organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(2E)-3-Phenyl­prop-2-en-1-yl]-1H-indole-2,3-dione

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181., Ecole Nationale Supérieure de Chimie de Lille, France, and dLaboratoire d'Ingénierie des Matériaux et d'Environnement: Modélisation et Application (LIMEMA), Ibn Tofail University, Kénitra, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 April 2016; accepted 14 April 2016; online 22 April 2016)

In the title compound, C17H13NO2, the indole ring is essentially planar (r.m.s. deviation = 0.027 Å) and is oriented at an angle of 69.33 (7)° with respect to the phenyl ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules, forming zigzag chains propagating along the a-axis direction. Within the chains there are ππ stacking inter­actions [centroid–centroid distances = 3.7163 (8) and 3.7162 (8) Å] involving isatin groups of neighbouring mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The importance of the indole derivatives in different fields and, in particular, chemistry, biology and pharmacology, has prompted researchers to develop many synthetic methods for their preparation and to find new applications. Isatin (indoline-2,3-dione) has provoked tremendous inter­est due to its numerous biological and pharmacological activities. The growing importance of substituted isatins in the field of medicinal chemistry as potential chemotherapeutic agents and their implications for prodrug design have been reported (Matesic et al., 2008[Matesic, L., Locke, J. M., Bremner, J. B., Pyne, S. G., Skropeta, D., Ranson, M. & Vine, K. L. (2008). Bioorg. Med. Chem. 16, 3118-3124.]; Wang et al., 2008[Wang, F., Fang, Y., Zhu, T., Zhang, M., Lin, A., Gu, Q. & Zhu, W. (2008). Tetrahedron, 64, 7986-7991.]; Lane et al., 2001[Lane, M. E., Yu, B., Rice, A., Lipson, K. E., Liang, C., Sun, L., Tang, C., McMahon, G., Pestell, R. G. & Wadler, S. (2001). Cancer Res. 61, 6170-6177.]; Patyna et al., 2006[Patyna, S., Laird, A. D., Mendel, D. B., O'Farrell, A. M., Liang, C., Guan, H., Vojkovsky, T., Vasile, S., Wang, X., Chen, J., Grazzini, M., Yang, C. Y., Haznedar, J. Ö., Sukbuntherng, J., Zhong, W.-Z., Cherrington, J. M. & Hu-Lowe, D. (2006). Mol. Cancer Therapeut. 5, 1774-1782.]). As a continuation of our research devoted to the development of isatin derivatives (Qachchachi et al., 2014a[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o361-o362.],b[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o588.]), we report herein on the synthesis and crystal structure of a new indoline-2,3-dione derivative.

In the title compound, Fig. 1[link], the indole ring system is essentially planar, with an r.m.s. deviation of 0.027 Å, and is oriented at an angle of 69.33 (7) ° with respect to the phenyl ring.

[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, C—H⋯O hydrogen bonds link the mol­ecules, and lead to the formation of zigzag chains parallel to the a axis (Table 1[link] and Fig. 2[link]). There are weak ππ stacking [centroid–centroid separations = 3.7163 (8) and 3.7162 (8) Å] inter­actions present involving the six-membered rings (C1–C6) of the isatin groups of neighbouring mol­ecules in the chain.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.947 (17) 2.539 (17) 3.3642 (17) 145.8 (13)
C11—H11⋯O2ii 0.990 (17) 2.585 (16) 3.5281 (18) 159.2 (13)
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
View along the b axis of the crystal packing of the title compound. Dashed lines indicate hydrogen bonds (see Table 1[link]).

Synthesis and crystallization

To a solution of isatin (0.2 g, 1.4 mmol) dissolved in DMF(10 ml) was added potassium carbonate (0.33 g, 2.38 mmol), a catalytic qu­antity of tetra-n-butyl­ammonium bromide (0.04 g, 0.11 mmol) and 3-bromo-1-phenyl-1-propene (0.3 g, 1.5 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. On completion of the reaction, the mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield 86%; m.p. = 413 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H13NO2
Mr 263.28
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 8.2585 (2), 7.2677 (1), 44.4667 (8)
V3) 2668.90 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.60 × 0.25 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.689, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23607, 4060, 2571
Rint 0.041
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.04
No. of reflections 4060
No. of parameters 233
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

To a solution of isatin (0.2 g, 1.4 mmol) dissolved in DMF(10 ml) was added potassium carbonate (0.33 g, 2.38 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.04 g, 0.11 mmol) and 3-bromo-1-phenyl-1-propene (0.3 g, 1.5 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. On completion of the reaction, the mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield 86%; m.p .= 413 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The importance of the indole derivatives in different fields and, in particular, chemistry, biology and pharmacology, has prompted researchers to develop many synthetic methods for their preparation and to find new applications. Isatin (indoline-2,3-dione) has provoked tremendous interest due to its numerous biological and pharmacological activities. The growing importance of substituted isatins in the field of medicinal chemistry as potential chemotherapeutic agents and their implications for prodrug design have been reported (Matesic et al., 2008; Wang et al., 2008; Lane et al., 2001; Patyna et al., 2006). As a continuation of our research devoted to the development of isatin derivatives (Qachchachi et al., 2014a,b), we report herein on the synthesis and crystal structure of a new indoline-2,3-dione derivative.

In the title compound, Fig. 1, the indole ring system is essentially planar, with an r.m.s. deviation of 0.027 Å, and is oriented at an angle of 69.33 (7) ° with respect to the phenyl ring.

In the crystal, C—H···O hydrogen bonds link the molecules, and lead to the formation of zigzag chains parallel to the a axis (Table 1 and Fig. 2). There are weak ππ stacking [centroid–centroid separations = 3.7163 (8) and 3.7162 (8) Å] interactions present involving the six-membered rings (C1–C6) of the isatin groups of neighbouring molecules in the chain.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View along the b axis of the crystal packing of the title compound. Dashed lines indicate hydrogen bonds (see Table 1).
1-[(2E)-3-Phenylprop-2-en-1-yl]-1H-indole-2,3-dione top
Crystal data top
C17H13NO2Dx = 1.310 Mg m3
Mr = 263.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5160 reflections
a = 8.2585 (2) Åθ = 2.6–26.3°
b = 7.2677 (1) ŵ = 0.09 mm1
c = 44.4667 (8) ÅT = 296 K
V = 2668.90 (9) Å3Prism, orange
Z = 80.60 × 0.25 × 0.10 mm
F(000) = 1104
Data collection top
Bruker APEXII CCD
diffractometer
2571 reflections with I > 2σ(I)
φ and ω scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.5°, θmin = 3.1°
Tmin = 0.689, Tmax = 0.746h = 1111
23607 measured reflectionsk = 910
4060 independent reflectionsl = 6262
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.127All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4017P]
where P = (Fo2 + 2Fc2)/3
4060 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H13NO2V = 2668.90 (9) Å3
Mr = 263.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2585 (2) ŵ = 0.09 mm1
b = 7.2677 (1) ÅT = 296 K
c = 44.4667 (8) Å0.60 × 0.25 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4060 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
2571 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.746Rint = 0.041
23607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.127All H-atom parameters refined
S = 1.04Δρmax = 0.19 e Å3
4060 reflectionsΔρmin = 0.17 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60603 (15)0.50695 (16)0.42372 (3)0.0383 (3)
C20.77082 (17)0.51765 (19)0.42004 (4)0.0477 (3)
C30.86641 (17)0.4597 (2)0.44390 (4)0.0552 (4)
C40.80102 (18)0.3924 (2)0.47026 (4)0.0530 (4)
C50.63530 (17)0.37805 (19)0.47351 (3)0.0449 (3)
C60.53775 (14)0.43512 (17)0.44995 (3)0.0370 (3)
C70.36259 (15)0.43553 (19)0.44613 (3)0.0429 (3)
C80.33388 (16)0.5264 (2)0.41483 (3)0.0468 (3)
C90.5122 (2)0.6473 (2)0.37450 (3)0.0544 (4)
C100.53530 (19)0.5127 (2)0.34949 (3)0.0519 (4)
C110.49844 (17)0.3365 (2)0.35012 (3)0.0485 (3)
C120.51148 (17)0.2088 (2)0.32464 (3)0.0478 (3)
C130.4109 (2)0.0559 (2)0.32305 (4)0.0661 (4)
C140.4145 (3)0.0586 (3)0.29827 (5)0.0850 (6)
C150.5194 (3)0.0252 (3)0.27504 (5)0.0813 (6)
C160.6240 (3)0.1213 (3)0.27678 (4)0.0736 (5)
C170.6202 (2)0.2371 (2)0.30122 (3)0.0593 (4)
H20.816 (2)0.566 (2)0.4016 (4)0.063 (5)*
H30.980 (2)0.473 (2)0.4419 (4)0.067 (5)*
H40.873 (2)0.355 (2)0.4865 (4)0.070 (5)*
H50.5861 (17)0.328 (2)0.4922 (3)0.051 (4)*
H100.5754 (18)0.565 (2)0.3313 (4)0.061 (4)*
H110.4492 (19)0.285 (2)0.3686 (4)0.067 (4)*
H130.336 (2)0.031 (3)0.3395 (4)0.089 (6)*
H140.342 (3)0.158 (3)0.2971 (5)0.102 (7)*
H150.526 (3)0.104 (3)0.2577 (5)0.109 (7)*
H160.703 (2)0.141 (3)0.2607 (4)0.087 (6)*
H170.695 (2)0.338 (3)0.3020 (4)0.074 (5)*
H9A0.6096 (18)0.722 (2)0.3761 (3)0.051 (4)*
H9B0.417 (2)0.725 (2)0.3698 (4)0.072 (5)*
N10.48280 (13)0.56265 (16)0.40353 (2)0.0449 (3)
O10.25550 (12)0.37772 (17)0.46186 (2)0.0631 (3)
O20.20406 (12)0.55750 (18)0.40305 (2)0.0681 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (6)0.0341 (6)0.0464 (6)0.0005 (5)0.0018 (5)0.0056 (5)
C20.0378 (7)0.0413 (7)0.0640 (8)0.0042 (6)0.0111 (6)0.0084 (6)
C30.0284 (7)0.0471 (8)0.0902 (11)0.0016 (6)0.0010 (7)0.0154 (7)
C40.0394 (7)0.0489 (8)0.0707 (9)0.0074 (6)0.0167 (7)0.0063 (7)
C50.0425 (7)0.0428 (7)0.0495 (7)0.0021 (6)0.0061 (6)0.0019 (6)
C60.0296 (6)0.0378 (6)0.0436 (6)0.0017 (5)0.0001 (5)0.0026 (5)
C70.0329 (6)0.0530 (8)0.0428 (6)0.0010 (6)0.0017 (5)0.0018 (6)
C80.0369 (7)0.0580 (8)0.0456 (7)0.0039 (6)0.0028 (5)0.0008 (6)
C90.0663 (10)0.0498 (8)0.0472 (8)0.0036 (8)0.0045 (7)0.0080 (6)
C100.0582 (9)0.0546 (9)0.0429 (7)0.0022 (7)0.0059 (6)0.0099 (6)
C110.0465 (8)0.0546 (8)0.0443 (7)0.0021 (6)0.0055 (6)0.0087 (6)
C120.0474 (8)0.0493 (7)0.0467 (7)0.0030 (6)0.0022 (6)0.0079 (6)
C130.0619 (10)0.0590 (10)0.0775 (11)0.0042 (8)0.0033 (9)0.0013 (8)
C140.0801 (14)0.0678 (12)0.1070 (16)0.0065 (11)0.0166 (13)0.0168 (11)
C150.1023 (16)0.0746 (13)0.0671 (11)0.0209 (12)0.0208 (11)0.0169 (10)
C160.0950 (14)0.0745 (12)0.0512 (9)0.0218 (11)0.0070 (9)0.0037 (8)
C170.0674 (10)0.0591 (10)0.0512 (8)0.0032 (8)0.0089 (7)0.0060 (7)
N10.0429 (6)0.0507 (6)0.0410 (5)0.0005 (5)0.0012 (4)0.0036 (5)
O10.0364 (5)0.0969 (9)0.0560 (6)0.0069 (5)0.0069 (5)0.0103 (6)
O20.0440 (6)0.0988 (9)0.0614 (6)0.0094 (6)0.0131 (5)0.0108 (6)
Geometric parameters (Å, º) top
C1—C21.3730 (19)C9—H9A0.972 (15)
C1—C61.3968 (17)C9—H9B0.987 (18)
C1—N11.4162 (16)C10—C111.316 (2)
C2—C31.388 (2)C10—H100.952 (16)
C2—H20.967 (17)C11—C121.469 (2)
C3—C41.380 (2)C11—H110.990 (16)
C3—H30.950 (18)C12—C131.389 (2)
C4—C51.380 (2)C12—C171.390 (2)
C4—H40.976 (18)C13—C141.381 (3)
C5—C61.3850 (18)C13—H130.98 (2)
C5—H50.994 (14)C14—C151.370 (3)
C6—C71.4565 (17)C14—H140.94 (2)
C7—O11.2033 (15)C15—C161.374 (3)
C7—C81.5583 (19)C15—H150.96 (2)
C8—O21.2146 (16)C16—C171.375 (2)
C8—N11.3545 (17)C16—H160.98 (2)
C9—N11.4504 (18)C17—H170.959 (19)
C9—C101.494 (2)
C2—C1—C6121.40 (12)H9A—C9—H9B110.9 (13)
C2—C1—N1128.35 (12)C11—C10—C9126.28 (13)
C6—C1—N1110.25 (11)C11—C10—H10119.1 (10)
C1—C2—C3117.09 (14)C9—C10—H10114.5 (10)
C1—C2—H2120.5 (10)C10—C11—C12125.53 (13)
C3—C2—H2122.4 (10)C10—C11—H11118.5 (10)
C4—C3—C2122.29 (13)C12—C11—H11115.7 (10)
C4—C3—H3120.1 (10)C13—C12—C17117.78 (15)
C2—C3—H3117.5 (10)C13—C12—C11120.06 (13)
C3—C4—C5120.26 (14)C17—C12—C11122.14 (14)
C3—C4—H4119.2 (10)C14—C13—C12120.66 (18)
C5—C4—H4120.5 (10)C14—C13—H13120.0 (12)
C4—C5—C6118.35 (14)C12—C13—H13119.3 (12)
C4—C5—H5121.4 (8)C15—C14—C13120.5 (2)
C6—C5—H5120.3 (8)C15—C14—H14119.7 (14)
C5—C6—C1120.58 (12)C13—C14—H14119.7 (14)
C5—C6—C7131.81 (12)C14—C15—C16119.52 (19)
C1—C6—C7107.61 (11)C14—C15—H15122.3 (14)
O1—C7—C6131.40 (12)C16—C15—H15118.1 (14)
O1—C7—C8123.73 (12)C15—C16—C17120.31 (19)
C6—C7—C8104.85 (10)C15—C16—H16119.7 (12)
O2—C8—N1127.24 (13)C17—C16—H16120.0 (12)
O2—C8—C7126.76 (13)C16—C17—C12121.11 (18)
N1—C8—C7106.00 (10)C16—C17—H17118.9 (11)
N1—C9—C10113.96 (13)C12—C17—H17119.9 (11)
N1—C9—H9A107.9 (8)C8—N1—C1111.20 (10)
C10—C9—H9A108.3 (8)C8—N1—C9124.38 (12)
N1—C9—H9B107.2 (9)C1—N1—C9124.42 (12)
C10—C9—H9B108.5 (10)
C6—C1—C2—C32.10 (19)C10—C11—C12—C13152.41 (16)
N1—C1—C2—C3177.52 (12)C10—C11—C12—C1726.2 (2)
C1—C2—C3—C40.6 (2)C17—C12—C13—C143.0 (2)
C2—C3—C4—C51.0 (2)C11—C12—C13—C14175.72 (16)
C3—C4—C5—C60.9 (2)C12—C13—C14—C151.2 (3)
C4—C5—C6—C10.60 (19)C13—C14—C15—C161.4 (3)
C4—C5—C6—C7178.91 (13)C14—C15—C16—C172.0 (3)
C2—C1—C6—C52.17 (19)C15—C16—C17—C120.2 (3)
N1—C1—C6—C5177.51 (11)C13—C12—C17—C162.3 (2)
C2—C1—C6—C7177.44 (12)C11—C12—C17—C16176.36 (15)
N1—C1—C6—C72.88 (14)O2—C8—N1—C1179.96 (15)
C5—C6—C7—O14.3 (3)C7—C8—N1—C10.20 (15)
C1—C6—C7—O1175.27 (15)O2—C8—N1—C90.0 (2)
C5—C6—C7—C8177.60 (13)C7—C8—N1—C9179.73 (12)
C1—C6—C7—C82.84 (14)C2—C1—N1—C8178.67 (13)
O1—C7—C8—O23.3 (2)C6—C1—N1—C81.67 (15)
C6—C7—C8—O2178.36 (14)C2—C1—N1—C91.3 (2)
O1—C7—C8—N1176.42 (13)C6—C1—N1—C9178.39 (12)
C6—C7—C8—N11.88 (14)C10—C9—N1—C892.71 (18)
N1—C9—C10—C1115.3 (2)C10—C9—N1—C187.21 (18)
C9—C10—C11—C12175.49 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.947 (17)2.539 (17)3.3642 (17)145.8 (13)
C11—H11···O2ii0.990 (17)2.585 (16)3.5281 (18)159.2 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.947 (17)2.539 (17)3.3642 (17)145.8 (13)
C11—H11···O2ii0.990 (17)2.585 (16)3.5281 (18)159.2 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H13NO2
Mr263.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.2585 (2), 7.2677 (1), 44.4667 (8)
V3)2668.90 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.25 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Krause et al., 2015)
Tmin, Tmax0.689, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
23607, 4060, 2571
Rint0.041
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.04
No. of reflections4060
No. of parameters233
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLane, M. E., Yu, B., Rice, A., Lipson, K. E., Liang, C., Sun, L., Tang, C., McMahon, G., Pestell, R. G. & Wadler, S. (2001). Cancer Res. 61, 6170–6177.  PubMed CAS Google Scholar
First citationMatesic, L., Locke, J. M., Bremner, J. B., Pyne, S. G., Skropeta, D., Ranson, M. & Vine, K. L. (2008). Bioorg. Med. Chem. 16, 3118–3124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatyna, S., Laird, A. D., Mendel, D. B., O'Farrell, A. M., Liang, C., Guan, H., Vojkovsky, T., Vasile, S., Wang, X., Chen, J., Grazzini, M., Yang, C. Y., Haznedar, J. Ö., Sukbuntherng, J., Zhong, W.-Z., Cherrington, J. M. & Hu-Lowe, D. (2006). Mol. Cancer Therapeut. 5, 1774–1782.  CrossRef CAS Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o361–o362.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o588.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F., Fang, Y., Zhu, T., Zhang, M., Lin, A., Gu, Q. & Zhu, W. (2008). Tetrahedron, 64, 7986–7991.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds