organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 3-amino-4-(4-chloro­phen­yl)-2-[(4-meth­­oxy­phen­yl)carbamo­yl]-6-phenyl­thieno[2,3-b]pyridine-5-carboxyl­ate

aChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen
*Correspondence e-mail: s.mohamed@mmu.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 April 2016; accepted 18 April 2016; online 26 April 2016)

The conformation of the title mol­ecule, C30H24ClN3O4S, is partially determined by an intra­molecular N—H⋯O hydrogen bond, forming an S(6) loop, and an N—H⋯π inter­action involving the centroid of the 4-chloro­phenyl ring. The thieno­pyridine bicyclic system is almost planar with an r.m.s. deviation of 0.019 Å. Its mean plane is inclined to the phenyl ring, the 4-chloro­phenyl ring and the 4-meth­oxy­phenyl ring by 36.19 (7), 81.67 (7) and 12.75 (7)°, respectively. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(20) ring motif. Within the dimers, which stack along the b-axis direction, there is a weak ππ inter­action [centroid-to-centroid distance = 3.7936 (9) Å] involving inversion-related thio­phene and pyridine rings.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many thieno[2,3-b]pyridines have been synthesized and investigated in relation with their biological and pharmacological importance (Bakhite, 2003[Bakhite, E. A. (2003). Phosphorus Sulfur Silicon, 178, 929-992.]; Litvinov et al., 2005[Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864-904.]). Some of them have been proved to possess anti­viral (Schnute et al., 2007[Schnute, M. E., Anderson, D. J., Brideau, R. J., Ciske, F. L., Collier, S. A., Cudahy, M. M., Eggen, M., ean , Genin, M. J., Hopkins, T. A., Judge, T. M., Kim, E. J., Knechtel, M. L., Nair, S. K., Nieman, J. A., Oien, N. L., Scott, A., Tanis, S. P., Vaillancourt, V. A., Wathen, M. W. & Wieber, J. L. (2007). Bioorg. Med. Chem. Lett. 17, 3349-3353.]; Attaby et al., 2007[Attaby, F. A., Elghandour, A. H. H., Ali, M. A. & Ibrahem, Y. M. (2007). Phosphorus Sulfur Silicon, 182, 695-709.]), anti­diabetic (Bahekar et al., 2007[Bahekar, R. H., Jain, M. R., Jadav, P. A., Prajapati, V. M., Patel, D. N., Gupta, A. A., Sharma, A., Tom, R., Bandyopadhya, D., Modi, H. & Patel, P. R. (2007). Bioorg. Med. Chem. 15, 6782-6795.]), anti­microbial (Abdel-Rahman et al., 2003[Abdel-Rahman, A. E., Bakhite, E. A. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372-377.]; Hussein et al., 2000[Hussein, A. M., Abu-shanab, F. A. & Ishak, E. A. (2000). Phosphorus Sulfur Silicon, 159, 55-68.]), anti­tumor (Hayakawa et al., 2004[Hayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H. & Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 3411-3414.]), anti­parasitic (Bernardino et al., 2006[Bernardino, A. M. R, Pinheiro, L. C. da S., Rodrigues, C. R., Loureiro, N. I., Castro, H. C., Lanfredi-Rangel, A., Sabatini-Lopes, J., Borges, J. C., Carvalho, J. M., Romeiro, G. A., Ferreira, V. F., Frugulhetti, I. C. P. P. & Vannier-Santos, M. A. (2006). Bioorg. Med. Chem. 14, 5765-5770.]) and neurotropic activities (Krauze et al.,1999[Krauze, A., Gērmane, S., Eberlinš, O., Šturms, I., Klusā, V. & Duburs, G. (1999). Eur. J. Med. Chem. 34, 301-310.]). We report herein on the synthesis and crystal structure of the new title thieno­pyridine derivative.

The conformation of the title mol­ecule (Fig. 1[link]) is partially determined by the intra­molecular N2—H2B⋯O3 hydrogen bond and the N2—H2Aπ inter­action (H2ACg = 2.90 Å; N2—H2ACg = 152°, Cg is the centroid of the 4-chloro­phenyl ring; see Table 1[link]). The central thieno­pyridine bicyclic moiety (S1/N1/C1–C7) is planar to within 0.025 (1) Å, with an r.m.s. deviation of 0.019 Å. The phenyl ring (C8–C13) and the 4-chloro­phenyl ring (C17–C22) are inclined to the aforementioned plane by 36.19 (6) and 81.67 (7)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3 0.88 (2) 2.07 (2) 2.756 (2) 133.6 (19)
N2—H2ACg 0.88 (2) 2.90 3.698 152
N3—H3⋯O1i 0.88 (2) 2.15 (2) 2.912 (2) 145 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and 50% probability displacement ellipsoids. The N—H⋯O hydrogen bond and the N—H⋯π inter­action are shown as dashed lines (see Table 1[link]).

In the crystal, mol­ecules are associated through pairs of N3—H3⋯O1i hydrogen bonds (Table 1[link] and Fig. 2[link]), generating inversion dimers with an [R_{2}^{2}](20) loop. Within the dimers, which stack along the b-axis direction, there is a weak parallel slipped ππ inter­action involving inversion-related thio­phene and pyridine rings [Cg1⋯Cg2ii = 3.7936 (9) Å, inter­planar distance = 3.5684 (6) Å, slippage 1.371 Å, Cg1 and Cg2 are the centroids of rings S1/C4–C7 and N1/C1–C5, respectively; symmetry code: (ii) − x + 1, − y + 1, − z + 1].

[Figure 2]
Figure 2
The crystal packing of the title compound projected onto (110), with the N—H⋯O hydrogen bonds shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

The title compound was prepared by heating equimolar amounts of ethyl 1,2-di­hydro-4-(4-chloro­phen­yl)-3-cyano-6-phenyl-2-thioxo­pyridine-5-carboxyl­ate and chloro-N-(4-meth­oxy-phen­yl)acetamide (5 mmol) in absolute ethanol (20 ml) containing sodium ethoxide (0.5 g) on a steam bath for 30 min. The product which separated on cooling was collected and recrystallized from ethanol solution (yield: 82%) giving pale-yellow needle-like crystals.

Spectroscopic and analytical data: IR: 3500, 3300 (NH2), 3200 (NH), 1720 (C=O, ester), 1660 (C=O, amide) cm-1. 1H NMR (CDCl3): δ 9.00 (s, 1H, NH), 7.0–7.8 (m, 13H, ArH), 5.7(s, 2H, NH2), 3.9–4.2 (q, 2H, OCH2), 3.8 (s, 3H, OCH3), 1.0–1.2 (t, 3H, CH3) p.p.m. Elemental analysis calculated for C31H25ClN2O4S (%): C, 66.84; H, 4.52; N, 5.03; S, 5.76. Found (%): C, 67.01; H, 4.44; N, 5.13; S, 5.49; m.p. 466–467 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C30H24ClN3O4S
Mr 558.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.8388 (3), 17.7686 (6), 16.9487 (6)
β (°) 94.159 (2)
V3) 2654.84 (16)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.36
Crystal size (mm) 0.16 × 0.07 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.75, 0.85
No. of measured, independent and observed [I > 2σ(I)] reflections 20325, 5277, 4468
Rint 0.040
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.02
No. of reflections 5277
No. of parameters 367
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

The title compound was prepared by heating equimolar amounts of ethyl 1,2-dihydro-4-(4-chlorophenyl)-3-cyano-6-phenyl-2-thioxopyridine-5-carboxylate and chloro-N-(4-methoxy-phenyl)acetamide (5 mmol) in absolute ethanol (20 ml) containing sodium ethoxide (0.5 g) on a steam bath for 30 min. The product which separated on cooling was collected and recrystallized from ethanol. (yield: 82%) giving pale-yellow needle-like crystals.

Spectroscopic and analytical data: IR: 3500, 3300 (NH2), 3200 (NH), 1720 (CO, ester), 1660 (CO, amide) cm-1. 1H NMR (CDCl3): δ 9.00 (s, 1H, NH), 7.0–7.8 (m, 13H, ArH), 5.7(s, 2H, NH2), 3.9–4.2 (q, 2H, OCH2), 3.8 (s, 3H, OCH3), 1.0–1.2 (t, 3H, CH3) p.p.m. Elemental analysis calculated for C31H25ClN2O4S (%): C, 66.84; H, 4.52; N, 5.03; S, 5.76. Found (%): C, 67.01; H, 4.44; N, 5.13; S, 5.49; m.p. 466–467 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Many thieno[2,3-b]pyridines have been synthesized and investigated in relation with their biological and pharmacological importance (Bakhite, 2003; Litvinov et al., 2005). Some of them have been proved to possess antiviral (Schnute et al., 2007; Attaby et al., 2007), antidiabetic (Bahekar et al., 2007), antimicrobial (Abdel-Rahman et al., 2003; Hussein et al., 2000), antitumor (Hayakawa et al., 2004), antiparasitic (Bernardino et al., 2006) and neurotropic activities (Krauze et al.,1999). In view of the above facts, we report herein on the synthesis and crystal structure of the new title thienopyridine derivative.

The conformation of the title molecule (Fig. 1) is partially determined by the intramolecular N2—H2B···O3 hydrogen bond and the N2—H2A···π interaction (H2A···Cg = 2.90 Å; N2—H2A···Cg = 152°, Cg is the centroid of the 4-chlorophenyl ring; see Table 1). The central thienopyridine bicyclic moiety (S1/N1/C1–C7) is planar to within 0.025 (1) Å, with an r.m.s. deviation of 0.019 Å. The phenyl ring (C8–C13) and the 4-chlorophenyl ring (C17–C22) are inclined to the aforementioned plane by 36.19 (6) and 81.67 (7)°, respectively.

In the crystal, molecules are associated through pairs of intermolecular N3—H3···O1i hydrogen bonds (Table 1 and Fig. 2), generating inversion dimers with an R22(20) loop. Within the dimers, which stack along the b-axis direction, there is a weak parallel slipped ππ interaction involving inversion-related thiophene and pyridine rings [Cg1···Cg2ii = 3.7936 (9) Å, interplanar distance = 3.5684 (6) Å, slippage 1.371 Å, Cg1 and Cg2 are the centroids of rings S1/C4–C7 and N1/C1–C5, respectively; symmetry code: (ii) - x + 1, - y + 1, - z + 1].

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling and 50% probability displacement ellipsoids. The N—H···O hydrogen bond and the N—H···π interaction are shown as dashed lines (see Table 1).
[Figure 2] Fig. 2. The crystal packing of the title compound projected onto (110), with the N—H···O hydrogen bonds shown as dashed lines (see Table 1).
Ethyl 3-amino-4-(4-chlorophenyl)-2-[(4-methoxyphenyl)carbamoyl]-6-phenylthieno[2,3-b]pyridine-5-carboxylate top
Crystal data top
C30H24ClN3O4SF(000) = 1160
Mr = 558.03Dx = 1.396 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.8388 (3) ÅCell parameters from 9974 reflections
b = 17.7686 (6) Åθ = 3.6–74.3°
c = 16.9487 (6) ŵ = 2.36 mm1
β = 94.159 (2)°T = 150 K
V = 2654.84 (16) Å3Needle, pale-yellow
Z = 40.16 × 0.07 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5277 independent reflections
Radiation source: INCOATEC IµS micro–focus source4468 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 3.6°
ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1922
Tmin = 0.75, Tmax = 0.85l = 1720
20325 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0439P)2 + 1.0305P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5277 reflectionsΔρmax = 0.30 e Å3
367 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00154 (15)
Crystal data top
C30H24ClN3O4SV = 2654.84 (16) Å3
Mr = 558.03Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.8388 (3) ŵ = 2.36 mm1
b = 17.7686 (6) ÅT = 150 K
c = 16.9487 (6) Å0.16 × 0.07 × 0.07 mm
β = 94.159 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
4468 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.85Rint = 0.040
20325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
5277 reflectionsΔρmin = 0.22 e Å3
367 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93057 (7)0.55123 (3)0.07821 (3)0.05299 (16)
S10.61224 (5)0.59156 (2)0.59762 (2)0.02643 (11)
O10.74915 (13)0.32446 (7)0.34507 (7)0.0320 (3)
O20.98542 (13)0.37180 (7)0.36461 (7)0.0322 (3)
O30.64084 (15)0.78617 (7)0.48736 (7)0.0366 (3)
O40.31751 (16)1.03614 (7)0.69484 (8)0.0399 (3)
N10.70552 (15)0.45194 (7)0.56600 (7)0.0254 (3)
N20.70828 (18)0.66939 (9)0.38878 (9)0.0333 (3)
H2A0.763 (2)0.6506 (13)0.3521 (13)0.044 (6)*
H2B0.704 (2)0.7185 (14)0.3956 (13)0.048 (6)*
N30.50338 (17)0.75521 (8)0.59171 (8)0.0295 (3)
H30.461 (3)0.7179 (13)0.6165 (13)0.049 (6)*
C10.76387 (17)0.40248 (9)0.51642 (9)0.0247 (3)
C20.79742 (17)0.42332 (9)0.43908 (9)0.0245 (3)
C30.77840 (17)0.49702 (9)0.41263 (9)0.0237 (3)
C40.72153 (17)0.54956 (9)0.46494 (9)0.0237 (3)
C50.68559 (17)0.52221 (9)0.53961 (9)0.0241 (3)
C60.63015 (18)0.65820 (9)0.52280 (9)0.0268 (3)
C70.68925 (18)0.62898 (9)0.45635 (9)0.0261 (3)
C80.79395 (19)0.32535 (9)0.54762 (9)0.0269 (3)
C90.6953 (2)0.29235 (10)0.59818 (10)0.0314 (4)
H90.61030.31960.61410.038*
C100.7224 (2)0.21932 (10)0.62509 (11)0.0401 (4)
H100.65500.19660.65920.048*
C110.8467 (3)0.17944 (10)0.60255 (11)0.0427 (5)
H110.86270.12910.62010.051*
C120.9478 (2)0.21265 (11)0.55452 (11)0.0407 (4)
H121.03430.18560.54010.049*
C130.9221 (2)0.28560 (10)0.52754 (10)0.0341 (4)
H130.99220.30870.49520.041*
C140.83919 (18)0.36646 (9)0.37896 (9)0.0260 (3)
C151.0348 (2)0.32705 (13)0.29932 (12)0.0469 (5)
H15A1.12610.35040.27920.056*
H15B0.95390.32680.25570.056*
C161.0705 (3)0.24785 (15)0.32371 (17)0.0703 (8)
H16A1.11030.22060.27940.105*
H16B0.97800.22310.33900.105*
H16C1.14660.24790.36870.105*
C170.81286 (17)0.51549 (9)0.32963 (9)0.0244 (3)
C180.70985 (19)0.49708 (10)0.26706 (10)0.0313 (4)
H180.61440.47610.27730.038*
C190.7451 (2)0.50915 (11)0.18947 (10)0.0363 (4)
H190.67400.49690.14670.044*
C200.8838 (2)0.53903 (10)0.17525 (10)0.0320 (4)
C210.9873 (2)0.55861 (11)0.23643 (11)0.0367 (4)
H211.08210.58010.22570.044*
C220.9521 (2)0.54672 (10)0.31378 (10)0.0332 (4)
H221.02320.55990.35620.040*
C230.59152 (19)0.73833 (9)0.53178 (9)0.0279 (3)
C240.45659 (18)0.82863 (9)0.61364 (10)0.0277 (3)
C250.4291 (2)0.88638 (10)0.55940 (10)0.0306 (4)
H250.44310.87810.50500.037*
C260.3810 (2)0.95634 (10)0.58454 (10)0.0319 (4)
H260.36260.99590.54730.038*
C270.35998 (19)0.96856 (9)0.66361 (10)0.0295 (4)
C280.3847 (2)0.91026 (10)0.71805 (10)0.0313 (4)
H280.36870.91820.77220.038*
C290.43253 (19)0.84107 (9)0.69294 (10)0.0300 (4)
H290.44930.80140.73010.036*
C300.2967 (3)1.09714 (12)0.64081 (14)0.0578 (7)
H30A0.27241.14290.66970.087*
H30B0.21331.08550.60140.087*
H30C0.39011.10510.61410.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0659 (3)0.0684 (4)0.0269 (2)0.0027 (3)0.0192 (2)0.0049 (2)
S10.0347 (2)0.0231 (2)0.0222 (2)0.00087 (15)0.00689 (14)0.00014 (14)
O10.0371 (6)0.0291 (6)0.0303 (6)0.0034 (5)0.0048 (5)0.0045 (5)
O20.0303 (6)0.0372 (7)0.0298 (6)0.0027 (5)0.0067 (5)0.0067 (5)
O30.0489 (7)0.0249 (6)0.0383 (7)0.0011 (5)0.0182 (6)0.0045 (5)
O40.0604 (8)0.0258 (6)0.0358 (7)0.0099 (6)0.0179 (6)0.0026 (5)
N10.0294 (7)0.0247 (7)0.0219 (6)0.0003 (5)0.0013 (5)0.0007 (5)
N20.0491 (9)0.0246 (8)0.0280 (8)0.0039 (7)0.0146 (6)0.0050 (6)
N30.0384 (8)0.0217 (7)0.0295 (7)0.0007 (6)0.0106 (6)0.0003 (5)
C10.0266 (8)0.0249 (8)0.0222 (8)0.0003 (6)0.0001 (6)0.0003 (6)
C20.0262 (8)0.0259 (8)0.0216 (7)0.0019 (6)0.0021 (6)0.0014 (6)
C30.0244 (7)0.0258 (8)0.0210 (7)0.0004 (6)0.0016 (5)0.0006 (6)
C40.0256 (7)0.0241 (8)0.0216 (7)0.0005 (6)0.0030 (6)0.0019 (6)
C50.0267 (7)0.0245 (8)0.0213 (7)0.0008 (6)0.0022 (6)0.0004 (6)
C60.0314 (8)0.0241 (8)0.0253 (8)0.0008 (6)0.0049 (6)0.0014 (6)
C70.0281 (8)0.0251 (8)0.0255 (8)0.0003 (6)0.0042 (6)0.0021 (6)
C80.0349 (8)0.0250 (8)0.0201 (7)0.0020 (7)0.0023 (6)0.0001 (6)
C90.0409 (9)0.0287 (9)0.0243 (8)0.0003 (7)0.0003 (7)0.0008 (6)
C100.0564 (12)0.0317 (9)0.0316 (9)0.0057 (8)0.0012 (8)0.0070 (7)
C110.0667 (13)0.0251 (9)0.0345 (10)0.0073 (9)0.0074 (9)0.0028 (7)
C120.0530 (12)0.0352 (10)0.0332 (9)0.0158 (9)0.0020 (8)0.0001 (8)
C130.0409 (10)0.0332 (9)0.0280 (9)0.0076 (8)0.0012 (7)0.0020 (7)
C140.0313 (8)0.0246 (8)0.0225 (8)0.0021 (6)0.0039 (6)0.0021 (6)
C150.0409 (10)0.0611 (13)0.0406 (11)0.0006 (9)0.0151 (8)0.0203 (9)
C160.0657 (16)0.0581 (15)0.0864 (19)0.0208 (12)0.0002 (13)0.0338 (14)
C170.0282 (8)0.0238 (7)0.0218 (7)0.0027 (6)0.0055 (6)0.0008 (6)
C180.0281 (8)0.0390 (9)0.0269 (8)0.0030 (7)0.0037 (6)0.0032 (7)
C190.0375 (9)0.0473 (11)0.0237 (8)0.0020 (8)0.0003 (7)0.0000 (7)
C200.0394 (9)0.0329 (9)0.0247 (8)0.0037 (7)0.0103 (7)0.0026 (7)
C210.0309 (9)0.0447 (11)0.0356 (10)0.0041 (8)0.0104 (7)0.0037 (8)
C220.0306 (9)0.0400 (10)0.0291 (9)0.0052 (7)0.0025 (7)0.0016 (7)
C230.0334 (8)0.0243 (8)0.0263 (8)0.0008 (6)0.0052 (6)0.0003 (6)
C240.0309 (8)0.0224 (8)0.0302 (8)0.0001 (6)0.0055 (6)0.0018 (6)
C250.0378 (9)0.0305 (9)0.0239 (8)0.0037 (7)0.0042 (6)0.0005 (6)
C260.0380 (9)0.0292 (9)0.0289 (9)0.0065 (7)0.0048 (7)0.0039 (7)
C270.0345 (9)0.0239 (8)0.0310 (9)0.0033 (7)0.0076 (7)0.0007 (6)
C280.0408 (9)0.0293 (9)0.0248 (8)0.0013 (7)0.0096 (7)0.0005 (6)
C290.0390 (9)0.0250 (8)0.0267 (8)0.0004 (7)0.0069 (7)0.0034 (6)
C300.0977 (19)0.0300 (10)0.0491 (13)0.0253 (11)0.0278 (12)0.0084 (9)
Geometric parameters (Å, º) top
Cl1—C201.7383 (17)C11—H110.9500
S1—C51.7314 (16)C12—C131.388 (2)
S1—C61.7504 (16)C12—H120.9500
O1—C141.206 (2)C13—H130.9500
O2—C141.336 (2)C15—C161.494 (4)
O2—C151.455 (2)C15—H15A0.9900
O3—C231.236 (2)C15—H15B0.9900
O4—C271.375 (2)C16—H16A0.9800
O4—C301.422 (2)C16—H16B0.9800
N1—C51.334 (2)C16—H16C0.9800
N1—C11.344 (2)C17—C181.386 (2)
N2—C71.372 (2)C17—C221.394 (2)
N2—H2A0.88 (2)C18—C191.390 (2)
N2—H2B0.88 (2)C18—H180.9500
N3—C231.358 (2)C19—C201.373 (3)
N3—C241.426 (2)C19—H190.9500
N3—H30.88 (2)C20—C211.377 (3)
C1—C21.414 (2)C21—C221.386 (2)
C1—C81.486 (2)C21—H210.9500
C2—C31.390 (2)C22—H220.9500
C2—C141.500 (2)C24—C251.387 (2)
C3—C41.405 (2)C24—C291.394 (2)
C3—C171.497 (2)C25—C261.391 (2)
C4—C51.413 (2)C25—H250.9500
C4—C71.445 (2)C26—C271.383 (2)
C6—C71.377 (2)C26—H260.9500
C6—C231.475 (2)C27—C281.394 (2)
C8—C91.395 (2)C28—C291.377 (2)
C8—C131.398 (2)C28—H280.9500
C9—C101.390 (2)C29—H290.9500
C9—H90.9500C30—H30A0.9800
C10—C111.385 (3)C30—H30B0.9800
C10—H100.9500C30—H30C0.9800
C11—C121.384 (3)
C5—S1—C690.74 (7)O2—C15—H15B109.2
C14—O2—C15116.56 (13)C16—C15—H15B109.2
C27—O4—C30116.34 (14)H15A—C15—H15B107.9
C5—N1—C1116.72 (13)C15—C16—H16A109.5
C7—N2—H2A119.9 (15)C15—C16—H16B109.5
C7—N2—H2B113.5 (15)H16A—C16—H16B109.5
H2A—N2—H2B120 (2)C15—C16—H16C109.5
C23—N3—C24126.17 (14)H16A—C16—H16C109.5
C23—N3—H3118.5 (15)H16B—C16—H16C109.5
C24—N3—H3114.9 (15)C18—C17—C22119.13 (15)
N1—C1—C2121.60 (14)C18—C17—C3120.01 (14)
N1—C1—C8116.57 (14)C22—C17—C3120.73 (14)
C2—C1—C8121.82 (14)C17—C18—C19120.50 (16)
C3—C2—C1121.13 (14)C17—C18—H18119.7
C3—C2—C14116.44 (14)C19—C18—H18119.7
C1—C2—C14122.13 (14)C20—C19—C18119.34 (16)
C2—C3—C4117.55 (14)C20—C19—H19120.3
C2—C3—C17118.78 (14)C18—C19—H19120.3
C4—C3—C17123.62 (14)C19—C20—C21121.23 (16)
C3—C4—C5116.78 (14)C19—C20—Cl1119.40 (14)
C3—C4—C7131.47 (14)C21—C20—Cl1119.36 (14)
C5—C4—C7111.75 (14)C20—C21—C22119.42 (16)
N1—C5—C4126.12 (14)C20—C21—H21120.3
N1—C5—S1121.45 (12)C22—C21—H21120.3
C4—C5—S1112.43 (12)C21—C22—C17120.36 (16)
C7—C6—C23123.57 (14)C21—C22—H22119.8
C7—C6—S1113.39 (12)C17—C22—H22119.8
C23—C6—S1123.00 (12)O3—C23—N3123.41 (15)
N2—C7—C6124.19 (15)O3—C23—C6120.45 (15)
N2—C7—C4124.04 (15)N3—C23—C6116.12 (14)
C6—C7—C4111.70 (14)C25—C24—C29119.35 (15)
C9—C8—C13119.38 (15)C25—C24—N3122.96 (15)
C9—C8—C1120.17 (15)C29—C24—N3117.64 (15)
C13—C8—C1120.44 (15)C24—C25—C26120.06 (16)
C10—C9—C8119.59 (17)C24—C25—H25120.0
C10—C9—H9120.2C26—C25—H25120.0
C8—C9—H9120.2C27—C26—C25120.17 (16)
C11—C10—C9120.53 (18)C27—C26—H26119.9
C11—C10—H10119.7C25—C26—H26119.9
C9—C10—H10119.7O4—C27—C26124.71 (15)
C12—C11—C10120.22 (17)O4—C27—C28115.35 (15)
C12—C11—H11119.9C26—C27—C28119.93 (15)
C10—C11—H11119.9C29—C28—C27119.72 (15)
C11—C12—C13119.68 (18)C29—C28—H28120.1
C11—C12—H12120.2C27—C28—H28120.1
C13—C12—H12120.2C28—C29—C24120.74 (15)
C12—C13—C8120.51 (18)C28—C29—H29119.6
C12—C13—H13119.7C24—C29—H29119.6
C8—C13—H13119.7O4—C30—H30A109.5
O1—C14—O2124.83 (15)O4—C30—H30B109.5
O1—C14—C2123.65 (15)H30A—C30—H30B109.5
O2—C14—C2111.40 (13)O4—C30—H30C109.5
O2—C15—C16111.91 (18)H30A—C30—H30C109.5
O2—C15—H15A109.2H30B—C30—H30C109.5
C16—C15—H15A109.2
C5—N1—C1—C22.2 (2)C1—C8—C13—C12177.88 (16)
C5—N1—C1—C8176.70 (14)C15—O2—C14—O14.6 (2)
N1—C1—C2—C33.3 (2)C15—O2—C14—C2171.53 (15)
C8—C1—C2—C3175.53 (14)C3—C2—C14—O199.45 (19)
N1—C1—C2—C14170.19 (14)C1—C2—C14—O174.3 (2)
C8—C1—C2—C1411.0 (2)C3—C2—C14—O276.68 (17)
C1—C2—C3—C41.4 (2)C1—C2—C14—O2109.56 (17)
C14—C2—C3—C4172.46 (14)C14—O2—C15—C1683.3 (2)
C1—C2—C3—C17178.82 (14)C2—C3—C17—C1877.9 (2)
C14—C2—C3—C175.0 (2)C4—C3—C17—C1899.37 (19)
C2—C3—C4—C51.3 (2)C2—C3—C17—C2297.89 (19)
C17—C3—C4—C5176.03 (14)C4—C3—C17—C2284.8 (2)
C2—C3—C4—C7179.85 (16)C22—C17—C18—C190.4 (3)
C17—C3—C4—C72.8 (3)C3—C17—C18—C19175.48 (16)
C1—N1—C5—C40.7 (2)C17—C18—C19—C200.5 (3)
C1—N1—C5—S1179.70 (11)C18—C19—C20—C211.3 (3)
C3—C4—C5—N12.5 (2)C18—C19—C20—Cl1177.86 (14)
C7—C4—C5—N1178.43 (15)C19—C20—C21—C221.2 (3)
C3—C4—C5—S1178.46 (11)Cl1—C20—C21—C22177.99 (15)
C7—C4—C5—S10.62 (17)C20—C21—C22—C170.2 (3)
C6—S1—C5—N1178.69 (14)C18—C17—C22—C210.5 (3)
C6—S1—C5—C40.41 (12)C3—C17—C22—C21175.32 (16)
C5—S1—C6—C70.08 (13)C24—N3—C23—O31.1 (3)
C5—S1—C6—C23177.49 (14)C24—N3—C23—C6177.44 (15)
C23—C6—C7—N25.2 (3)C7—C6—C23—O316.0 (3)
S1—C6—C7—N2177.27 (13)S1—C6—C23—O3161.36 (13)
C23—C6—C7—C4177.81 (15)C7—C6—C23—N3165.42 (16)
S1—C6—C7—C40.25 (18)S1—C6—C23—N317.3 (2)
C3—C4—C7—N21.3 (3)C23—N3—C24—C2532.6 (3)
C5—C4—C7—N2177.58 (15)C23—N3—C24—C29149.90 (17)
C3—C4—C7—C6178.34 (16)C29—C24—C25—C261.3 (3)
C5—C4—C7—C60.56 (19)N3—C24—C25—C26178.83 (16)
N1—C1—C8—C936.8 (2)C24—C25—C26—C270.2 (3)
C2—C1—C8—C9144.34 (16)C30—O4—C27—C261.0 (3)
N1—C1—C8—C13142.32 (16)C30—O4—C27—C28177.92 (19)
C2—C1—C8—C1336.5 (2)C25—C26—C27—O4177.84 (17)
C13—C8—C9—C102.7 (2)C25—C26—C27—C281.0 (3)
C1—C8—C9—C10178.12 (15)O4—C27—C28—C29177.85 (16)
C8—C9—C10—C110.5 (3)C26—C27—C28—C291.1 (3)
C9—C10—C11—C121.7 (3)C27—C28—C29—C240.0 (3)
C10—C11—C12—C131.4 (3)C25—C24—C29—C281.2 (3)
C11—C12—C13—C80.9 (3)N3—C24—C29—C28178.88 (16)
C9—C8—C13—C123.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.88 (2)2.07 (2)2.756 (2)133.6 (19)
N2—H2A···Cg0.88 (2)2.903.698152
N3—H3···O1i0.88 (2)2.15 (2)2.912 (2)145 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.88 (2)2.07 (2)2.756 (2)133.6 (19)
N2—H2A···Cg0.88 (2)2.903.698152
N3—H3···O1i0.88 (2)2.15 (2)2.912 (2)145 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H24ClN3O4S
Mr558.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.8388 (3), 17.7686 (6), 16.9487 (6)
β (°) 94.159 (2)
V3)2654.84 (16)
Z4
Radiation typeCu Kα
µ (mm1)2.36
Crystal size (mm)0.16 × 0.07 × 0.07
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.75, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
20325, 5277, 4468
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.02
No. of reflections5277
No. of parameters367
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF–MRI Grant No 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbdel-Rahman, A. E., Bakhite, E. A. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372–377.  PubMed CAS Google Scholar
First citationAttaby, F. A., Elghandour, A. H. H., Ali, M. A. & Ibrahem, Y. M. (2007). Phosphorus Sulfur Silicon, 182, 695–709.  CrossRef CAS Google Scholar
First citationBahekar, R. H., Jain, M. R., Jadav, P. A., Prajapati, V. M., Patel, D. N., Gupta, A. A., Sharma, A., Tom, R., Bandyopadhya, D., Modi, H. & Patel, P. R. (2007). Bioorg. Med. Chem. 15, 6782–6795.  CrossRef PubMed CAS Google Scholar
First citationBakhite, E. A. (2003). Phosphorus Sulfur Silicon, 178, 929–992.  Web of Science CrossRef CAS Google Scholar
First citationBernardino, A. M. R, Pinheiro, L. C. da S., Rodrigues, C. R., Loureiro, N. I., Castro, H. C., Lanfredi-Rangel, A., Sabatini-Lopes, J., Borges, J. C., Carvalho, J. M., Romeiro, G. A., Ferreira, V. F., Frugulhetti, I. C. P. P. & Vannier-Santos, M. A. (2006). Bioorg. Med. Chem. 14, 5765–5770.  PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H. & Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 3411–3414.  CrossRef PubMed CAS Google Scholar
First citationHussein, A. M., Abu-shanab, F. A. & Ishak, E. A. (2000). Phosphorus Sulfur Silicon, 159, 55–68.  CrossRef CAS Google Scholar
First citationKrauze, A., Gērmane, S., Eberlinš, O., Šturms, I., Klusā, V. & Duburs, G. (1999). Eur. J. Med. Chem. 34, 301–310.  CrossRef CAS Google Scholar
First citationLitvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.  Web of Science CrossRef CAS Google Scholar
First citationSchnute, M. E., Anderson, D. J., Brideau, R. J., Ciske, F. L., Collier, S. A., Cudahy, M. M., Eggen, M., ean , Genin, M. J., Hopkins, T. A., Judge, T. M., Kim, E. J., Knechtel, M. L., Nair, S. K., Nieman, J. A., Oien, N. L., Scott, A., Tanis, S. P., Vaillancourt, V. A., Wathen, M. W. & Wieber, J. L. (2007). Bioorg. Med. Chem. Lett. 17, 3349–3353.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds