organic compounds
3-Phenoxymethyl-6-phenyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole
aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C16H12N4OS, the bicyclic triazolothiadiazole core is approximately planar, with an r.m.s. deviation of 0.018 Å. The phenyl rings are inclined to its mean plane by 7.66 (7) and 71.79 (7)°. In the crystal, molecules are linked via a C—H⋯π interaction and a π–π interaction [intercentroid distance = 3.2942 (9) Å] involving inversion-related triazole rings. These interactions result in the formation of chains propagating along [10-1].
Keywords: crystal structure; N-bridged heterocycles; triazolo thiadiazoles; triazoles; thiadiazoles; C—H⋯π interactions; π–π interactions.
CCDC reference: 1473995
Structure description
N-Bridged heterocycles derived from 1,2,4-triazoles have applications in medicine, agriculture and industry (Farghaly et al., 2006). Heterocycles bearing a triazole or 1,3,4-thiadiazole moiety are reported to show a wide spectrum of biological activity (Suresh Kumar et al., 2010; Mallikarjuna et al., 2009) such as anti-bacterial (Abdel-Rahman & Farghaly, 2004), anti-aggregator agents (Czarnocka-Janowicz et al., 1991), anti-viral (Srivastava et al., 1991) and anti-inflammatory (Unangst et al., 1992) activities. Triazolothiadiazoles in particular are reported to possess anti-bacterial, antifungal, CNS depressant, anti-viral, analgesic, anti-tuberculosis and plant-growth regulatory effects (Abdallah et al., 2005; El-Khawass & Habib 1989; Mishra, 1987; Shiradkar & Kale, 2006). Based on such facts, we report herein on the synthesis and of the title compound.
In the title molecule, (Fig. 1), the bicyclic triazolothiadiazole core is approximately planar with an r.m.s. deviation of 0.018 Å and a maximum deviation of 0.021 (1) Å for atom N2. The phenyl rings, C2–C7 and C11–C16, are inclined to its mean plane by 7.66 (7) and 71.79 (7)°, respectively.
In the crystal, molecules are linked via a C—H⋯π interaction (Fig. 2 and Table 1) and by π–π interactions between triazole rings [Cg2⋯Cg2i = 3.2942 (9) Å, Cg2 is the centroid of ring N2–N4/C8/C9, symmetry code (i): − x + 1, − y + 1, − z + 2]; see Fig. 3. These interactions result in the formation of chains propagating along [10].
Synthesis and crystallization
A mixture of 4-amino-3-phenoxymethyl-1,2,4-triazoline-5-thione (2.22 g, 0.01 mol) and benzoic acid (1.22 g, 0.01 mol) in phosphorus oxychloride (20 ml) was heated under reflux on a steam bath for 4 h and then left to cool. The reaction mixture was poured portionwise into ice–water (50 ml) with stirring and allowed to stand at room temperature for 2 h. The solid that formed was collected by filtration and crystallized from ethanol as colorless plates (yield: 82%; m.p.: 482–483 K). IR: 1600 cm−1 (C=N). 1H NMR (CDCl3): δ 6.7–7.5 (m, 10 H, Ar—H), δ 5.0 (s, 2H, OCH2).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1473995
10.1107/S241431461600626X/su4033sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S241431461600626X/su4033Isup2.hkl
Supporting information file. DOI: 10.1107/S241431461600626X/su4033Isup3.cml
A mixture of 4-amino-3-phenoxymethyl-1,2,4-triazoline-5-thione (2.22 g, 0.01 mol) and benzoic acid (1.22 g, 0.01 mol) in phosphorus oxychloride (20 ml) was heated under reflux on a steam bath for 4 h and then left to cool. The reaction mixture was poured portionwise into ice–water (50 ml) with stirring and allowed to stand at room temperature for 2 h. The solid that formed was collected by filtration and crystallized from ethanol as colorless plates (yield: 82%; m.p.: 482–483 K). IR: 1600 cm-1 (C═N). 1H NMR (CDCl3): δ 6.7–7.5 (m, 10 H, Ar—H), δ 5.0 (s, 2H, OCH2).
N-Bridged heterocycles derived from 1,2,4-triazoles have applications in medicine, agriculture and industry (Farghaly et al., 2006). Heterocycles bearing a triazole or 1,3,4-thiadiazole moiety are reported to show a wide spectrum of biological activity (Suresh Kumar et al., 2010; Mallikarjuna et al., 2009) such as anti-bacterial (Abdel-Rahman & Farghaly, 2004), anti-aggregator agents (Czarnocka-Janowicz et al., 1991), anti-viral (Srivastava et al., 1991) and anti-inflammatory (Unangst et al., 1992) activities. Triazolothiadiazoles in particular are reported to possess anti-bacterial, antifungal, CNS depressant, anti-viral, analgesic, anti-tuberculosis and plant-growth regulatory effects (Abdallah et al., 2005; El-Khawass & Habib 1989; Mishra, 1987; Shiradkar & Kale, 2006). Based on such facts, we report herein on the synthesis and
of the title compound.In the title molecule, (Fig. 1), the bicyclic triazolothiadiazole core is approximately planar with an r.m.s. deviation of 0.018 Å and a maximum deviation of 0.021 (1) Å for atom N2. The phenyl rings, C2–C7 and C11–C16, are inclined to its mean plane by 7.66 (7) and 71.79 (7)°, respectively.
In the crystal, molecules are linked via a C—H···π interaction (Fig. 2 and Table 1) and by π–π interactions between triazole rings [Cg2···Cg2i = 3.2942 (9) Å, Cg2 is the centroid of ring N2–N4/C8/C9, symmetry code (i): - x + 1, - y + 1, - z + 2]; see Fig. 3. These interactions result in the formation of chains propagating along [101].
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing the atom labeling and 50% probability displacement ellipsoids. | |
Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms have been omitted for clarity. | |
Fig. 3. Details of the offset π-stacking in the crystal of the title compound. |
C16H12N4OS | F(000) = 640 |
Mr = 308.36 | Dx = 1.428 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 5.9850 (3) Å | Cell parameters from 7818 reflections |
b = 21.0709 (10) Å | θ = 4.2–72.5° |
c = 11.5617 (5) Å | µ = 2.07 mm−1 |
β = 100.423 (2)° | T = 150 K |
V = 1433.98 (12) Å3 | Plate, colourless |
Z = 4 | 0.30 × 0.16 × 0.02 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2799 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2464 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.5°, θmin = 4.2° |
ω scans | h = −7→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −22→25 |
Tmin = 0.79, Tmax = 0.97 | l = −14→14 |
10736 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0407P)2 + 0.5423P] where P = (Fo2 + 2Fc2)/3 |
2799 reflections | (Δ/σ)max = 0.002 |
199 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C16H12N4OS | V = 1433.98 (12) Å3 |
Mr = 308.36 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 5.9850 (3) Å | µ = 2.07 mm−1 |
b = 21.0709 (10) Å | T = 150 K |
c = 11.5617 (5) Å | 0.30 × 0.16 × 0.02 mm |
β = 100.423 (2)° |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2799 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | 2464 reflections with I > 2σ(I) |
Tmin = 0.79, Tmax = 0.97 | Rint = 0.038 |
10736 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.20 e Å−3 |
2799 reflections | Δρmin = −0.30 e Å−3 |
199 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.80639 (6) | 0.53901 (2) | 0.80341 (3) | 0.03014 (13) | |
O1 | 0.27388 (19) | 0.32989 (6) | 0.83039 (10) | 0.0355 (3) | |
N1 | 0.4069 (2) | 0.48387 (6) | 0.74636 (11) | 0.0293 (3) | |
N2 | 0.5213 (2) | 0.45919 (6) | 0.85076 (11) | 0.0273 (3) | |
N3 | 0.8120 (2) | 0.45577 (6) | 0.99887 (12) | 0.0315 (3) | |
N4 | 0.6450 (2) | 0.41284 (6) | 1.01880 (12) | 0.0327 (3) | |
C1 | 0.5389 (3) | 0.52624 (7) | 0.71208 (14) | 0.0286 (3) | |
C2 | 0.4730 (3) | 0.56291 (8) | 0.60310 (13) | 0.0308 (3) | |
C3 | 0.6286 (3) | 0.60294 (9) | 0.56407 (15) | 0.0378 (4) | |
H3 | 0.7784 | 0.6067 | 0.6079 | 0.045* | |
C4 | 0.5652 (4) | 0.63750 (10) | 0.46100 (17) | 0.0454 (5) | |
H4 | 0.6722 | 0.6645 | 0.4341 | 0.055* | |
C5 | 0.3467 (4) | 0.63270 (10) | 0.39754 (16) | 0.0473 (5) | |
H5 | 0.3035 | 0.6566 | 0.3274 | 0.057* | |
C6 | 0.1908 (3) | 0.59298 (10) | 0.43620 (16) | 0.0452 (5) | |
H6 | 0.0409 | 0.5896 | 0.3922 | 0.054* | |
C7 | 0.2524 (3) | 0.55821 (9) | 0.53848 (15) | 0.0374 (4) | |
H7 | 0.1448 | 0.5312 | 0.5648 | 0.045* | |
C8 | 0.7310 (2) | 0.48242 (7) | 0.89660 (14) | 0.0280 (3) | |
C9 | 0.4735 (3) | 0.41535 (7) | 0.92963 (14) | 0.0295 (3) | |
C10 | 0.2645 (3) | 0.37680 (8) | 0.91792 (15) | 0.0331 (4) | |
H10A | 0.2545 | 0.3563 | 0.9939 | 0.040* | |
H10B | 0.1290 | 0.4040 | 0.8946 | 0.040* | |
C11 | 0.1005 (3) | 0.28603 (7) | 0.81265 (13) | 0.0279 (3) | |
C12 | −0.0781 (3) | 0.28504 (8) | 0.87418 (14) | 0.0336 (4) | |
H12 | −0.0861 | 0.3155 | 0.9339 | 0.040* | |
C13 | −0.2456 (3) | 0.23880 (9) | 0.84714 (15) | 0.0393 (4) | |
H13 | −0.3679 | 0.2376 | 0.8893 | 0.047* | |
C14 | −0.2361 (3) | 0.19474 (8) | 0.75990 (15) | 0.0386 (4) | |
H14 | −0.3520 | 0.1636 | 0.7415 | 0.046* | |
C15 | −0.0568 (3) | 0.19615 (8) | 0.69943 (15) | 0.0360 (4) | |
H15 | −0.0500 | 0.1659 | 0.6392 | 0.043* | |
C16 | 0.1130 (3) | 0.24126 (8) | 0.72580 (14) | 0.0329 (4) | |
H16 | 0.2371 | 0.2416 | 0.6849 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0238 (2) | 0.0329 (2) | 0.0308 (2) | −0.00024 (14) | −0.00293 (15) | −0.00098 (15) |
O1 | 0.0313 (6) | 0.0377 (6) | 0.0394 (6) | −0.0097 (5) | 0.0120 (5) | −0.0135 (5) |
N1 | 0.0244 (6) | 0.0340 (7) | 0.0268 (6) | 0.0049 (5) | −0.0031 (5) | −0.0046 (5) |
N2 | 0.0220 (6) | 0.0283 (7) | 0.0291 (6) | 0.0018 (5) | −0.0021 (5) | −0.0039 (5) |
N3 | 0.0264 (6) | 0.0317 (7) | 0.0336 (7) | 0.0007 (5) | −0.0019 (5) | −0.0008 (5) |
N4 | 0.0300 (7) | 0.0314 (7) | 0.0348 (7) | 0.0016 (5) | 0.0007 (6) | −0.0020 (6) |
C1 | 0.0246 (7) | 0.0306 (8) | 0.0289 (8) | 0.0052 (6) | 0.0001 (6) | −0.0071 (6) |
C2 | 0.0308 (8) | 0.0325 (8) | 0.0275 (7) | 0.0081 (6) | 0.0008 (6) | −0.0058 (6) |
C3 | 0.0334 (9) | 0.0454 (10) | 0.0335 (8) | 0.0064 (7) | 0.0029 (7) | 0.0003 (7) |
C4 | 0.0489 (11) | 0.0502 (11) | 0.0383 (10) | 0.0095 (8) | 0.0109 (8) | 0.0069 (8) |
C5 | 0.0556 (12) | 0.0530 (12) | 0.0311 (9) | 0.0208 (9) | 0.0022 (8) | 0.0039 (8) |
C6 | 0.0422 (10) | 0.0549 (12) | 0.0331 (9) | 0.0162 (9) | −0.0074 (8) | −0.0048 (8) |
C7 | 0.0328 (9) | 0.0428 (10) | 0.0328 (8) | 0.0072 (7) | −0.0041 (7) | −0.0058 (7) |
C8 | 0.0221 (7) | 0.0284 (8) | 0.0312 (8) | 0.0018 (6) | −0.0014 (6) | −0.0052 (6) |
C9 | 0.0275 (8) | 0.0284 (8) | 0.0313 (8) | 0.0027 (6) | 0.0024 (6) | −0.0044 (6) |
C10 | 0.0302 (8) | 0.0344 (9) | 0.0348 (8) | −0.0028 (6) | 0.0063 (7) | −0.0091 (7) |
C11 | 0.0257 (7) | 0.0299 (8) | 0.0272 (7) | −0.0027 (6) | 0.0021 (6) | 0.0013 (6) |
C12 | 0.0321 (8) | 0.0407 (9) | 0.0283 (8) | −0.0030 (7) | 0.0063 (6) | −0.0024 (7) |
C13 | 0.0334 (9) | 0.0485 (11) | 0.0370 (9) | −0.0086 (7) | 0.0090 (7) | 0.0062 (8) |
C14 | 0.0396 (9) | 0.0360 (9) | 0.0379 (9) | −0.0111 (7) | 0.0010 (7) | 0.0048 (7) |
C15 | 0.0429 (9) | 0.0303 (9) | 0.0326 (8) | −0.0037 (7) | 0.0014 (7) | −0.0017 (7) |
C16 | 0.0343 (9) | 0.0346 (9) | 0.0308 (8) | −0.0031 (7) | 0.0081 (7) | −0.0025 (6) |
S1—C8 | 1.7210 (17) | C5—H5 | 0.9500 |
S1—C1 | 1.7716 (15) | C6—C7 | 1.383 (3) |
O1—C11 | 1.3772 (18) | C6—H6 | 0.9500 |
O1—C10 | 1.4229 (19) | C7—H7 | 0.9500 |
N1—C1 | 1.301 (2) | C9—C10 | 1.477 (2) |
N1—N2 | 1.3772 (18) | C10—H10A | 0.9900 |
N2—C8 | 1.362 (2) | C10—H10B | 0.9900 |
N2—C9 | 1.364 (2) | C11—C12 | 1.387 (2) |
N3—C8 | 1.320 (2) | C11—C16 | 1.390 (2) |
N3—N4 | 1.3976 (19) | C12—C13 | 1.392 (2) |
N4—C9 | 1.318 (2) | C12—H12 | 0.9500 |
C1—C2 | 1.470 (2) | C13—C14 | 1.379 (3) |
C2—C3 | 1.391 (3) | C13—H13 | 0.9500 |
C2—C7 | 1.398 (2) | C14—C15 | 1.383 (3) |
C3—C4 | 1.390 (3) | C14—H14 | 0.9500 |
C3—H3 | 0.9500 | C15—C16 | 1.385 (2) |
C4—C5 | 1.382 (3) | C15—H15 | 0.9500 |
C4—H4 | 0.9500 | C16—H16 | 0.9500 |
C5—C6 | 1.387 (3) | ||
C8—S1—C1 | 87.53 (7) | N3—C8—S1 | 139.50 (12) |
C11—O1—C10 | 116.52 (12) | N2—C8—S1 | 109.45 (11) |
C1—N1—N2 | 107.06 (12) | N4—C9—N2 | 108.78 (14) |
C8—N2—C9 | 105.86 (13) | N4—C9—C10 | 125.22 (15) |
C8—N2—N1 | 118.82 (13) | N2—C9—C10 | 125.99 (14) |
C9—N2—N1 | 135.27 (13) | O1—C10—C9 | 107.79 (13) |
C8—N3—N4 | 105.39 (13) | O1—C10—H10A | 110.1 |
C9—N4—N3 | 108.93 (13) | C9—C10—H10A | 110.1 |
N1—C1—C2 | 122.58 (14) | O1—C10—H10B | 110.1 |
N1—C1—S1 | 117.12 (12) | C9—C10—H10B | 110.1 |
C2—C1—S1 | 120.30 (12) | H10A—C10—H10B | 108.5 |
C3—C2—C7 | 119.53 (16) | O1—C11—C12 | 124.31 (14) |
C3—C2—C1 | 120.35 (15) | O1—C11—C16 | 115.17 (14) |
C7—C2—C1 | 120.12 (16) | C12—C11—C16 | 120.52 (15) |
C4—C3—C2 | 120.06 (17) | C11—C12—C13 | 119.05 (16) |
C4—C3—H3 | 120.0 | C11—C12—H12 | 120.5 |
C2—C3—H3 | 120.0 | C13—C12—H12 | 120.5 |
C5—C4—C3 | 120.15 (19) | C14—C13—C12 | 120.80 (16) |
C5—C4—H4 | 119.9 | C14—C13—H13 | 119.6 |
C3—C4—H4 | 119.9 | C12—C13—H13 | 119.6 |
C4—C5—C6 | 120.02 (17) | C13—C14—C15 | 119.57 (16) |
C4—C5—H5 | 120.0 | C13—C14—H14 | 120.2 |
C6—C5—H5 | 120.0 | C15—C14—H14 | 120.2 |
C7—C6—C5 | 120.29 (18) | C14—C15—C16 | 120.60 (16) |
C7—C6—H6 | 119.9 | C14—C15—H15 | 119.7 |
C5—C6—H6 | 119.9 | C16—C15—H15 | 119.7 |
C6—C7—C2 | 119.95 (18) | C15—C16—C11 | 119.45 (16) |
C6—C7—H7 | 120.0 | C15—C16—H16 | 120.3 |
C2—C7—H7 | 120.0 | C11—C16—H16 | 120.3 |
N3—C8—N2 | 111.04 (14) | ||
C1—N1—N2—C8 | 1.29 (18) | C9—N2—C8—S1 | −179.52 (10) |
C1—N1—N2—C9 | 178.30 (16) | N1—N2—C8—S1 | −1.71 (17) |
C8—N3—N4—C9 | −0.08 (17) | C1—S1—C8—N3 | −177.26 (19) |
N2—N1—C1—C2 | −179.93 (13) | C1—S1—C8—N2 | 1.16 (11) |
N2—N1—C1—S1 | −0.27 (16) | N3—N4—C9—N2 | −0.30 (17) |
C8—S1—C1—N1 | −0.54 (13) | N3—N4—C9—C10 | 179.72 (14) |
C8—S1—C1—C2 | 179.13 (13) | C8—N2—C9—N4 | 0.55 (17) |
N1—C1—C2—C3 | −173.41 (15) | N1—N2—C9—N4 | −176.72 (15) |
S1—C1—C2—C3 | 6.9 (2) | C8—N2—C9—C10 | −179.47 (15) |
N1—C1—C2—C7 | 7.2 (2) | N1—N2—C9—C10 | 3.3 (3) |
S1—C1—C2—C7 | −172.46 (12) | C11—O1—C10—C9 | 175.43 (13) |
C7—C2—C3—C4 | −0.6 (3) | N4—C9—C10—O1 | −106.96 (18) |
C1—C2—C3—C4 | −179.97 (16) | N2—C9—C10—O1 | 73.1 (2) |
C2—C3—C4—C5 | 0.6 (3) | C10—O1—C11—C12 | −0.2 (2) |
C3—C4—C5—C6 | −0.5 (3) | C10—O1—C11—C16 | 179.35 (14) |
C4—C5—C6—C7 | 0.3 (3) | O1—C11—C12—C13 | 179.05 (15) |
C5—C6—C7—C2 | −0.2 (3) | C16—C11—C12—C13 | −0.4 (2) |
C3—C2—C7—C6 | 0.4 (2) | C11—C12—C13—C14 | −0.5 (3) |
C1—C2—C7—C6 | 179.76 (15) | C12—C13—C14—C15 | 0.7 (3) |
N4—N3—C8—N2 | 0.43 (17) | C13—C14—C15—C16 | 0.1 (3) |
N4—N3—C8—S1 | 178.84 (15) | C14—C15—C16—C11 | −1.0 (3) |
C9—N2—C8—N3 | −0.62 (17) | O1—C11—C16—C15 | −178.35 (14) |
N1—N2—C8—N3 | 177.19 (12) | C12—C11—C16—C15 | 1.2 (2) |
Cg is the centroid of the C11–C16 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cgi | 0.95 | 2.79 | 3.633 (2) | 148 |
Symmetry code: (i) −x, −y+1, −z+1. |
Cg is the centroid of the C11–C16 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cgi | 0.95 | 2.79 | 3.633 (2) | 148 |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H12N4OS |
Mr | 308.36 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 5.9850 (3), 21.0709 (10), 11.5617 (5) |
β (°) | 100.423 (2) |
V (Å3) | 1433.98 (12) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.07 |
Crystal size (mm) | 0.30 × 0.16 × 0.02 |
Data collection | |
Diffractometer | Bruker D8 VENTURE PHOTON 100 CMOS |
Absorption correction | Multi-scan (SADABS; Bruker, 2016) |
Tmin, Tmax | 0.79, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10736, 2799, 2464 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.619 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.089, 1.03 |
No. of reflections | 2799 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.30 |
Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Abdallah, M. A., Riyadh, S. M., Abbas, I. M. S. & Gomha, M. (2005). Jnl Chin. Chem. Soc. 52, 987–994. CrossRef CAS Google Scholar
Abdel-Rahman, & Farghaly, A. H. (2004). Jnl Chin. Chem. Soc. 51, 147–156. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Czarnocka-Janowicz, A., Foks, H., Nasal, A., Petrusewicz, J., Damasiewicz, B., Radwańska, A. & Kaliszan, R. (1991). Pharmazie, 46, 109–112. PubMed CAS Google Scholar
El-Khawass, S. M. & Habib, N. S. (1989). J. Heterocycl. Chem. 26, 177–181. CAS Google Scholar
Farghaly, A. R., De Clercq, E. D. & El-Kashef, H. (2006). Arkivoc, 10, 137–151. CrossRef Google Scholar
Mallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739–4746. Web of Science CrossRef PubMed CAS Google Scholar
Mishra, B. (1987). Indian J. Chem. Sect. B, 27B, 576–580. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiradkar, M. & Kale, R. (2006). Indian J. Chem. Sect. B, 45, 1009–1013. Google Scholar
Srivastava, J., Swarup, S., Saxena, V. K. & Chaudhary, B. L. (1991). J. Indian Chem. Soc. 68, 103–107. CAS Google Scholar
Suresh Kumar, G. V., Rajendraprasad, Y., Mallikarjuna, Y., Chandrashekar, B. P. & Kistayya, C. (2010). Eur. J. Med. Chem. 45, 2063–2074. CrossRef CAS PubMed Google Scholar
Unangst, P. C., Shrum, G. P., Connor, D. T., Dyer, R. D. & Schrier, D. J. (1992). J. Med. Chem. 35, 3691–3698. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.