Cai, 2010[Sun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25.]) demonstrate C—H⋯Cl inter­actions which are not present in the crystal of the title isomer.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 6-chloro-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray difffraction analysis was grown by slow evaporation from a di­methyl­sulfoxide solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4ClNO2
Mr 181.57
Crystal system, space group Monoclinic, P21
Temperature (K) 120
a, b, c (Å) 5.6231 (6), 4.9930 (6), 12.5145 (14)
β (°) 91.916 (7)
V3) 351.16 (7)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.41
Crystal size (mm) 0.22 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker Venture D8 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.349, 0.467
No. of measured, independent and observed [I > 2σ(I)] reflections 4219, 1262, 1183
Rint 0.052
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 1.12
No. of reflections 1262
No. of parameters 114
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.20
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.09 (3)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Experimental top

A commercial sample (Matrix Scientific) of 6-chloro-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray difffraction analysis was grown by slow evaporation from a dimethylsulfoxide solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Herein, we report on the crystal structure of 6-chloroisatin (Fig. 1). The molecule is almost planar with the non-H atoms possessing an r.m.s. deviation from planarity of 0.062 Å. The bond distances and angles are similar to those reported for 1H-indole-2,3-dione (Goldschmidt & Llewellyn, 1950).

In the crystal, molecules are linked together through N1—H1···O1 hydrogen bonds, forming chains along [010]. The chains are connected through C7—H7···O2 hydrogen bonds, forming layers parallel to the ab plane (Table 1 and Fig. 2).

The two reported structures of 6-chloroisatin derivatives also demonstrate C—H···O interactions from the carbon on the 7 position of the isatin ring with the oxygen on the 2 position of an isatin ring (Liu et al., 2011, 2012). In contrast, the other reported 6-haloisatins possess intermolecular interactions through their halogen atoms, with 6-fluoroisatin possessing C—H···F close contacts (Golen & Manke, 2016) and 6-bromoisatin possessing Br···O interactions (Turbitt et al., 2016). Both 4-chloroisatin (Juma et al., 2016) and 7-chloroisatin (Sun & Cai, 2010) demonstrate C—H···Cl interactions which are not present in the crystal of the title isomer.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed along the b axis, with the hydrogen bonds shown as dashed lines (see Table 1).
6-Chloro-1H-indole-2,3-dione top
Crystal data top
C8H4ClNO2F(000) = 184
Mr = 181.57Dx = 1.717 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 5.6231 (6) ÅCell parameters from 3414 reflections
b = 4.9930 (6) Åθ = 3.5–68.5°
c = 12.5145 (14) ŵ = 4.41 mm1
β = 91.916 (7)°T = 120 K
V = 351.16 (7) Å3Block, orange
Z = 20.22 × 0.06 × 0.04 mm
Data collection top
Bruker Venture D8 CMOS
diffractometer
1183 reflections with I > 2σ(I)
Radiation source: CuRint = 0.052
φ and ω scansθmax = 68.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 66
Tmin = 0.349, Tmax = 0.467k = 66
4219 measured reflectionsl = 1514
1262 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0176P)2 + 0.0693P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1262 reflectionsΔρmax = 0.22 e Å3
114 parametersΔρmin = 0.20 e Å3
2 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (3)
Crystal data top
C8H4ClNO2V = 351.16 (7) Å3
Mr = 181.57Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.6231 (6) ŵ = 4.41 mm1
b = 4.9930 (6) ÅT = 120 K
c = 12.5145 (14) Å0.22 × 0.06 × 0.04 mm
β = 91.916 (7)°
Data collection top
Bruker Venture D8 CMOS
diffractometer
1262 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1183 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.467Rint = 0.052
4219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070Δρmax = 0.22 e Å3
S = 1.12Δρmin = 0.20 e Å3
1262 reflectionsAbsolute structure: Refined as an inversion twin.
114 parametersAbsolute structure parameter: 0.09 (3)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09834 (14)0.01835 (18)0.08160 (7)0.0243 (2)
O10.2777 (4)1.0175 (6)0.49908 (19)0.0232 (6)
O20.6762 (4)1.0073 (6)0.35185 (18)0.0235 (5)
N10.1575 (5)0.6515 (6)0.3975 (2)0.0202 (7)
H10.035 (5)0.614 (9)0.434 (3)0.035 (13)*
C10.3027 (6)0.8549 (8)0.4278 (3)0.0192 (7)
C20.5114 (6)0.8531 (8)0.3481 (3)0.0190 (7)
C30.4503 (6)0.6351 (7)0.2732 (3)0.0185 (7)
C40.5569 (6)0.5441 (7)0.1822 (3)0.0206 (8)
H40.70190.62080.16020.025*
C50.4494 (6)0.3391 (8)0.1233 (3)0.0229 (8)
H50.51950.27290.06050.027*
C60.2363 (6)0.2324 (7)0.1582 (3)0.0198 (8)
C70.1259 (6)0.3158 (7)0.2494 (3)0.0196 (8)
H70.01740.23620.27210.024*
C80.2363 (5)0.5226 (8)0.3059 (3)0.0169 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0281 (4)0.0218 (4)0.0229 (4)0.0025 (4)0.0018 (3)0.0020 (5)
O10.0223 (11)0.0237 (15)0.0238 (13)0.0034 (12)0.0045 (9)0.0029 (13)
O20.0222 (11)0.0225 (13)0.0257 (13)0.0039 (13)0.0009 (9)0.0017 (14)
N10.0180 (15)0.0224 (16)0.0204 (17)0.0005 (12)0.0066 (12)0.0002 (13)
C10.0207 (17)0.0178 (16)0.019 (2)0.0042 (15)0.0005 (14)0.0035 (17)
C20.0189 (16)0.0183 (16)0.0198 (19)0.0035 (15)0.0002 (13)0.0044 (16)
C30.0171 (16)0.0171 (18)0.0213 (19)0.0015 (13)0.0001 (13)0.0012 (14)
C40.0189 (15)0.023 (2)0.0204 (18)0.0001 (13)0.0034 (12)0.0039 (14)
C50.0238 (18)0.0235 (19)0.022 (2)0.0046 (15)0.0050 (14)0.0011 (17)
C60.0217 (17)0.0165 (17)0.0209 (19)0.0015 (13)0.0035 (14)0.0025 (14)
C70.0165 (16)0.019 (2)0.024 (2)0.0008 (13)0.0010 (13)0.0058 (15)
C80.0181 (15)0.018 (2)0.0141 (15)0.0013 (15)0.0014 (11)0.0031 (15)
Geometric parameters (Å, º) top
Cl1—C61.743 (4)C3—C81.401 (5)
O1—C11.218 (4)C4—H40.9500
O2—C21.204 (4)C4—C51.388 (5)
N1—H10.859 (14)C5—H50.9500
N1—C11.350 (5)C5—C61.395 (5)
N1—C81.400 (5)C6—C71.382 (5)
C1—C21.565 (5)C7—H70.9500
C2—C31.470 (5)C7—C81.386 (5)
C3—C41.382 (5)
C1—N1—H1120 (3)C5—C4—H4120.4
C1—N1—C8111.8 (3)C4—C5—H5120.7
C8—N1—H1128 (3)C4—C5—C6118.6 (3)
O1—C1—N1128.6 (3)C6—C5—H5120.7
O1—C1—C2125.3 (3)C5—C6—Cl1118.3 (3)
N1—C1—C2106.1 (3)C7—C6—Cl1117.8 (3)
O2—C2—C1124.4 (3)C7—C6—C5123.9 (3)
O2—C2—C3131.4 (3)C6—C7—H7122.0
C3—C2—C1104.3 (3)C6—C7—C8116.1 (3)
C4—C3—C2132.1 (3)C8—C7—H7122.0
C4—C3—C8120.6 (3)N1—C8—C3110.7 (3)
C8—C3—C2107.2 (3)C7—C8—N1127.7 (3)
C3—C4—H4120.4C7—C8—C3121.6 (3)
C3—C4—C5119.2 (3)
Cl1—C6—C7—C8177.6 (3)C2—C3—C8—C7177.9 (3)
O1—C1—C2—O23.3 (6)C3—C4—C5—C60.2 (5)
O1—C1—C2—C3175.3 (3)C4—C3—C8—N1177.9 (3)
O2—C2—C3—C42.5 (7)C4—C3—C8—C70.7 (5)
O2—C2—C3—C8179.3 (4)C4—C5—C6—Cl1178.2 (3)
N1—C1—C2—O2179.4 (3)C4—C5—C6—C71.0 (5)
N1—C1—C2—C32.0 (4)C5—C6—C7—C81.6 (5)
C1—N1—C8—C32.2 (4)C6—C7—C8—N1177.0 (3)
C1—N1—C8—C7176.4 (3)C6—C7—C8—C31.4 (5)
C1—C2—C3—C4176.0 (3)C8—N1—C1—O1174.7 (4)
C1—C2—C3—C80.7 (4)C8—N1—C1—C22.5 (4)
C2—C3—C4—C5176.4 (4)C8—C3—C4—C50.0 (5)
C2—C3—C8—N10.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.03 (2)2.885 (4)172 (4)
C7—H7···O2ii0.952.323.260 (4)170
Symmetry codes: (i) x, y1/2, z+1; (ii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.859 (14)2.031 (16)2.885 (4)172 (4)
C7—H7···O2ii0.952.323.260 (4)170
Symmetry codes: (i) x, y1/2, z+1; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC8H4ClNO2
Mr181.57
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)5.6231 (6), 4.9930 (6), 12.5145 (14)
β (°) 91.916 (7)
V3)351.16 (7)
Z2
Radiation typeCu Kα
µ (mm1)4.41
Crystal size (mm)0.22 × 0.06 × 0.04
Data collection
DiffractometerBruker Venture D8 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.349, 0.467
No. of measured, independent and
observed [I > 2σ(I)] reflections
4219, 1262, 1183
Rint0.052
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 1.12
No. of reflections1262
No. of parameters114
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.20
Absolute structureRefined as an inversion twin.
Absolute structure parameter0.09 (3)

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We gratefully acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160165.  Google Scholar
First citationJuma, R. M., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160689.  Google Scholar
First citationLiu, H., Fan, D., Wang, D. & Ou-yang, P.-K. (2011). Acta Cryst. E67, o3427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, H. Q., Tang, W., Wang, D. C. & Ou-yang, P. K. (2012). Acta Cryst. E68, o14.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds