metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­{(E)-1-[(2-meth­­oxy­phen­yl)diazen­yl]naphthalen-2-olato}palladium(II)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université des Frères Mentouri Constantine, Constantine 25000, Algeria, bLaboratoire de Chimie et Systémique Organométallique (LCSOM), Institut de Chimie, Université de Strasbourg, UMR 7177, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France, and cService de Radiocristallographie, Institut de Chimie, Université de Strasbourg, UMR 7177, 67008 Strasbourg Cedex, France
*Correspondence e-mail: souheilachetioui@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 April 2016; accepted 23 April 2016; online 29 April 2016)

In the title complex, [Pd(C17H13N2O2)Cl], the PdII atom is tetra­coordinated by an N and two O atoms of an (E)-1-[(2-meth­oxy­phen­yl)diazen­yl]naphthalen-2-olate ligand and by a Cl atom, and has a square-planar coordination. In the crystal, mol­ecules are linked by pairs of C—H⋯Cl hydrogen bonds, forming inversion dimers. The dimers are linked via offset ππ inter­actions [inter­centroid distance = 3.546 (3) Å], forming chains running parallel to [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Azo compounds are highly coloured and have long been used as dyes and pigments. They have any practical applications such as colouring fibers, photo-electronic applications, printing systems, optical storage technology (Wang et al., 2000[Wang, S., Shen, S. & Xu, H. (2000). Dyes Pigments, 44, 195-198.]), textile dyes as well as being used in many biological reactions and in analytical chemistry. We are inter­ested in the colour generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–N=N–) (Chetioui et al., 2013a[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1250.],b[Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1322-o1323.]). Recently, 1-phenyl­azo-2-naphthol derivatives have attracted our attention because the phenyl­azo-naphtho­late group can provide N,O-bidentate chelation to form transition metal or main-group metal complexes. Having successfully synthesized and structurally characterized two CuII complexes with the ligand (E)-1-[(2-meth­oxy­phen­yl)diazen­yl]naphthalen-2-ol (Chetioui et al., 2015c[Chetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015c). Acta Cryst. E71, m211-m212.],d[Chetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015d). Acta Cryst. E71, m207-m208.]), we describe herein the synthesis and crystal structure of the title palladium(II) complex, obtained by the reaction of (E)-1-[(2-meth­oxy­phen­yl)diazen­yl]naphthalen-2-ol with Pd(OAc)2.

The mol­ecular structure of the title complex is illustrated in Fig. 1[link]. It contains a six- and a five-membered chelate ring by coordination of the PdII atom to the N,O-bidentate phenyl­azo-naphtho­late ligand. The tetra­hedral coordination sphere is completed by a Cl atom. The geometry around atom Pd1 is almost perfectly square-planar; the τ(4) parameter = 0.07 (extreme Forms: 0.00 for SQP and 1.00 for TET; 0.85 for TRP; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with atom labelling and 50% probability displacement ellipsoids.

The N and Cl atoms and the two O atoms coordinated to the PdII atom are trans to each other, with bond angles O1—Pd1—O2 = 174.19 (16) and N1—Pd1—Cl1 = 175.38 (15)°. The distances between atom Pd1 and atoms O1, O2, N1 and Cl1 are 2.070 (4), 1.945 (4), 1.945 (4) and 2.3184 (15) Å, respectively. These bond lengths are similar to those found in the crystal structure of bis­{(1-[(E)-o-tolyl­diazen­yl)naphthalen-2-yl­oxy]palladium(II) (Lin et al., 2010[Lin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.]).

In the crystal, mol­ecules are linked by pairs of C—H⋯Cl hydrogen bonds, forming inversion dimers (Table 1[link] and Fig. 2[link]). The dimers are linked by slipped parallel ππ inter­actions [Cg 3⋯Cg4i = 3.546 (3) Å, Cg3 and Cg4 are the centroids of rings C1–C6 and C7–C11/C16), respectively, inter­planar distance = 3.323 (3) Å, slippage 1.11 Å, symmetry code (i): − x + 1, − y, − z + 1], forming chains running parallel to the a axis (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cli 0.95 2.79 3.575 (6) 141
Symmetry code: (i) -x+1, -y, -z+2.
[Figure 2]
Figure 2
A partial view along the c axis of the crystal packing of the title complex, showing the C—H⋯Cl hydrogen-bonded inversion dimers (dashed lines; see Table 1[link]).
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the c axis. The C—H⋯Cl hydrogen bonds (see Table 1[link]) and ππ inter­actions are shown as dashed lines.

Synthesis and crystallization

A methano­lic solution (15 ml) of (E)-1-[(2-meth­oxy­phen­yl)diazen­yl]naphthalen-2-ol (0.19 g, 0.77 mmol) was slowly added to a methano­lic solution of Pd(OAc)2 (0.17 g) at 303 K with constant stirring for 1 h. The mixture was stirred for a further 4 h and the reddish brown compound that slowly separated out was filtered and washed several times with hexane and finally dried under vacuum. The vacuum dried compound, was then stirred in dry DMF for 6 h. Slow evaporation of DMF led to the formation of deep-red plate-like crystals of the title complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Pd(C17H13N2O2)Cl]
Mr 419.14
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 7.5429 (4), 21.4003 (16), 9.7773 (6)
β (°) 112.325 (3)
V3) 1459.95 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.47
Crystal size (mm) 0.35 × 0.08 × 0.04
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.660, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9359, 3327, 2045
Rint 0.106
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.127, 1.03
No. of reflections 3327
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.68, −1.73
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Azo compounds are highly coloured and have been used as dyes and pigments for a long time. They have been receiving much attention and have been widely used in many practical applications such as colouring fibers, photoelectronic applications, printing systems, optical storage technology (Wang et al., 2000), textile dyes as well as in many biological reactions and in analytical chemistry. We are involved in the colour generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–NN–) (Chetioui et al., 2013a,b). Recently, 1-phenylazo-2-naphthol derivatives have attracted our attention because the phenylazo-naphtholate group can provide the N,O-bidentate chelation to form transition metal or main group metal complexes. Having successfully synthesized and structurally characterized two CuII complexes with the ligand (E)-1-[(2-methoxyphenyl)diazenyl]naphthalen-2-ol (Chetioui et al., 2015c,d), we describe herein the synthesis and crystal structure of the title palladium(II) complex, obtained by the reaction of (E)-1-[(2-methoxyphenyl)diazenyl]naphthalen-2-ol with Pd(OAc)2.

The molecular structure of the title complex is illustrated in Fig. 1. It contains a six- and a five-membered chelate ring by coordination of the PdII atom to the N,O-bidentate phenylazo-naphtholate ligand. The tetrahedral coordination sphere is completed by a Cl atom. The geometry around atom Pd1 is almost perfectly square-planar; the Tau(4) parameter = 0.07 (Extreme Forms: 0.00 for SQP and 1.00 for TET; 0.85 for TRP; Yang et al., 2007; Spek, 2009).

The N and Cl atoms and the two O atoms coordinated to the PdII atom are trans to each other, with bond angles O1–Pd1–O2 = 174.19 (16)° and N1–Pd1–Cl1 = 175.38 (15) °. The distances between the Pd1 atom and atoms O1, O2, N1 and Cl1 are 2.070 (4), 1.945 (4), 1.945 (4) and 2.3184 (15) Å, respectively. These bond distances are similar to those found in the crystal structure of bis{(1-[(E)-o-tolyldiazenyl)naphthalen-2-yloxy]palladium(II) (Lin et al., 2010).

In the crystal, molecules are linked by a pair of C—H···Cl hydrogen bonds forming inversion dimers (Table 1 and Fig. 2). The dimers are linked by slipped parallel π-π interactions [Cg 3···Cg4i = 3.546 (3) Å, Cg3 and Cg4 are the centroids of rings C1-C6 and C7-C11/C16), respectively, interplanar distance = 3.323 (3) Å, slippage 1.11 Å, symmetry code (i): - x + 1, - y, - z + 1], forming chains running parallel to the a axis direction (Fig. 3).

Experimental top

A methanolic solution (15 ml) of (E)-1-[(2-methoxyphenyl)diazenyl]naphthalen-2-ol (0.19 g, 0.77 mmol) was slowly added to a methanolic solution of Pd(OAc)2 (0.17 g) at 303 K with constant stirring for 1 h. The mixture was stirred for a further 4 h and the reddish brown compound that slowly separated out was filtered and washed several times with hexane and finally dried under vacuum. The vacuum dried compound, was then stirred in dry DMF for 6 h. Slow evaporation of DMF led to the formation of deep-red plate-like crystals of the title complex.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Azo compounds are highly coloured and have long been used as dyes and pigments. They have any practical applications such as colouring fibers, photo-electronic applications, printing systems, optical storage technology (Wang et al., 2000), textile dyes as well as being used in many biological reactions and in analytical chemistry. We are interested in the colour generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–NN–) (Chetioui et al., 2013a,b). Recently, 1-phenylazo-2-naphthol derivatives have attracted our attention because the phenylazo-naphtholate group can provide N,O-bidentate chelation to form transition metal or main-group metal complexes. Having successfully synthesized and structurally characterized two CuII complexes with the ligand (E)-1-[(2-methoxyphenyl)diazenyl]naphthalen-2-ol (Chetioui et al., 2015c,d), we describe herein the synthesis and crystal structure of the title palladium(II) complex, obtained by the reaction of (E)-1-[(2-methoxyphenyl)diazenyl]naphthalen-2-ol with Pd(OAc)2.

The molecular structure of the title complex is illustrated in Fig. 1. It contains a six- and a five-membered chelate ring by coordination of the PdII atom to the N,O-bidentate phenylazo-naphtholate ligand. The tetrahedral coordination sphere is completed by a Cl atom. The geometry around atom Pd1 is almost perfectly square-planar; the τ(4) parameter = 0.07 (extreme Forms: 0.00 for SQP and 1.00 for TET; 0.85 for TRP; Yang et al., 2007; Spek, 2009).

The N and Cl atoms and the two O atoms coordinated to the PdII atom are trans to each other, with bond angles O1—Pd1—O2 = 174.19 (16) and N1—Pd1—Cl1 = 175.38 (15)°. The distances between atom Pd1 and atoms O1, O2, N1 and Cl1 are 2.070 (4), 1.945 (4), 1.945 (4) and 2.3184 (15) Å, respectively. These bond lengths are similar to those found in the crystal structure of bis{(1-[(E)-o-tolyldiazenyl)naphthalen-2-yloxy]palladium(II) (Lin et al., 2010).

In the crystal, molecules are linked by pairs of C—H···Cl hydrogen bonds, forming inversion dimers (Table 1 and Fig. 2). The dimers are linked by slipped parallel ππ interactions [Cg 3···Cg4i = 3.546 (3) Å, Cg3 and Cg4 are the centroids of rings C1–C6 and C7–C11/C16), respectively, interplanar distance = 3.323 (3) Å, slippage 1.11 Å, symmetry code (i): - x + 1, - y, - z + 1], forming chains running parallel to the a axis (Fig. 3).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Nonius, 1998); data reduction: DENZO (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom labelling and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title complex, showing the C—H···Cl hydrogen-bonded inversion dimers (dashed lines; see Table 1).
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the c axis. The C—H···Cl hydrogen bonds (see Table 1) and ππ interactions are shown as dashed lines.
Chlorido{(E)-1-[(2-methoxyphenyl)diazenyl]naphthalen-2-olato}palladium(II) top
Crystal data top
[Pd(C17H13N2O2)Cl]F(000) = 832
Mr = 419.14Dx = 1.907 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8954 reflections
a = 7.5429 (4) Åθ = 1.0–27.5°
b = 21.4003 (16) ŵ = 1.47 mm1
c = 9.7773 (6) ÅT = 173 K
β = 112.325 (3)°Plate, red
V = 1459.95 (16) Å30.35 × 0.08 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3327 independent reflections
Radiation source: sealed tube2045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
φ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 97
Tmin = 0.660, Tmax = 0.746k = 2027
9359 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0534P)2]
where P = (Fo2 + 2Fc2)/3
3327 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 1.68 e Å3
0 restraintsΔρmin = 1.73 e Å3
0 constraints
Crystal data top
[Pd(C17H13N2O2)Cl]V = 1459.95 (16) Å3
Mr = 419.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5429 (4) ŵ = 1.47 mm1
b = 21.4003 (16) ÅT = 173 K
c = 9.7773 (6) Å0.35 × 0.08 × 0.04 mm
β = 112.325 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3327 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009)
2045 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.746Rint = 0.106
9359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 1.68 e Å3
3327 reflectionsΔρmin = 1.73 e Å3
208 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.44934 (6)0.09641 (2)0.62765 (4)0.0255 (2)
Cl0.6396 (2)0.15537 (7)0.82879 (15)0.0389 (5)
O10.4706 (5)0.15712 (18)0.4697 (4)0.0285 (12)
O20.4059 (5)0.03610 (18)0.7605 (4)0.0285 (12)
N10.3047 (6)0.0483 (2)0.4517 (5)0.0257 (16)
N20.2247 (6)0.0052 (2)0.4422 (5)0.0250 (16)
C10.2981 (7)0.0749 (3)0.3161 (6)0.0272 (17)
C20.3823 (7)0.1340 (3)0.3273 (6)0.0264 (19)
C30.3824 (8)0.1640 (3)0.2026 (6)0.0314 (19)
C40.3000 (8)0.1355 (3)0.0678 (6)0.0351 (19)
C50.2139 (8)0.0771 (3)0.0532 (6)0.0340 (19)
C60.2144 (7)0.0471 (3)0.1787 (6)0.0267 (17)
C70.2209 (7)0.0353 (3)0.5636 (6)0.0231 (17)
C80.3053 (7)0.0144 (3)0.7138 (6)0.0266 (19)
C90.2845 (8)0.0534 (3)0.8261 (6)0.0272 (17)
C100.1868 (8)0.1074 (3)0.7927 (6)0.0303 (19)
C110.1035 (7)0.1314 (3)0.6454 (6)0.0252 (17)
C120.1204 (7)0.0950 (3)0.5299 (6)0.0245 (17)
C130.0366 (7)0.1183 (3)0.3853 (6)0.0277 (17)
C140.0595 (7)0.1752 (3)0.3578 (6)0.0302 (19)
C150.0733 (7)0.2104 (3)0.4709 (6)0.031 (2)
C160.0087 (7)0.1890 (3)0.6144 (6)0.0282 (19)
C170.5458 (9)0.2202 (3)0.4890 (6)0.0331 (19)
H30.439100.204200.210100.0370*
H40.301700.156100.017800.0420*
H50.155800.058200.041300.0410*
H60.156800.007100.170400.0320*
H90.341300.040700.926600.0330*
H100.172400.130800.870500.0370*
H130.045600.095000.305500.0330*
H140.116700.190000.259100.0360*
H150.138900.249300.450300.0370*
H160.000800.213600.692800.0340*
H17A0.603600.230100.594700.0500*
H17B0.643100.223600.445700.0500*
H17C0.441400.249600.439600.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0295 (3)0.0238 (3)0.0233 (3)0.0008 (2)0.0102 (2)0.0012 (2)
Cl0.0532 (9)0.0320 (9)0.0274 (8)0.0085 (7)0.0107 (7)0.0059 (7)
O10.035 (2)0.025 (2)0.025 (2)0.0044 (18)0.0107 (17)0.0040 (17)
O20.036 (2)0.027 (2)0.024 (2)0.0006 (19)0.0132 (17)0.0004 (18)
N10.024 (2)0.031 (3)0.023 (3)0.010 (2)0.010 (2)0.004 (2)
N20.028 (2)0.022 (3)0.025 (3)0.001 (2)0.010 (2)0.000 (2)
C10.026 (3)0.027 (3)0.029 (3)0.006 (3)0.011 (2)0.003 (3)
C20.023 (3)0.028 (4)0.027 (3)0.001 (2)0.008 (2)0.002 (3)
C30.037 (3)0.028 (4)0.031 (3)0.001 (3)0.015 (3)0.008 (3)
C40.041 (3)0.040 (4)0.027 (3)0.009 (3)0.016 (3)0.010 (3)
C50.038 (3)0.039 (4)0.022 (3)0.002 (3)0.008 (3)0.004 (3)
C60.026 (3)0.026 (3)0.028 (3)0.001 (2)0.010 (2)0.000 (3)
C70.026 (3)0.017 (3)0.027 (3)0.003 (2)0.011 (2)0.002 (2)
C80.024 (3)0.028 (4)0.028 (3)0.006 (3)0.010 (2)0.001 (3)
C90.035 (3)0.024 (3)0.022 (3)0.002 (3)0.010 (2)0.001 (3)
C100.029 (3)0.038 (4)0.027 (3)0.007 (3)0.014 (3)0.004 (3)
C110.020 (3)0.024 (3)0.031 (3)0.006 (2)0.009 (2)0.002 (3)
C120.025 (3)0.025 (3)0.024 (3)0.005 (3)0.010 (2)0.003 (3)
C130.028 (3)0.028 (3)0.026 (3)0.002 (3)0.009 (2)0.001 (3)
C140.031 (3)0.031 (4)0.026 (3)0.008 (3)0.008 (2)0.000 (3)
C150.029 (3)0.025 (4)0.040 (4)0.004 (3)0.015 (3)0.000 (3)
C160.033 (3)0.025 (4)0.031 (3)0.003 (3)0.017 (3)0.006 (3)
C170.049 (4)0.022 (3)0.027 (3)0.009 (3)0.013 (3)0.006 (3)
Geometric parameters (Å, º) top
Pd—Cl2.3184 (15)C10—C111.430 (8)
Pd—O12.070 (4)C11—C121.417 (8)
Pd—O21.945 (4)C11—C161.399 (9)
Pd—N11.945 (4)C12—C131.403 (8)
O1—C21.387 (7)C13—C141.390 (9)
O1—C171.449 (8)C14—C151.374 (8)
O2—C81.300 (7)C15—C161.379 (8)
N1—N21.281 (6)C3—H30.9500
N1—C11.426 (7)C4—H40.9500
N2—C71.360 (7)C5—H50.9500
C1—C21.401 (9)C6—H60.9500
C1—C61.383 (8)C9—H90.9500
C2—C31.378 (8)C10—H100.9500
C3—C41.369 (8)C13—H130.9500
C4—C51.391 (9)C14—H140.9500
C5—C61.384 (8)C15—H150.9500
C7—C81.432 (8)C16—H160.9500
C7—C121.458 (9)C17—H17A0.9800
C8—C91.435 (8)C17—H17B0.9800
C9—C101.343 (9)C17—H17C0.9800
Pd···N1i3.838 (5)C8···C6i3.439 (8)
Pd···N2i3.406 (5)C8···C1i3.373 (8)
Pd···C1i4.071 (6)C9···C3i3.540 (9)
Pd···C6i3.975 (6)C9···C5i3.546 (9)
Pd···C7i3.864 (6)C9···C4i3.393 (9)
Pd···C11ii4.077 (6)C10···Cliv3.575 (6)
Pd···C12ii3.977 (6)C10···C6ii3.398 (9)
Pd···C12i4.087 (6)C10···C3i3.452 (9)
Pd···C13ii3.649 (6)C10···C1ii3.470 (9)
Pd···C13i3.955 (6)C11···Pdii4.077 (6)
Pd···C14ii3.439 (6)C11···C1ii3.413 (8)
Pd···C15ii3.584 (6)C11···N1ii3.365 (8)
Pd···C16ii3.905 (6)C12···O1i3.358 (7)
Pd···H6i3.6300C12···C2i3.569 (8)
Pd···H13i3.6100C12···Pdii3.977 (6)
Pd···H14ii3.6900C12···Pdi4.087 (6)
Cl···O13.249 (4)C12···N1ii3.428 (8)
Cl···O23.029 (4)C13···Pdii3.649 (6)
Cl···C173.417 (6)C13···Pdi3.955 (6)
Cl···C15iii3.617 (6)C14···Pdii3.439 (6)
Cl···C16iii3.623 (6)C15···Pdii3.584 (6)
Cl···C10iv3.575 (6)C15···Clvii3.617 (6)
Cl···H17A2.7200C16···Clvii3.623 (6)
Cl···H15iii2.9700C16···Pdii3.905 (6)
Cl···H16iii2.9800C16···C2ii3.418 (8)
Cl···H10iv2.7900C17···C3v3.595 (9)
Cl···H17Cv2.9400C17···C4v3.561 (9)
O1···Cl3.249 (4)C3···H17Avi3.0000
O1···N12.618 (6)C3···H17C2.8500
O1···C12.358 (7)C3···H17B2.7600
O1···C12i3.358 (7)C9···H5viii3.0500
O2···Cl3.029 (4)C14···H3ix2.9000
O2···N12.831 (6)C15···H3ix2.9800
O2···N23.017 (6)C15···H17Bi3.0400
O2···C6i3.230 (7)C16···H17Bi2.9900
N1···O12.618 (6)C17···H32.5600
N1···O22.831 (6)H3···C172.5600
N1···C22.393 (8)H3···H17B2.2700
N1···C82.891 (7)H3···H17C2.4400
N1···Pdi3.838 (5)H3···C14x2.9000
N1···C11ii3.365 (8)H3···C15x2.9800
N1···C12ii3.428 (8)H3···H14x2.5900
N2···O23.017 (6)H4···H14xi2.3500
N2···Pdi3.406 (5)H5···C9xii3.0500
N2···H62.5200H5···H13xi2.5700
N2···H132.4400H6···N22.5200
C1···Pdi4.071 (6)H6···Pdi3.6300
C1···C7i3.467 (8)H10···H162.4700
C1···C8i3.373 (8)H10···Cliv2.7900
C1···C10ii3.470 (9)H13···N22.4400
C1···C11ii3.413 (8)H13···Pdi3.6100
C2···C7i3.483 (8)H13···H5xi2.5700
C2···C12i3.569 (8)H14···H3ix2.5900
C2···C16ii3.418 (8)H14···Pdii3.6900
C3···C10i3.452 (9)H14···H4xi2.3500
C3···C17vi3.595 (9)H15···Clvii2.9700
C3···C9i3.540 (9)H16···H102.4700
C4···C17vi3.561 (9)H16···Clvii2.9800
C4···C9i3.393 (9)H17A···Cl2.7200
C5···C9i3.546 (9)H17A···C3v3.0000
C6···C10ii3.398 (9)H17B···C32.7600
C6···O2i3.230 (7)H17B···H32.2700
C6···C8i3.439 (8)H17B···C15i3.0400
C6···Pdi3.975 (6)H17B···C16i2.9900
C7···C2i3.483 (8)H17C···C32.8500
C7···C7ii3.433 (8)H17C···H32.4400
C7···Pdi3.864 (6)H17C···Clvi2.9400
C7···C1i3.467 (8)
Cl—Pd—O195.33 (11)C12—C11—C16120.3 (5)
Cl—Pd—O290.10 (12)C7—C12—C11119.9 (5)
Cl—Pd—N1175.38 (15)C7—C12—C13122.4 (5)
O1—Pd—O2174.19 (16)C11—C12—C13117.7 (6)
O1—Pd—N181.30 (17)C12—C13—C14120.6 (5)
O2—Pd—N193.40 (17)C13—C14—C15121.2 (5)
Pd—O1—C2112.4 (3)C14—C15—C16119.7 (6)
Pd—O1—C17128.7 (3)C11—C16—C15120.5 (5)
C2—O1—C17118.6 (4)C2—C3—H3120.00
Pd—O2—C8122.8 (3)C4—C3—H3120.00
Pd—N1—N2128.9 (4)C3—C4—H4119.00
Pd—N1—C1114.9 (4)C5—C4—H4119.00
N2—N1—C1116.1 (5)C4—C5—H5121.00
N1—N2—C7121.7 (5)C6—C5—H5121.00
N1—C1—C2115.7 (5)C1—C6—H6120.00
N1—C1—C6125.0 (6)C5—C6—H6120.00
C2—C1—C6119.4 (5)C8—C9—H9119.00
O1—C2—C1115.6 (5)C10—C9—H9119.00
O1—C2—C3124.1 (5)C9—C10—H10119.00
C1—C2—C3120.3 (5)C11—C10—H10118.00
C2—C3—C4119.5 (6)C12—C13—H13120.00
C3—C4—C5121.5 (5)C14—C13—H13120.00
C4—C5—C6118.8 (5)C13—C14—H14119.00
C1—C6—C5120.6 (6)C15—C14—H14119.00
N2—C7—C8126.8 (6)C14—C15—H15120.00
N2—C7—C12113.5 (5)C16—C15—H15120.00
C8—C7—C12119.7 (5)C11—C16—H16120.00
O2—C8—C7126.4 (5)C15—C16—H16120.00
O2—C8—C9115.7 (5)O1—C17—H17A110.00
C7—C8—C9117.9 (5)O1—C17—H17B109.00
C8—C9—C10121.6 (5)O1—C17—H17C109.00
C9—C10—C11123.0 (5)H17A—C17—H17B109.00
C10—C11—C12117.8 (6)H17A—C17—H17C109.00
C10—C11—C16121.8 (5)H17B—C17—H17C109.00
Cl—Pd—O1—C2175.1 (3)O1—C2—C3—C4176.4 (6)
Cl—Pd—O1—C1711.6 (5)C1—C2—C3—C40.2 (9)
N1—Pd—O1—C21.7 (4)C2—C3—C4—C50.7 (10)
N1—Pd—O1—C17171.6 (5)C3—C4—C5—C60.8 (10)
Cl—Pd—O2—C8177.9 (4)C4—C5—C6—C10.4 (9)
N1—Pd—O2—C80.9 (4)N2—C7—C8—O22.5 (10)
O1—Pd—N1—N2179.3 (5)N2—C7—C8—C9179.9 (6)
O1—Pd—N1—C13.6 (4)C12—C7—C8—O2176.7 (6)
O2—Pd—N1—N23.1 (5)C12—C7—C8—C90.9 (8)
O2—Pd—N1—C1178.8 (4)N2—C7—C12—C11179.5 (5)
Pd—O1—C2—C10.6 (6)N2—C7—C12—C130.0 (8)
Pd—O1—C2—C3177.3 (5)C8—C7—C12—C111.2 (9)
C17—O1—C2—C1174.6 (5)C8—C7—C12—C13179.3 (6)
C17—O1—C2—C38.7 (8)O2—C8—C9—C10178.9 (6)
Pd—O2—C8—C73.4 (8)C7—C8—C9—C101.0 (9)
Pd—O2—C8—C9179.0 (4)C8—C9—C10—C112.6 (10)
Pd—N1—N2—C74.6 (8)C9—C10—C11—C122.2 (9)
C1—N1—N2—C7179.8 (5)C9—C10—C11—C16177.5 (6)
Pd—N1—C1—C25.1 (6)C10—C11—C12—C70.2 (8)
Pd—N1—C1—C6175.7 (5)C10—C11—C12—C13179.3 (6)
N2—N1—C1—C2178.7 (5)C16—C11—C12—C7179.5 (5)
N2—N1—C1—C60.6 (8)C16—C11—C12—C131.0 (9)
N1—N2—C7—C81.8 (9)C10—C11—C16—C15178.8 (6)
N1—N2—C7—C12178.9 (5)C12—C11—C16—C151.5 (9)
N1—C1—C2—O13.6 (8)C7—C12—C13—C14179.4 (6)
N1—C1—C2—C3179.6 (5)C11—C12—C13—C140.1 (9)
C6—C1—C2—O1177.1 (5)C12—C13—C14—C150.7 (9)
C6—C1—C2—C30.3 (9)C13—C14—C15—C160.3 (9)
N1—C1—C6—C5179.4 (6)C14—C15—C16—C110.9 (9)
C2—C1—C6—C50.2 (9)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1, y, z+2; (v) x+1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y1/2, z+3/2; (viii) x, y, z+1; (ix) x+1/2, y1/2, z+1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x, y, z; (xii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cliv0.952.793.575 (6)141
Symmetry code: (iv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cli0.952.793.575 (6)141
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Pd(C17H13N2O2)Cl]
Mr419.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.5429 (4), 21.4003 (16), 9.7773 (6)
β (°) 112.325 (3)
V3)1459.95 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.35 × 0.08 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(MULABS; Spek, 2009)
Tmin, Tmax0.660, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9359, 3327, 2045
Rint0.106
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.127, 1.03
No. of reflections3327
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.68, 1.73

Computer programs: COLLECT (Nonius, 1998), DENZO (Nonius, 1998), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and University of Constantine for financial support.

References

First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013a). Acta Cryst. E69, o1250.  CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013b). Acta Cryst. E69, o1322–o1323.  CSD CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015c). Acta Cryst. E71, m211–m212.  CrossRef IUCr Journals Google Scholar
First citationChetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015d). Acta Cryst. E71, m207–m208.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Shen, S. & Xu, H. (2000). Dyes Pigments, 44, 195–198.  CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds