organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-Benzyl­cinnamamide

aInstitute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany, bDepartment of Chemical Engineering, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, and cDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: thies@uaeu.ac.ae

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 April 2016; accepted 17 April 2016; online 22 April 2016)

In the title compound, C16H15NO, there is a weak intra­molecular C—H⋯O contact which leads to a planar acryl­amide moiety. The phenyl ring forms an angle of 8.30 (2)° with the mean plane of the acryl­amide moiety. The benzyl group is tilted against the cinnamamide unit, with the ring forming an angle of 77.11 (2)° with the cinnamamide unit mean plane. In the crystal, mol­ecules are linked via N—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming chains propagating along [001]. The chains are linked via further C—H⋯π inter­actions, forming layers parallel to the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, Fig. 1[link], has been shown to be a potential bombesin subtype 3 agonist (Kim et al. 2014[Kim, S. H., Lim, C. M., Kim, S. M. & Kang, K. W. (2014). PCT Int. Appl. WO 2014129874.]), a matrix metalloproteinase inhibitor (Shi et al. 2013[Shi, Z.-H., Li, N.-G., Shi, Q.-P., Tang, H., Tang, Y.-P., Li, W., Yin, L., Yang, J.-P. & Duan, J.-A. (2013). Bioorg. Med. Chem. Lett. 23, 1206-1211.]) and a 17β-hy­droxy­steroid de­hydrogenase inhibitor (Kristan et al. 2006[Kristan, K., Starčević, S., Brunskole, M., Rižner, T. L. & Gobec, S. (2006). Mol. Cell. Endocrinol. 248, 239-241.]). Herein we report on the synthesis and crystal structure of the title compound. Other methods of synthesis of the title compound have been reported by Lagerlund et al. (2009[Lagerlund, O., Mantel, M. L. H. & Larhed, M. (2009). Tetrahedron, 65, 7646-7652.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O contact is shown as a dashed line (see Table 1[link]).

In the title compound, Fig. 1[link], there is a weak intra­molecular C3—H3⋯O1 contact (Fig. 1[link] and Table 1[link]), which leads to a planar acryl­amide structure (N1/O1/C1–C3). The phenyl ring (C4–C9) forms a dihedral angle of 8.30 (2)° with this acryl­amide mean plane. The benzyl group is tilted against the cinnamamide mean plane, with the ring (C11–C16) forming a dihedral angle of 77.11 (3)° with the mean plane of the cinnamamide (N1/O1/C1–C9) moiety. The two phenyl rings are inclined to one another by 80.04 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzyl ring C11–C16.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.95 2.52 2.8559 (11) 101
N1—H1⋯O1i 0.889 (14) 2.009 (14) 2.880 (1) 166.3 (13)
C2—H2⋯O1i 0.95 2.45 3.2126 (11) 138
C10—H10BCg1ii 0.99 2.81 3.7058 (10) 151
C7—H7⋯Cg1iii 0.95 2.88 3.6303 (12) 137
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

In the crystal, mol­ecules are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c-axis direction (Fig. 2[link] and Table 1[link]). Within the chains there are also C—H⋯π inter­actions present (Table 1[link] and Fig. 2[link]). The (C4–C9) phenyl rings of two adjacent mol­ecules form a dihedral angle of 57.38 (2)°, while the (C11–C16) benzyl rings are inclined to one another by 34.00 (2)°. The chains are linked via further C—H⋯π inter­actions, forming layers parallel to the ac plane (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A partial view of the formation of the mol­ecular chains propagating along the c-axis direction, formed by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions (dashed lines; see Table 1[link]). H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
A partial view along the c axis of the crystal packing of the title compound, showing the chains linked via C—H⋯π inter­actions along the a-axis direction (inter­molecular contacts are shown as dashed lines; see Table 1[link]). H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized using a modified Appel reaction: To tri­phenyl­phosphine (PPh3, 980 mg, 3.74 mmol) in dry CH2Cl2 (12 ml) was added bromo­tri­chloro­methane (BrCCl3, 750 mg, 3.78 mmol), and the subsequent solution was stirred at room temperature for 35 min. Then, cinnamic acid (500 mg, 3.38 mmol) was added, and the mixture was heated at reflux for 45 min. Thereafter, benzyl­amine (720 mg, 6.73 mmol) was added dropwise via a syringe. The mixture was stirred at reflux for 14 h. Thereafter, the cooled mixture was subjected directly to column chromatographic separation to give the title compound as colourless needles [yield 655 mg, 82%; m.p. 386–387 K (382–383 K reported by Saito et al. (2008[Saito, Y., Ouchi, H. & Takahata, H. (2008). Tetrahedron, 64, 11129-11135.])]. Crystals used for the X-ray analysis were grown from a solution in ether/hexa­ne/CH2Cl2.

Spectroscopic data: IR νmax (KBr/cm−1) 3280 (bs, NH), 3080, 2921, 1654, 1614, 1541, 1450, 1348, 1230, 1213, 979, 751, 696; δH (400 MHz, CDCl3) 4.56 (2H, d, 3J = 5.6 Hz), 6.06 (1H, bs, NH), 6.42 (1H, d, 3J = 16.0 Hz), 7.25–7.30 (3H, m), 7.47–7.48 (2H, m), 7.66 (1H, d, 3J = 16.0 Hz); δH (100.5 MHz, CDCl3) 43.8 (−), 120.4 (CH), 127.6 (CH), 127.8 (2 C, CH), 127.9 (2 C, CH), 128.7 (2 C, CH), 128.8 (2 C, CH), 129.7 (CH), 134.7 (Cquat), 138.1 (Cquat), 141.4 (CH), 165.8 (Cquat, CO); MS (FAB, 3-nitro­benzyl alcohol) 238 (MH+).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H15NO
Mr 237.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.4817 (6), 12.3107 (6), 8.5737 (4)
β (°) 94.276 (1)
V3) 1313.75 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.3 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.705, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19856, 3249, 3010
Rint 0.018
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.04
No. of reflections 3249
No. of parameters 167
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Experimental top

The title compound was synthesized using a modified Appel reaction: To triphenylphosphine (PPh3, 980 mg, 3.74 mmol) in dry CH2Cl2 (12 ml) was added bromotrichloromethane (BrCCl3, 750 mg, 3.78 mmol), and the subsequent solution was stirred at room temperature for 35 min. Then, cinnamic acid (500 mg, 3.38 mmol) was added, and the mixture was heated at reflux for 45 min. Thereafter, benzylamine (720 mg, 6.73 mmol) was added dropwise via a syringe. The mixture was stirred at reflux for 14 h. Thereafter, the cooled mixture was subjected directly to column chromatographic separation to give the title compound as colourless needles [yield 655 mg, 82%; m.p. 386–387 K (382–383 K reported by Saito et al. (2008)]. Crystals used for the X-ray analysis were grown from a solution in ether/hexane/CH2Cl2.

Spectroscopic data: IR νmax (KBr/cm-1) 3280 (bs, NH), 3080, 2921, 1654, 1614, 1541, 1450, 1348, 1230, 1213, 979, 751, 696; δH (400 MHz, CDCl3) 4.56 (2H, d, 3J = 5.6 Hz), 6.06 (1H, bs, NH), 6.42 (1H, d, 3J = 16.0 Hz), 7.25–7.30 (3H, m), 7.47–7.48 (2H, m), 7.66 (1H, d, 3J = 16.0 Hz); δH (100.5 MHz, CDCl3) 43.8 (-), 120.4 (CH), 127.6 (CH), 127.8 (2 C, CH), 127.9 (2 C, CH), 128.7 (2 C, CH), 128.8 (2 C, CH), 129.7 (CH), 134.7 (Cquat), 138.1 (Cquat), 141.4 (CH), 165.8 (Cquat, CO); MS (FAB, 3-nitrobenzyl alcohol) 238 (MH+).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound, Fig. 1, has been shown to be a potential bombesin subtype 3 agonist (Kim et al. 2014), a matrix metalloproteinase inhibitor (Shi et al. 2013) and a 17β-hydroxysteroid dehydrogenase inhibitor (Kristan et al. 2006). Herein we report on the synthesis and crystal structure of the title compound. Other methods of synthesis of the title compound have been reported by Lagerlund et al. (2009).

In the title compound, Fig. 1, there is a weak intramolecular C3—H3···O1 contact (Fig. 1 and Table 1), which leads to a planar acrylamide structure (N1/O1/C1–C3). The phenyl ring (C4–C9) forms a dihedral angle of 8.31 (5)° with this acrylamide mean plane. The benzyl group is tilted against the cinnamamide mean plane, with the ring (C11–C16) forming a dihedral angle of 73.47 (5)° with the mean plane of the cinnamamide (N1/O1/C1–C9) moiety. The two phenyl rings are inclined to one another by 80.64 (5)°.

In the crystal, molecules are linked via N—H···O and C—H···O hydrogen bonds, forming chains along the c-axis direction (Fig. 2 and Table 1). Within the chains there are also C—H···π interactions present (Table 1 and Fig. 1). The (C4–C9) phenyl rings of two adjacent molecules form a dihedral angle of 57.38 (2)°, while the (C11–C16) benzyl rings are inclined to one another by 33.36 (2)°. The chains are linked via further C—H···π interactions, forming layers parallel to the ac plane (Table 1 and Fig. 3).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015b) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intramolecular C—H···O contact is shown as a dashed line (see Table 1).
[Figure 2] Fig. 2. A partial view of the formation of the molecular chains propagating along the c-axis direction, formed by intermolecular N—H···O and C—H···O hydrogen bonds and C—H···π interactions (dashed lines; see Table 1). H atoms not involved in these interactions have been omitted for clarity.
[Figure 3] Fig. 3. A partial view along the c axis of the crystal packing of the title compound, showing the chains linked via C—H···π interactions along the a-axis direction (intermolecular contacts are shown as dashed lines; see Table 1). H atoms not involved in these interactions have been omitted for clarity.
N-Benzyl-3-phenylprop-2-enamide top
Crystal data top
C16H15NODx = 1.200 Mg m3
Mr = 237.29Melting point: 386 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.4817 (6) ÅCell parameters from 9967 reflections
b = 12.3107 (6) Åθ = 2.3–28.8°
c = 8.5737 (4) ŵ = 0.08 mm1
β = 94.276 (1)°T = 100 K
V = 1313.75 (11) Å3Needle, colourless
Z = 40.3 × 0.1 × 0.1 mm
F(000) = 504
Data collection top
Bruker APEXII CCD
diffractometer
3010 reflections with I > 2σ(I)
φ and ω scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 28.9°, θmin = 1.6°
Tmin = 0.705, Tmax = 0.746h = 1616
19856 measured reflectionsk = 1616
3249 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.5467P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3249 reflectionsΔρmax = 0.34 e Å3
167 parametersΔρmin = 0.18 e Å3
Crystal data top
C16H15NOV = 1313.75 (11) Å3
Mr = 237.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4817 (6) ŵ = 0.08 mm1
b = 12.3107 (6) ÅT = 100 K
c = 8.5737 (4) Å0.3 × 0.1 × 0.1 mm
β = 94.276 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3010 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.746Rint = 0.018
19856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
3249 reflectionsΔρmin = 0.18 e Å3
167 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.75871 (7)0.79875 (7)0.39369 (10)0.01464 (18)
C100.93424 (7)0.71049 (8)0.43422 (10)0.01744 (19)
C111.01755 (7)0.66577 (7)0.33259 (10)0.01582 (18)
C121.01050 (7)0.55828 (8)0.28088 (12)0.0199 (2)
C131.08325 (8)0.51807 (8)0.18015 (12)0.0237 (2)
C141.16460 (8)0.58402 (9)0.13148 (11)0.0231 (2)
C151.17303 (8)0.69091 (9)0.18333 (11)0.0216 (2)
C161.09960 (7)0.73147 (8)0.28338 (11)0.01817 (19)
C20.66405 (7)0.81776 (8)0.28144 (10)0.01739 (19)
C30.57548 (7)0.86518 (8)0.32619 (11)0.01755 (19)
C40.47794 (7)0.89036 (8)0.22575 (11)0.01776 (19)
C50.46773 (8)0.86615 (9)0.06536 (12)0.0228 (2)
C60.37579 (8)0.89571 (10)0.02580 (13)0.0269 (2)
C70.29287 (8)0.95052 (9)0.04032 (14)0.0271 (2)
C80.30175 (8)0.97456 (9)0.19887 (15)0.0291 (2)
C90.39331 (8)0.94385 (9)0.29075 (13)0.0246 (2)
H10.8262 (11)0.7126 (11)0.2406 (17)0.027 (3)*
H10A0.91720.65560.51300.021*
H10B0.96280.77590.49020.021*
H120.95570.51230.31480.024*
H131.07730.44510.14440.028*
H141.21440.55620.06300.028*
H151.22870.73620.15060.026*
H161.10550.80460.31840.022*
H20.66680.79570.17560.021*
H30.57530.88460.43340.021*
H50.52410.82930.01890.027*
H60.36940.87840.13410.032*
H70.23050.97140.02280.033*
H80.24541.01200.24460.035*
H90.39830.95950.39950.030*
N10.83680 (6)0.73863 (7)0.33718 (9)0.01585 (17)
O10.76568 (5)0.83631 (6)0.52847 (7)0.01820 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0185 (3)0.0229 (3)0.0130 (3)0.0016 (3)0.0005 (2)0.0003 (2)
N10.0136 (4)0.0202 (4)0.0132 (3)0.0014 (3)0.0027 (3)0.0016 (3)
C10.0137 (4)0.0159 (4)0.0143 (4)0.0010 (3)0.0002 (3)0.0029 (3)
C20.0148 (4)0.0234 (5)0.0136 (4)0.0005 (3)0.0016 (3)0.0006 (3)
C30.0168 (4)0.0197 (4)0.0158 (4)0.0008 (3)0.0012 (3)0.0017 (3)
C40.0141 (4)0.0179 (4)0.0208 (4)0.0008 (3)0.0017 (3)0.0017 (3)
C50.0167 (4)0.0302 (5)0.0211 (5)0.0029 (4)0.0011 (3)0.0026 (4)
C60.0208 (5)0.0359 (6)0.0231 (5)0.0010 (4)0.0055 (4)0.0009 (4)
C70.0172 (5)0.0255 (5)0.0370 (6)0.0014 (4)0.0090 (4)0.0026 (4)
C80.0177 (5)0.0262 (5)0.0426 (6)0.0072 (4)0.0036 (4)0.0093 (5)
C90.0192 (5)0.0266 (5)0.0275 (5)0.0045 (4)0.0024 (4)0.0095 (4)
C100.0155 (4)0.0218 (4)0.0144 (4)0.0040 (3)0.0031 (3)0.0004 (3)
C110.0143 (4)0.0179 (4)0.0145 (4)0.0035 (3)0.0042 (3)0.0004 (3)
C120.0151 (4)0.0181 (4)0.0258 (5)0.0000 (3)0.0037 (3)0.0006 (4)
C130.0212 (5)0.0201 (5)0.0286 (5)0.0053 (4)0.0052 (4)0.0067 (4)
C140.0186 (4)0.0306 (5)0.0200 (4)0.0082 (4)0.0004 (3)0.0025 (4)
C150.0176 (4)0.0269 (5)0.0200 (4)0.0004 (4)0.0006 (3)0.0044 (4)
C160.0186 (4)0.0174 (4)0.0177 (4)0.0006 (3)0.0037 (3)0.0008 (3)
Geometric parameters (Å, º) top
C1—C21.4857 (12)C3—H30.9500
C10—H10A0.9900C3—C41.4709 (12)
C10—H10B0.9900C4—C51.4036 (13)
C10—C111.5096 (12)C4—C91.3956 (13)
C11—C121.3963 (13)C5—H50.9500
C11—C161.3948 (13)C5—C61.3879 (14)
C12—H120.9500C6—H60.9500
C12—C131.3901 (14)C6—C71.3911 (15)
C13—H130.9500C7—H70.9500
C13—C141.3884 (15)C7—C81.3876 (17)
C14—H140.9500C8—H80.9500
C14—C151.3904 (15)C8—C91.3912 (14)
C15—H150.9500C9—H90.9500
C15—C161.3937 (14)N1—H10.889 (14)
C16—H160.9500N1—C11.3427 (12)
C2—H20.9500N1—C101.4631 (11)
C2—C31.3317 (13)O1—C11.2417 (11)
C1—N1—H1118.3 (9)C4—C9—H9119.5
C1—N1—C10121.36 (8)C8—C9—C4121.09 (10)
C10—N1—H1120.3 (9)C8—C9—H9119.5
O1—C1—N1122.59 (8)N1—C10—H10A109.7
O1—C1—C2122.78 (8)N1—C10—H10B109.7
N1—C1—C2114.63 (8)N1—C10—C11109.71 (7)
C1—C2—H2119.3H10A—C10—H10B108.2
C3—C2—C1121.30 (8)C11—C10—H10A109.7
C3—C2—H2119.3C11—C10—H10B109.7
C2—C3—H3116.8C12—C11—C10119.94 (8)
C2—C3—C4126.33 (9)C16—C11—C10121.07 (8)
C4—C3—H3116.8C16—C11—C12118.94 (9)
C5—C4—C3122.66 (8)C11—C12—H12119.8
C9—C4—C3118.93 (8)C13—C12—C11120.41 (9)
C9—C4—C5118.38 (9)C13—C12—H12119.8
C4—C5—H5119.8C12—C13—H13119.8
C6—C5—C4120.46 (9)C14—C13—C12120.31 (9)
C6—C5—H5119.8C14—C13—H13119.8
C5—C6—H6119.8C13—C14—H14120.1
C5—C6—C7120.45 (10)C13—C14—C15119.80 (9)
C7—C6—H6119.8C15—C14—H14120.1
C6—C7—H7120.2C14—C15—H15120.1
C8—C7—C6119.68 (9)C14—C15—C16119.89 (9)
C8—C7—H7120.2C16—C15—H15120.1
C7—C8—H8120.0C11—C16—H16119.7
C7—C8—C9119.93 (10)C15—C16—C11120.65 (9)
C9—C8—H8120.0C15—C16—H16119.7
C1—C2—C3—C4178.62 (9)C2—C3—C4—C50.12 (16)
C1—N1—C10—C11167.08 (8)C3—C4—C9—C8176.57 (10)
C10—C11—C16—C15176.84 (8)C3—C4—C5—C6177.25 (10)
C10—C11—C12—C13176.38 (8)C4—C5—C6—C70.51 (17)
C10—N1—C1—C2178.57 (8)C5—C6—C7—C80.77 (17)
C10—N1—C1—O12.12 (14)C5—C4—C9—C81.25 (16)
C11—C12—C13—C140.85 (15)C6—C7—C8—C90.01 (17)
C12—C13—C14—C150.25 (15)C7—C8—C9—C41.01 (17)
C12—C11—C16—C150.45 (13)C9—C4—C5—C60.49 (16)
C13—C14—C15—C160.23 (14)N1—C10—C11—C1698.18 (10)
C14—C15—C16—C110.13 (14)N1—C10—C11—C1279.08 (10)
C16—C11—C12—C130.94 (13)N1—C1—C2—C3172.24 (9)
C2—C3—C4—C9177.84 (10)O1—C1—C2—C38.45 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzyl ring C11–C16.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.522.8559 (11)101
N1—H1···O1i0.889 (14)2.009 (14)2.880 (1)166.3 (13)
C2—H2···O1i0.952.453.2126 (11)138
C10—H10B···Cg1ii0.992.813.7058 (10)151
C7—H7···Cg1iii0.952.883.6303 (12)137
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzyl ring C11–C16.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.522.8559 (11)101
N1—H1···O1i0.889 (14)2.009 (14)2.880 (1)166.3 (13)
C2—H2···O1i0.952.453.2126 (11)138
C10—H10B···Cg1ii0.992.813.7058 (10)151
C7—H7···Cg1iii0.952.883.6303 (12)137
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H15NO
Mr237.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.4817 (6), 12.3107 (6), 8.5737 (4)
β (°) 94.276 (1)
V3)1313.75 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.1 × 0.1
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.705, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
19856, 3249, 3010
Rint0.018
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.04
No. of reflections3249
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.18

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2013 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2015b) and PLATON (Spek, 2009).

 

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKim, S. H., Lim, C. M., Kim, S. M. & Kang, K. W. (2014). PCT Int. Appl. WO 2014129874.  Google Scholar
First citationKristan, K., Starčević, S., Brunskole, M., Rižner, T. L. & Gobec, S. (2006). Mol. Cell. Endocrinol. 248, 239–241.  CrossRef PubMed CAS Google Scholar
First citationLagerlund, O., Mantel, M. L. H. & Larhed, M. (2009). Tetrahedron, 65, 7646–7652.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaito, Y., Ouchi, H. & Takahata, H. (2008). Tetrahedron, 64, 11129–11135.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Z.-H., Li, N.-G., Shi, Q.-P., Tang, H., Tang, Y.-P., Li, W., Yin, L., Yang, J.-P. & Duan, J.-A. (2013). Bioorg. Med. Chem. Lett. 23, 1206–1211.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds