organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Ethyl-4-phenyl-1H-1,5-benzodiazepin-2(3H)-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Battouta, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: aessaghouani@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 April 2016; accepted 18 April 2016; online 22 April 2016)

The title compound, C17H16N2O, consists of a benzodiazepin-2-one moiety substituted with a phenyl ring and an ethyl group. The seven-membered diazepine ring has a boat conformation and the fused benzene ring is nearly perpendicular to the phenyl ring, as indicated by the dihedral angle of 74.90 (8)°. The atoms of the ethyl group are disordered over two sets of sites, with a refined occupancy ratio of 0.603 (15):0.397 (15). In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked via a further C—H⋯O hydrogen bond, forming layers parallel to (001), which are in turn linked by C—H⋯π inter­actions, forming a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzodiazepines are very important compounds widely used as psychotropic agents (Zellou et al., 1998a[Zellou, A., Cherrah, Y., Hassar, M. & Essassi, E. M. (1998a). Ann. Pharm. Fr. 56, 169-174.]; Kanyonga et al., 2009[Kanyonga, P. M., Zellou, A., Essassi, E. M. & Cherrah, Y. (2009). Mali Med. XXIV, 30-33.]) and hypnotic agents (Zellou et al., 1998b[Zellou, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1998b). Ann. Pharm. Fr. 56, 175-180.]). Background to the class of 2,3-di­hydro-1H-1,5-benzodiazepin-2-ones is given by Ahabchane et al. (2001[Ahabchane, N. H., Ibrahimi, S., Salem, M., Essassi, E. M., Amzazi, S. & Benjouad, A. (2001). C. R. Acad. Sci. Paris Ser. IIC, 4, 917-924.]). Continuing our inter­est in the synthesis of new 1,5-benzodiazepin-2-one derivatives, we report herein on the synthesis and crystal structure of the title compound, obtained under phase-transfer catalysis conditions.

The title compound, Fig. 1[link], contains a benzodiazepin-2-one moiety, which is linked to a phenyl ring (C10–C15) and to an ethyl group (C6–C7). The seven-membered diazepine ring displays a boat conformation, as indicated by the total puckering amplitude QT = 0.918 (2) Å, and spherical polar angle θ = 75.5 (1)°, with φ2 = 129.4 (2)° and φ3 = −77.0 (4)°. The dihedral angle between the two aromatic ring (C1–C6 and C10–C15) is 74.90 (8)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by C12—H12⋯O1 and C13—H13⋯O1 hydrogen bonds involving the same acceptor atom, forming layers parallel to the ab plane (Fig. 2[link] and Table 1[link]). The layers are connected by C4—-H4⋯π inter­actions, building a three-dimensional structure (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the phenyl ring (C10–C15).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.55 3.464 (2) 168
C13—H13⋯O1ii 0.93 2.52 3.412 (2) 162
C4—H4⋯Cg1iii 0.93 2.80 3.568 (1) 140
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]); H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
A partial view of the crystal packing of the title compound, with the C—H⋯O hydrogen bonds and C—H⋯π inter­actions shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

To a solution of 4-phenyl-1, 5-benzodiazepin-2-one (2.36 g, 10 mmol) in DMF (40 ml) was added ethyl bromide (2.16 g, 20 mmol), potassium carbonate (2.77 g, 20 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol to afford the title compound as colourless crystals (yield 70%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The atoms of the ethyl group (C6 and C7) are disordered over two sets of sites (C6A/C6B and C7A/C7B), with a refined occupancy ratio of 0.603 (15): 0.397 (15).

Table 2
Experimental details

Crystal data
Chemical formula C17H16N2O
Mr 264.32
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 16.5042 (4), 9.6896 (3), 18.1221 (5)
V3) 2898.07 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.31 × 0.22
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.626, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31360, 3199, 2418
Rint 0.036
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.05
No. of reflections 3199
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.18
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windoes (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

To a solution of 4-phenyl-1, 5-benzodiazepin-2-one (2.36 g, 10 mmol) in DMF (40 ml) was added ethyl bromide (2.16 g, 20 mmol), potassium carbonate (2.77 g, 20 mmol) and a catalytic quantity of tetra-n-butylammonium bromide. The mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol to afford the title compound as colourless crystals (yield 70%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The atoms of the ethyl group (C6 and C7) are disordered over two sets of sites (C6A/C6B and C7A/C7B), with a refined occupancy ratio of 0.603 (15): 0.397 (15).

Structure description top

Benzodiazepines are very important compounds widely used as psychotropic agents (Zellou et al., 1998a; Kanyonga et al., 2009) and hypnotic agents (Zellou et al., 1998b). Background to the class of 2,3-dihydro-1H-1,5-benzodiazepin-2-ones is given by Ahabchane et al. (2001). Continuing our interest in the synthesis of new 1,5-benzodiazepin-2-one derivatives, we report herein on the synthesis and crystal structure of the title compound, obtained by reacting 4-phenyl-1,5-benzodiazepin-2-one with ethyl bromide in phase-transfer catalysis conditions.

The title compound, Fig. 1, contains a benzodiazepin-2-one moiety, which is linked to a phenyl ring (C10–C15) and to an ethyl group (C6–C7). The seven-membered diazepine ring displays a boat conformation, as indicated by the total puckering amplitude QT = 0.918 (2) Å, and spherical polar angle θ = 75.5 (1)°, with φ2 = 129.4 (2)° and φ3 = -77.0 (4)°. The dihedral angle between the two aromatic ring (C1–C6 and C10–C15) is 74.90 (8)°.

In the crystal, molecules are linked by C12—H12···O1 and C13—H13···O1 hydrogen bonds involving the same acceptor atom, forming layers parallel to the ab plane (Fig. 2 and Table 1). The layers are connected by C4—-H4···π interactions, building a three-dimensional structure (Fig. 3 and Table 1).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windoes (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. C—H···O hydrogen bonds are shown as dashed lines (see Table 1); H atoms not involved in these interactions have been omitted for clarity.
[Figure 3] Fig. 3. A partial view of the crystal packing of the title compound, with the C—H···O hydrogen bonds and C—H···π interactions shown as dashed lines (see Table 1).
1-Ethyl-4-phenyl-1H-1,5-benzodiazepin-2(3H)-one top
Crystal data top
C17H16N2ODx = 1.212 Mg m3
Mr = 264.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3199 reflections
a = 16.5042 (4) Åθ = 2.6–27.1°
b = 9.6896 (3) ŵ = 0.08 mm1
c = 18.1221 (5) ÅT = 296 K
V = 2898.07 (14) Å3Block, colourless
Z = 80.35 × 0.31 × 0.22 mm
F(000) = 1120
Data collection top
Bruker X8 APEX
diffractometer
3199 independent reflections
Radiation source: fine-focus sealed tube2418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 27.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.626, Tmax = 0.746k = 1212
31360 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.8641P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3199 reflectionsΔρmax = 0.38 e Å3
201 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (7)
Crystal data top
C17H16N2OV = 2898.07 (14) Å3
Mr = 264.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.5042 (4) ŵ = 0.08 mm1
b = 9.6896 (3) ÅT = 296 K
c = 18.1221 (5) Å0.35 × 0.31 × 0.22 mm
Data collection top
Bruker X8 APEX
diffractometer
3199 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2418 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.746Rint = 0.036
31360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
3199 reflectionsΔρmin = 0.18 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.39886 (10)0.78881 (16)0.79928 (8)0.0422 (4)
C20.35482 (11)0.7994 (2)0.86484 (9)0.0539 (4)
H20.29850.79900.86310.065*
C30.39311 (12)0.8103 (2)0.93194 (9)0.0577 (5)
H30.36270.81720.97500.069*
C40.47671 (12)0.8111 (2)0.93555 (9)0.0578 (5)
H40.50280.82000.98080.069*
C50.52080 (11)0.79865 (19)0.87187 (9)0.0511 (4)
H50.57710.79720.87470.061*
C60.48392 (10)0.78807 (15)0.80279 (8)0.0402 (3)
C70.52244 (9)0.83690 (15)0.68217 (8)0.0382 (3)
C80.45039 (9)0.93206 (16)0.67409 (9)0.0434 (4)
H8A0.44610.99250.71660.052*
H8B0.45590.98840.63010.052*
C90.37702 (10)0.84114 (18)0.66843 (9)0.0473 (4)
C100.57784 (9)0.81512 (17)0.61856 (8)0.0417 (4)
C110.59420 (10)0.9202 (2)0.56865 (9)0.0524 (4)
H110.56851.00510.57360.063*
C120.64874 (11)0.8993 (2)0.51135 (10)0.0628 (5)
H120.66020.97070.47870.075*
C130.68578 (11)0.7736 (3)0.50286 (10)0.0653 (6)
H130.72190.75960.46420.078*
C140.66943 (11)0.6682 (2)0.55163 (11)0.0629 (5)
H140.69430.58280.54550.075*
C150.61633 (10)0.68835 (19)0.60955 (9)0.0507 (4)
H150.60630.61700.64260.061*
C16A0.2855 (6)0.6691 (11)0.7269 (5)0.117 (4)0.603 (15)
H16A0.24140.70310.75720.140*0.603 (15)
H16B0.26630.66650.67630.140*0.603 (15)
C17A0.3022 (5)0.5430 (7)0.7474 (8)0.115 (3)0.603 (15)
H17A0.25460.48670.74260.172*0.603 (15)
H17B0.34460.50650.71690.172*0.603 (15)
H17C0.31960.54320.79800.172*0.603 (15)
C16B0.2849 (3)0.6870 (8)0.7291 (4)0.0355 (18)0.397 (15)
H16C0.24290.72840.69890.043*0.397 (15)
H16D0.26370.67130.77830.043*0.397 (15)
C17B0.3180 (5)0.5401 (8)0.6917 (10)0.097 (4)0.397 (15)
H17D0.27400.47580.68810.146*0.397 (15)
H17E0.33930.55830.64340.146*0.397 (15)
H17F0.35990.50170.72220.146*0.397 (15)
N10.53607 (8)0.77094 (14)0.74201 (7)0.0431 (3)
N20.35601 (8)0.77348 (15)0.73142 (7)0.0493 (4)
O10.34016 (9)0.82593 (16)0.61053 (7)0.0717 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0481 (8)0.0429 (8)0.0355 (8)0.0032 (7)0.0018 (6)0.0032 (6)
C20.0507 (9)0.0656 (11)0.0455 (9)0.0018 (8)0.0060 (7)0.0068 (8)
C30.0683 (11)0.0695 (12)0.0354 (8)0.0053 (9)0.0100 (8)0.0034 (8)
C40.0705 (12)0.0707 (12)0.0321 (8)0.0021 (9)0.0064 (8)0.0023 (8)
C50.0493 (9)0.0662 (11)0.0377 (9)0.0035 (8)0.0054 (7)0.0056 (8)
C60.0481 (8)0.0397 (8)0.0328 (7)0.0034 (6)0.0018 (6)0.0029 (6)
C70.0423 (8)0.0382 (8)0.0342 (7)0.0048 (6)0.0035 (6)0.0004 (6)
C80.0506 (9)0.0404 (8)0.0392 (8)0.0016 (7)0.0013 (6)0.0057 (6)
C90.0462 (9)0.0561 (10)0.0398 (8)0.0007 (7)0.0067 (7)0.0027 (7)
C100.0402 (8)0.0521 (9)0.0327 (7)0.0070 (7)0.0043 (6)0.0007 (6)
C110.0536 (9)0.0589 (10)0.0445 (9)0.0093 (8)0.0014 (7)0.0072 (8)
C120.0521 (10)0.0957 (16)0.0405 (9)0.0206 (10)0.0021 (8)0.0151 (9)
C130.0397 (9)0.1147 (18)0.0415 (9)0.0090 (11)0.0041 (7)0.0050 (10)
C140.0498 (10)0.0829 (14)0.0559 (11)0.0075 (9)0.0058 (8)0.0085 (10)
C150.0473 (9)0.0604 (10)0.0445 (9)0.0027 (8)0.0036 (7)0.0011 (8)
C16A0.164 (8)0.112 (7)0.074 (5)0.057 (5)0.007 (4)0.013 (5)
C17A0.114 (4)0.078 (3)0.153 (9)0.016 (3)0.053 (6)0.006 (4)
C16B0.013 (2)0.043 (3)0.050 (4)0.0084 (17)0.0139 (19)0.006 (3)
C17B0.105 (5)0.056 (4)0.131 (9)0.012 (3)0.027 (6)0.012 (5)
N10.0454 (7)0.0496 (7)0.0342 (7)0.0037 (6)0.0002 (5)0.0029 (6)
N20.0489 (7)0.0574 (9)0.0414 (7)0.0125 (6)0.0063 (6)0.0044 (6)
O10.0691 (9)0.1001 (11)0.0459 (7)0.0143 (7)0.0212 (6)0.0101 (7)
Geometric parameters (Å, º) top
C1—C21.397 (2)C9—O11.2217 (19)
C1—C61.405 (2)C9—N21.361 (2)
C1—N21.426 (2)C10—C111.389 (2)
C2—C31.375 (2)C10—C151.393 (2)
C3—C41.381 (3)C11—C121.389 (3)
C4—C51.370 (2)C12—C131.371 (3)
C5—C61.396 (2)C13—C141.378 (3)
C6—N11.408 (2)C14—C151.381 (2)
C7—N11.2787 (19)C16A—C17A1.307 (11)
C7—C101.486 (2)C16A—N21.544 (10)
C7—C81.512 (2)C16B—N21.442 (6)
C8—C91.501 (2)C16B—C17B1.669 (13)
C2—C1—C6118.80 (14)C11—C10—C15118.81 (15)
C2—C1—N2118.88 (15)C11—C10—C7121.38 (15)
C6—C1—N2122.27 (13)C15—C10—C7119.78 (14)
C3—C2—C1121.26 (16)C10—C11—C12120.37 (18)
C2—C3—C4120.11 (16)C13—C12—C11120.18 (18)
C5—C4—C3119.35 (16)C12—C13—C14119.95 (17)
C4—C5—C6122.04 (16)C13—C14—C15120.46 (19)
C5—C6—C1118.42 (14)C14—C15—C10120.22 (17)
C5—C6—N1116.34 (14)C17A—C16A—N2116.0 (7)
C1—C6—N1125.17 (13)N2—C16B—C17B103.9 (5)
N1—C7—C10118.59 (13)C7—N1—C6119.81 (13)
N1—C7—C8121.69 (14)C9—N2—C1123.13 (13)
C10—C7—C8119.69 (13)C9—N2—C16B117.6 (3)
C9—C8—C7106.45 (13)C1—N2—C16B119.3 (3)
O1—C9—N2122.36 (15)C9—N2—C16A117.6 (4)
O1—C9—C8122.08 (15)C1—N2—C16A119.2 (4)
N2—C9—C8115.52 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the phenyl ring (C10–C15).
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.553.464 (2)168
C13—H13···O1ii0.932.523.412 (2)162
C4—H4···Cg1iii0.932.803.568 (1)140
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the phenyl ring (C10–C15).
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.553.464 (2)168
C13—H13···O1ii0.932.523.412 (2)162
C4—H4···Cg1iii0.932.803.568 (1)140
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H16N2O
Mr264.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)16.5042 (4), 9.6896 (3), 18.1221 (5)
V3)2898.07 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.31 × 0.22
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.626, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
31360, 3199, 2418
Rint0.036
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.05
No. of reflections3199
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windoes (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAhabchane, N. H., Ibrahimi, S., Salem, M., Essassi, E. M., Amzazi, S. & Benjouad, A. (2001). C. R. Acad. Sci. Paris Ser. IIC, 4, 917–924.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKanyonga, P. M., Zellou, A., Essassi, E. M. & Cherrah, Y. (2009). Mali Med. XXIV, 30–33.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZellou, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1998b). Ann. Pharm. Fr. 56, 175–180.  CAS PubMed Google Scholar
First citationZellou, A., Cherrah, Y., Hassar, M. & Essassi, E. M. (1998a). Ann. Pharm. Fr. 56, 169–174.  CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds