organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

15-(4-Chloro­phen­yl)-6b-hy­dr­oxy-17-methyl-6b,7,16,17-tetra­hydro-7,14a-methano­naphtho[1′,8′:1,2,3]pyrrolo­[3′,2′:8,8a]azuleno[5,6-b]quinolin-14(15H)-one methanol hemisolvate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 April 2016; accepted 15 April 2016; online 29 April 2016)

In the title solvate, C35H25ClN2O3·0.5CH3OH, the conformation of the central 1-methyl­pyrrolidine ring is best described as an envelope with the N atom as the flap. The cyclo­pentane ring adopts a twist conformation on the CH—CH2 bond and the cyclo­hexane ring has an envelope conformation with the CH2 atom as the flap. The pyrrolidine ring makes dihedral angles of 40.87 (12), 67.89 (11), 81.86 (9) and 70.86 (12)° with the mean planes of the cyclo­pentane, cyclo­hexane, ace­naphthyl­ene and chloro­benzene rings, respectively. The quinoline ring system is inclined to the naphthalene ring system by 54.14 (6)°. There is a short O—H⋯N contact in the mol­ecule making an S(5) ring motif. In the crystal, there is a disordered and partially occupied ethan-1,2-diol solvent mol­ecule present, located about an inversion centre, which links the title mol­ecules via O—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The pyrrolidine ring system is found in a vast variety of compounds displaying an impressive range of biological activities (Babu et al., 2012[Babu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech Res. 4, 903-909.]). Optically active pyrrolidines have been used as inter­mediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri et al., 2014[Savithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94-97.]). Pyrrolidine compounds are reported to exhibit anti­microbial, anti­fungal (Govind et al.,2003[Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Rathna Durga, R. & Raghunathan, R. (2003). Acta Cryst. E59, o1875-o1877.]), anti-influenza virus A (Stylianakis et al., 2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]), anti-inflammatory and anti­tumor (Li & Xu, 2004[Li, Y. L. & Xu, W. F. (2004). Bioorg. Med. Chem. 12, 5171-5180.]) activities. They also inhibit retroviral reverse transcriptases [i.e., human immunodeficiency virus type 1 (HIV-1)], cellular DNA polymerases, protein kinases (Bellina & Rossi, 2006[Bellina, F. & Rossi, R. (2006). Tetrahedron, 62, 7213-7256.]). They also act as anti­depressant agents (Wróbel et al., 2013[Wróbel, M. Z., Chodkowski, A., Herold, F., Gomółka, A., Kleps, J., Mazurek, A. P., Pluciński, F., Mazurek, A., Nowak, G., Siwek, A., Stachowicz, K., Sławińska, A., Wolak, M., Szewczyk, B., Satała, G., Bojarski, A. J. & Turło, J. (2013). Eur. J. Med. Chem. 63, 484-500.]), anti­biotics (Nirmala et al., 2009[Nirmala, S., Karthikeyan, K., Kamala, E. T. S., Sudha, L. & Perumal, P. T. (2009). Acta Cryst. E65, o1655-o1656.]), anti­convulsant, sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, keto­amide-based cathepsin K inhibitors and human melanocortin-4 receptor agonists (Babu et al., 2012[Babu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech Res. 4, 903-909.]). Quinoline derivatives have been synthesized and explored for their analgesic activity, anti-allergetic properties and in treating Alzheimer's disease (AD). They are also reported for their anti­cancer, anti­tinephritic, anti­tumor, anti-inflammatory (Shivaraj et al., 2013[Shivaraj, Y., Naveen, M. H., Vijayakumar, G. R. & Kumar, D. B. A. (2013). J. Korean Chem. Soc. 57, 241-245.]), anti­malarial, anti-bacterial and anti­fungal activities (Marella et al., 2013[Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1-12.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. In the mol­ecule there is a short intra­molecular O—H⋯N contact forming an S(5) ring motif (Fig. 1[link] and Table 1[link]). The conformation of the central 1-methyl pyrrolidine ring (C12/C14/N2/C26/C27) is best described as an envelope with atom N2 as the flap and displaced by 0.585 (2) Å from the plane through the other four atoms. The cyclo­pentane ring adopts a twist conformation on the C10—C11 bond and the cyclo­hexane ring has an envelope conformation with atom C11 as the flap and displaced by 0.854 (2) Å from the mean plane through the other five atoms. The quinoline ring system (C1–C9/N1) and the ace­naphthyl­ene ring system (C14–C25) adopt almost planar conformations, with the maximum deviations being 0.069 (2) Å for atom C8 in the quinoline ring system and 0.128 (2) Å for atom C14 in the ace­naphthyl­ene ring system. Chlorine atom Cl1 is displaced from the benzene ring (C28–C33) to which it is attached by 0.0164 (8) Å. The mean plane of the pyrrolidine ring makes dihedral angles of 40.87 (12), 67.89 (11), 81.86 (9) and 70.86 (12)° with the mean planes of the cyclo­pentane, cyclo­hexane, ace­naphthyl­ene and chloro­benzene rings, respectively. The quinoline ring system is inclined to the naphthalene ring system by 54.14 (6)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1 0.82 2.28 2.984 (4) 145
O2—H2O⋯N2 0.87 (3) 2.20 (3) 2.695 (2) 116 (2)
O2—H2O⋯O3i 0.87 (3) 2.26 (3) 3.021 (5) 146 (2)
C33—H33⋯O3i 0.93 2.53 3.408 (6) 157
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. The O—H⋯N contact is shown as a thin dashed line (see Table 1[link]).

In the crystal, there is a disordered and partially occupied ethan-1,2-diol solvent mol­ecule present, located about an inversion centre, which links the title mol­ecules via O—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the a-axis direction. (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only one position of the disordered and partially occupied ethan-1,2-diol solvent mol­ecule is shown.

Synthesis and crystallization

A mixture of (E)-2-(4-chloro­benzyl­idene)-3,4-di­hydro­acridin-1(2H)-one (1 mmol), ace­naphtho­quinone (1 mmol) and sarcosine (1.5 mmol) was heated to reflux in toluene (3 ml) for 10 h. After completion of the reaction as evident from TLC, the reaction mixture was extracted with ethyl acetate (2 × 20 ml), washed with water (2 × 10 ml), dried over anhydrous Na2SO4 and concentrated under reduced pressure. It was then subjected to column chromatography using petroleum ether–AcOEt (5:1 v/v) as eluent to obtain the title compound as a pure product. Colourless block-like crystals were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The partially occupied methanol solvent mol­ecule is disordered and located about an inversion centre (Fig. 1[link]). The solvate molecule shows a high degree of disorder in such a way that the methyl carbon atom assumes four positions. Two are within the asymmetric unit, each with 0.25 occupancy, and the counterparts occupy symmetry-related positions, each with 0.25 occupancy. Similarly, the hydroxyl group assumes two positions with 0.5 occupancy. The hydrogen atoms could not be fixed on the carbon atom with agreeable geometry.

Table 2
Experimental details

Crystal data
Chemical formula C34H25ClN2O2·0.5CH4O
Mr 544.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.3848 (3), 10.4306 (3), 14.4513 (4)
α, β, γ (°) 69.394 (1), 72.388 (1), 70.871 (1)
V3) 1352.92 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.22 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.966, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 20173, 5563, 4425
Rint 0.019
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.178, 1.05
No. of reflections 5563
No. of parameters 386
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

A mixture of (E)-2-(4-chlorobenzylidene)-3,4-dihydroacridin-1(2H)-one (1 mmol), acenaphthoquinone (1 mmol) and sarcosine (1.5 mmol) was heated to reflux in toluene (3 ml) for 10 h. After completion of the reaction as evident from TLC, the reaction mixture was extracted with ethyl acetate (2 × 20 ml), washed with water (2 × 10 ml), dried over anhydrous Na2SO4 and concentrated under reduced pressure. It was then subjected to column chromatography using petroleum ether–AcOEt (5:1 v/v) as eluent to obtain the title compound as a pure product. Colourless block-like crystals were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The partially occupied methanol solvent molecule is disordered and located about an inversion centre (Fig. 1). The solvate molecule shows high degree of disorder in such a way that the methyl carbon atom assumes four positions. Two are within the asymmetric unit each with 0.25 occupancy and the counterparts occupy symmetry related position with 0.25 occupancy each. Similarly the hydroxyl group assumes two positions with 0.5 occupancy. So hydrogen atoms could not be fixed on carbon atom with agreeable geometry.

Structure description top

The pyrrolidine ring system is found in a vast variety of compounds displaying an impressive range of biological activities (Babu et al., 2012). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Savithri et al., 2014). Pyrrolidine compounds are reported to exhibit antimicrobial, antifungal (Govind et al.,2003), anti-influenza virus A (Stylianakis et al., 2003), anti-inflammatory and antitumor (Li & Xu, 2004) activities. They also inhibit retroviral reverse transcriptases [i.e., human immunodeficiency virus type 1 (HIV-1)], cellular DNA polymerases, protein kinases (Bellina & Rossi, 2006). They also act as antidepressant agents (Wróbel et al., 2013), antibiotics (Nirmala et al., 2009), anticonvulsant, sphingosine-1-phosphate (S1P) receptor agonists, malic enzyme inhibitors, ketoamide-based cathepsin K inhibitors and human melanocortin-4 receptor agonists (Babu et al., 2012). Quinoline derivatives have been synthesized and explored for their analgesic activity, anti-allergetic properties and in treating Alzheimer's disease (AD). They are also reported for their anticancer, antitinephritic, antitumor, anti-inflammatory (Shivaraj et al., 2013), antimalarial, anti-bacterial and antifungal activities (Marella et al., 2013).

The molecular structure of the title compound is shown in Fig. 1. In the molecule there is a short intramolecular O—H···N contact forming an S(5) ring motif (Fig. 1 and Table 1). The conformation of the central 1-methyl pyrrolidine ring (C12/C14/N2/C26/C27) is best described as an envelope conformation with atom N2 as the flap and displaced by 0.585 (2) Å from the plane through the other four atoms. The cyclopentane ring adopts a twist conformation on the C10—C11 bond and the cyclohexane ring has an envelope conformation with atom C11 as the flap and displaced by 0.854 (2) Å from the mean plane through the other five atoms. The quinoline ring system (C1–C9/N1) and the acenaphthylene ring system (C14–C25) adopt almost planar conformations, with the maximum deviations being 0.069 (2) Å for atom C8 in the quinoline ring system and 0.128 (2) Å for atom C14 in the acenaphthylene ring system. Chlorine atom Cl1 is displaced from the benzene ring (C28–C33) to which it is attached by 0.0164 (8) Å. The mean plane of the pyrrolidine ring makes dihedral angles of 40.87 (12), 67.89 (11), 81.86 (9) and 70.86 (12)° with the mean planes of the cyclopentane, cyclohexane, acenaphthylene and chlorobenzene rings, respectively. The quinoline ring system is inclined to the naphthalene ring system by 54.14 (6)°.

In the crystal, there is a disordered and partially occupied ethan-1,2-diol solvent molecule present, located about an inversion centre, which links the title molecules via O—H···O and C—H···O hydrogen bonds, forming chains propagating along the a-axis direction. (Table 1 and Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. The N—H···O contact is shown as a thin dashed lines(see Table 1).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only one position of the disordered and partially occupied ethan-1,2-diol solvent molecule is shown.
15-(4-Chlorophenyl)-6b-hydroxy-17-methyl-6b,7,16,17-tetrahydro- 7,14a-methanonaphtho[1',8':1,2,3]pyrrolo[3',2':8,8a]azuleno[5,6-b]quinolin-14(15H)-one methanol hemisolvate top
Crystal data top
C34H25ClN2O2·0.5CH4OZ = 2
Mr = 544.53F(000) = 569
Triclinic, P1Dx = 1.337 Mg m3
a = 10.3848 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4306 (3) ÅCell parameters from 5568 reflections
c = 14.4513 (4) Åθ = 1.5–26.5°
α = 69.394 (1)°µ = 0.18 mm1
β = 72.388 (1)°T = 293 K
γ = 70.871 (1)°Block, colourless
V = 1352.92 (7) Å30.22 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4425 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
ω and φ scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.966, Tmax = 0.978k = 1312
20173 measured reflectionsl = 1815
5563 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.1116P)2 + 0.2946P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5563 reflectionsΔρmax = 0.66 e Å3
386 parametersΔρmin = 0.44 e Å3
3 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (4)
Crystal data top
C34H25ClN2O2·0.5CH4Oγ = 70.871 (1)°
Mr = 544.53V = 1352.92 (7) Å3
Triclinic, P1Z = 2
a = 10.3848 (3) ÅMo Kα radiation
b = 10.4306 (3) ŵ = 0.18 mm1
c = 14.4513 (4) ÅT = 293 K
α = 69.394 (1)°0.22 × 0.16 × 0.12 mm
β = 72.388 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5563 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4425 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.978Rint = 0.019
20173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0523 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.66 e Å3
5563 reflectionsΔρmin = 0.44 e Å3
386 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.72400 (8)0.21816 (7)0.66553 (5)0.0903 (3)
O10.58561 (15)0.35178 (15)0.13530 (11)0.0563 (4)
O20.67317 (16)0.59399 (18)0.39571 (11)0.0570 (4)
H2O0.743 (3)0.520 (3)0.405 (2)0.092 (10)*
N10.27834 (16)0.70993 (17)0.28663 (12)0.0470 (4)
N20.84974 (15)0.43617 (16)0.27419 (13)0.0472 (4)
C10.19626 (18)0.75391 (19)0.21738 (14)0.0463 (4)
C20.0684 (2)0.8558 (2)0.23152 (19)0.0626 (6)
H20.04270.89320.28600.075*
C30.0175 (2)0.8992 (3)0.1653 (2)0.0702 (6)
H30.10230.96480.17600.084*
C40.0197 (2)0.8469 (2)0.08168 (19)0.0634 (6)
H40.04020.87780.03740.076*
C50.1428 (2)0.7514 (2)0.06473 (17)0.0549 (5)
H50.16860.71990.00740.066*
C60.23238 (19)0.69925 (19)0.13379 (14)0.0447 (4)
C70.35429 (19)0.58980 (19)0.12598 (14)0.0440 (4)
H70.38110.55010.07250.053*
C80.43319 (17)0.54205 (18)0.19758 (13)0.0391 (4)
C90.39312 (17)0.60925 (18)0.27596 (13)0.0401 (4)
C100.48274 (18)0.55891 (19)0.35269 (13)0.0423 (4)
H100.42940.58420.41510.051*
C110.54119 (19)0.39953 (19)0.37358 (13)0.0448 (4)
H11A0.46830.35170.38850.054*
H11B0.58930.36120.42920.054*
C120.64345 (17)0.38709 (17)0.27249 (13)0.0393 (4)
C130.55758 (18)0.41925 (18)0.19547 (13)0.0402 (4)
C140.71568 (17)0.51111 (17)0.24384 (13)0.0388 (4)
C150.61918 (18)0.61159 (19)0.31166 (13)0.0414 (4)
C160.60670 (18)0.75928 (19)0.24087 (14)0.0434 (4)
C170.5485 (2)0.8893 (2)0.25675 (18)0.0569 (5)
H170.50650.89830.32160.068*
C180.5533 (3)1.0098 (2)0.1728 (2)0.0694 (7)
H180.51621.09870.18370.083*
C190.6103 (2)1.0011 (2)0.0763 (2)0.0663 (6)
H190.61081.08330.02300.080*
C200.66844 (19)0.8680 (2)0.05661 (16)0.0525 (5)
C210.66716 (17)0.74950 (18)0.14204 (14)0.0412 (4)
C220.72521 (17)0.60975 (18)0.13645 (13)0.0410 (4)
C230.7808 (2)0.5866 (2)0.04288 (15)0.0538 (5)
H230.81930.49520.03670.065*
C240.7782 (2)0.7046 (3)0.04387 (16)0.0638 (6)
H240.81320.68900.10740.077*
C250.7264 (2)0.8401 (3)0.03804 (17)0.0638 (6)
H250.72940.91480.09690.077*
C260.8953 (2)0.3053 (2)0.24478 (17)0.0559 (5)
H26A0.96660.23730.28000.067*
H26B0.93250.32340.17250.067*
C270.76447 (19)0.25010 (19)0.27486 (15)0.0463 (4)
H270.76550.21170.22170.056*
C280.75497 (19)0.13475 (19)0.37432 (15)0.0458 (4)
C290.7023 (2)0.0238 (2)0.38486 (16)0.0543 (5)
H290.67190.02240.33100.065*
C300.6933 (2)0.0857 (2)0.47347 (18)0.0632 (6)
H300.65830.16010.47880.076*
C310.7367 (2)0.0827 (2)0.55281 (17)0.0589 (5)
C320.7896 (3)0.0258 (3)0.5450 (2)0.0720 (7)
H320.81860.02730.59940.086*
C330.7997 (3)0.1334 (2)0.45517 (19)0.0653 (6)
H330.83730.20600.44950.078*
C340.9561 (2)0.5167 (2)0.23428 (18)0.0600 (5)
H34A0.98040.53780.16190.090*
H34B1.03750.46190.26150.090*
H34C0.92030.60330.25330.090*
O30.1064 (5)0.6190 (5)0.4934 (3)0.0885 (11)0.5
H3O0.17910.63130.45290.133*0.5
C35A0.0517 (15)0.5293 (19)0.4674 (10)0.067 (3)0.25
H35A0.01920.58370.40530.080*0.25
H35B0.12950.45240.45150.080*0.25
C35B0.0043 (14)0.5733 (13)0.4846 (11)0.058 (3)0.25
H35C0.09040.61800.52350.069*0.25
H35D0.01210.60940.41430.069*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1073 (6)0.0674 (4)0.0697 (4)0.0169 (4)0.0261 (4)0.0138 (3)
O10.0633 (8)0.0546 (8)0.0575 (8)0.0072 (6)0.0138 (7)0.0295 (7)
O20.0588 (8)0.0722 (10)0.0482 (8)0.0098 (8)0.0204 (6)0.0250 (7)
N10.0430 (8)0.0512 (9)0.0457 (9)0.0099 (7)0.0042 (6)0.0181 (7)
N20.0390 (7)0.0422 (8)0.0555 (9)0.0108 (6)0.0091 (6)0.0082 (7)
C10.0415 (9)0.0444 (10)0.0504 (10)0.0140 (7)0.0059 (8)0.0103 (8)
C20.0523 (11)0.0584 (13)0.0701 (14)0.0041 (9)0.0108 (10)0.0203 (11)
C30.0510 (11)0.0571 (13)0.0899 (18)0.0011 (10)0.0205 (11)0.0124 (12)
C40.0590 (12)0.0553 (12)0.0738 (15)0.0175 (10)0.0283 (11)0.0005 (11)
C50.0596 (11)0.0518 (11)0.0570 (12)0.0212 (9)0.0208 (9)0.0056 (9)
C60.0456 (9)0.0437 (9)0.0459 (10)0.0189 (7)0.0098 (7)0.0066 (7)
C70.0478 (9)0.0475 (10)0.0411 (9)0.0172 (8)0.0078 (7)0.0142 (8)
C80.0394 (8)0.0415 (9)0.0371 (9)0.0151 (7)0.0025 (7)0.0119 (7)
C90.0389 (8)0.0440 (9)0.0370 (8)0.0149 (7)0.0007 (7)0.0129 (7)
C100.0433 (9)0.0513 (10)0.0318 (8)0.0129 (7)0.0017 (7)0.0152 (7)
C110.0482 (9)0.0481 (10)0.0351 (9)0.0165 (8)0.0033 (7)0.0084 (7)
C120.0410 (8)0.0356 (8)0.0389 (9)0.0117 (7)0.0038 (7)0.0098 (7)
C130.0445 (9)0.0410 (9)0.0362 (8)0.0172 (7)0.0010 (7)0.0124 (7)
C140.0397 (8)0.0374 (9)0.0382 (9)0.0111 (7)0.0056 (7)0.0103 (7)
C150.0450 (9)0.0469 (10)0.0377 (9)0.0126 (7)0.0100 (7)0.0161 (7)
C160.0414 (9)0.0432 (9)0.0534 (10)0.0119 (7)0.0157 (7)0.0166 (8)
C170.0564 (11)0.0514 (11)0.0766 (14)0.0086 (9)0.0226 (10)0.0311 (10)
C180.0670 (13)0.0395 (11)0.111 (2)0.0067 (9)0.0369 (14)0.0227 (12)
C190.0595 (12)0.0427 (11)0.0920 (18)0.0165 (9)0.0333 (12)0.0046 (11)
C200.0419 (9)0.0486 (10)0.0616 (12)0.0155 (8)0.0189 (8)0.0015 (9)
C210.0379 (8)0.0404 (9)0.0475 (10)0.0138 (7)0.0127 (7)0.0080 (7)
C220.0396 (8)0.0430 (9)0.0384 (9)0.0147 (7)0.0039 (7)0.0087 (7)
C230.0514 (10)0.0591 (12)0.0447 (10)0.0176 (9)0.0028 (8)0.0147 (9)
C240.0538 (11)0.0867 (17)0.0384 (10)0.0223 (11)0.0010 (8)0.0075 (10)
C250.0507 (11)0.0717 (15)0.0512 (12)0.0220 (10)0.0124 (9)0.0112 (10)
C260.0446 (10)0.0438 (10)0.0668 (13)0.0077 (8)0.0038 (9)0.0108 (9)
C270.0471 (9)0.0386 (9)0.0506 (10)0.0090 (7)0.0086 (8)0.0123 (8)
C280.0450 (9)0.0375 (9)0.0540 (10)0.0081 (7)0.0149 (8)0.0102 (8)
C290.0618 (11)0.0492 (11)0.0576 (12)0.0204 (9)0.0198 (9)0.0096 (9)
C300.0726 (14)0.0496 (11)0.0693 (14)0.0265 (10)0.0207 (11)0.0036 (10)
C310.0583 (12)0.0464 (11)0.0597 (12)0.0074 (9)0.0179 (10)0.0012 (9)
C320.0918 (17)0.0656 (14)0.0678 (15)0.0188 (13)0.0444 (13)0.0069 (11)
C330.0827 (15)0.0525 (12)0.0742 (15)0.0258 (11)0.0381 (12)0.0072 (10)
C340.0461 (10)0.0555 (12)0.0762 (15)0.0183 (9)0.0143 (10)0.0096 (10)
O30.105 (3)0.113 (3)0.058 (2)0.045 (3)0.0189 (19)0.018 (2)
C35A0.076 (8)0.089 (11)0.057 (6)0.049 (8)0.009 (7)0.039 (7)
C35B0.061 (7)0.045 (7)0.060 (8)0.005 (5)0.026 (6)0.012 (5)
Geometric parameters (Å, º) top
Cl1—C311.743 (2)C18—C191.364 (4)
O1—C131.216 (2)C18—H180.9300
O2—C151.418 (2)C19—C201.413 (3)
O2—H2O0.87 (3)C19—H190.9300
N1—C91.315 (2)C20—C211.407 (3)
N1—C11.369 (2)C20—C251.409 (3)
N2—C261.460 (3)C21—C221.404 (2)
N2—C341.463 (2)C22—C231.373 (3)
N2—C141.469 (2)C23—C241.414 (3)
C1—C61.413 (3)C23—H230.9300
C1—C21.414 (3)C24—C251.361 (4)
C2—C31.365 (3)C24—H240.9300
C2—H20.9300C25—H250.9300
C3—C41.396 (4)C26—C271.531 (3)
C3—H30.9300C26—H26A0.9700
C4—C51.354 (3)C26—H26B0.9700
C4—H40.9300C27—C281.516 (3)
C5—C61.416 (3)C27—H270.9800
C5—H50.9300C28—C331.376 (3)
C6—C71.406 (3)C28—C291.379 (3)
C7—C81.369 (3)C29—C301.386 (3)
C7—H70.9300C29—H290.9300
C8—C91.425 (2)C30—C311.366 (3)
C8—C131.493 (2)C30—H300.9300
C9—C101.505 (2)C31—C321.370 (3)
C10—C111.523 (3)C32—C331.387 (3)
C10—C151.560 (2)C32—H320.9300
C10—H100.9800C33—H330.9300
C11—C121.544 (2)C34—H34A0.9600
C11—H11A0.9700C34—H34B0.9600
C11—H11B0.9700C34—H34C0.9600
C12—C131.513 (2)O3—C35B1.434 (15)
C12—C271.561 (2)O3—C35A1.437 (13)
C12—C141.574 (2)O3—H3O0.8200
C14—C221.525 (2)C35A—C35Ai1.35 (3)
C14—C151.582 (2)C35A—H35A0.9700
C15—C161.509 (2)C35A—H35B0.9700
C16—C171.362 (3)C35B—C35Bi1.41 (3)
C16—C211.401 (3)C35B—H35C0.9700
C17—C181.409 (3)C35B—H35D0.9700
C17—H170.9300
C15—O2—H2O112 (2)C19—C18—H18118.8
C9—N1—C1118.06 (15)C17—C18—H18118.8
C26—N2—C34112.47 (16)C18—C19—C20120.5 (2)
C26—N2—C14105.83 (15)C18—C19—H19119.7
C34—N2—C14115.37 (15)C20—C19—H19119.7
N1—C1—C6122.77 (17)C21—C20—C25116.39 (19)
N1—C1—C2118.60 (18)C21—C20—C19115.8 (2)
C6—C1—C2118.62 (19)C25—C20—C19127.8 (2)
C3—C2—C1120.1 (2)C16—C21—C22113.43 (16)
C3—C2—H2120.0C16—C21—C20123.31 (17)
C1—C2—H2120.0C22—C21—C20123.25 (18)
C2—C3—C4121.2 (2)C23—C22—C21118.69 (17)
C2—C3—H3119.4C23—C22—C14132.84 (17)
C4—C3—H3119.4C21—C22—C14108.43 (15)
C5—C4—C3120.3 (2)C22—C23—C24118.6 (2)
C5—C4—H4119.9C22—C23—H23120.7
C3—C4—H4119.9C24—C23—H23120.7
C4—C5—C6120.3 (2)C25—C24—C23122.5 (2)
C4—C5—H5119.8C25—C24—H24118.7
C6—C5—H5119.8C23—C24—H24118.7
C7—C6—C1117.53 (17)C24—C25—C20120.43 (19)
C7—C6—C5122.98 (18)C24—C25—H25119.8
C1—C6—C5119.43 (18)C20—C25—H25119.8
C8—C7—C6119.54 (17)N2—C26—C27105.35 (15)
C8—C7—H7120.2N2—C26—H26A110.7
C6—C7—H7120.2C27—C26—H26A110.7
C7—C8—C9119.00 (16)N2—C26—H26B110.7
C7—C8—C13120.79 (16)C27—C26—H26B110.7
C9—C8—C13120.20 (15)H26A—C26—H26B108.8
N1—C9—C8122.92 (16)C28—C27—C26113.54 (16)
N1—C9—C10118.33 (15)C28—C27—C12115.08 (15)
C8—C9—C10118.69 (15)C26—C27—C12103.16 (14)
C9—C10—C11108.97 (14)C28—C27—H27108.2
C9—C10—C15113.30 (14)C26—C27—H27108.2
C11—C10—C15101.39 (14)C12—C27—H27108.2
C9—C10—H10110.9C33—C28—C29117.68 (18)
C11—C10—H10110.9C33—C28—C27122.91 (17)
C15—C10—H10110.9C29—C28—C27119.39 (17)
C10—C11—C12101.90 (13)C28—C29—C30121.9 (2)
C10—C11—H11A111.4C28—C29—H29119.1
C12—C11—H11A111.4C30—C29—H29119.1
C10—C11—H11B111.4C31—C30—C29118.96 (19)
C12—C11—H11B111.4C31—C30—H30120.5
H11A—C11—H11B109.3C29—C30—H30120.5
C13—C12—C11107.57 (14)C30—C31—C32120.8 (2)
C13—C12—C27113.75 (15)C30—C31—Cl1119.69 (17)
C11—C12—C27117.37 (15)C32—C31—Cl1119.56 (18)
C13—C12—C14108.77 (13)C31—C32—C33119.4 (2)
C11—C12—C14102.87 (13)C31—C32—H32120.3
C27—C12—C14105.68 (13)C33—C32—H32120.3
O1—C13—C8121.20 (16)C28—C33—C32121.3 (2)
O1—C13—C12123.65 (16)C28—C33—H33119.4
C8—C13—C12115.15 (14)C32—C33—H33119.4
N2—C14—C22115.32 (13)N2—C34—H34A109.5
N2—C14—C12102.19 (13)N2—C34—H34B109.5
C22—C14—C12117.84 (14)H34A—C34—H34B109.5
N2—C14—C15112.19 (14)N2—C34—H34C109.5
C22—C14—C15103.50 (13)H34A—C34—H34C109.5
C12—C14—C15105.66 (13)H34B—C34—H34C109.5
O2—C15—C16112.06 (14)C35A—O3—H3O109.5
O2—C15—C10107.96 (14)C35Ai—C35A—O3121.1 (13)
C16—C15—C10115.87 (14)C35Ai—C35A—H35A107.1
O2—C15—C14112.86 (14)O3—C35A—H35A107.1
C16—C15—C14104.98 (13)C35Ai—C35A—H35B107.1
C10—C15—C14102.84 (13)O3—C35A—H35B107.1
C17—C16—C21119.23 (18)H35A—C35A—H35B106.8
C17—C16—C15132.34 (19)C35Bi—C35B—O3118.6 (12)
C21—C16—C15108.42 (15)C35Bi—C35B—H35C107.7
C16—C17—C18118.6 (2)O3—C35B—H35C107.7
C16—C17—H17120.7C35Bi—C35B—H35D107.7
C18—C17—H17120.7O3—C35B—H35D107.7
C19—C18—C17122.5 (2)H35C—C35B—H35D107.1
C9—N1—C1—C62.3 (3)N2—C14—C15—C16114.11 (14)
C9—N1—C1—C2176.14 (17)C22—C14—C15—C1610.84 (16)
N1—C1—C2—C3178.35 (19)C12—C14—C15—C16135.32 (13)
C6—C1—C2—C30.1 (3)N2—C14—C15—C10124.27 (14)
C1—C2—C3—C41.4 (4)C22—C14—C15—C10110.77 (14)
C2—C3—C4—C50.0 (3)C12—C14—C15—C1013.71 (17)
C3—C4—C5—C62.6 (3)O2—C15—C16—C1750.2 (3)
N1—C1—C6—C73.5 (3)C10—C15—C16—C1774.3 (2)
C2—C1—C6—C7174.87 (17)C14—C15—C16—C17173.05 (19)
N1—C1—C6—C5179.23 (16)O2—C15—C16—C21131.07 (15)
C2—C1—C6—C52.4 (3)C10—C15—C16—C21104.43 (16)
C4—C5—C6—C7173.33 (18)C14—C15—C16—C218.23 (17)
C4—C5—C6—C13.7 (3)C21—C16—C17—C181.0 (3)
C1—C6—C7—C80.8 (2)C15—C16—C17—C18179.61 (18)
C5—C6—C7—C8177.90 (16)C16—C17—C18—C192.0 (3)
C6—C7—C8—C92.9 (2)C17—C18—C19—C200.3 (3)
C6—C7—C8—C13175.65 (15)C18—C19—C20—C212.1 (3)
C1—N1—C9—C81.7 (2)C18—C19—C20—C25177.5 (2)
C1—N1—C9—C10179.11 (15)C17—C16—C21—C22179.04 (16)
C7—C8—C9—N14.4 (2)C15—C16—C21—C222.0 (2)
C13—C8—C9—N1174.18 (15)C17—C16—C21—C201.5 (3)
C7—C8—C9—C10178.25 (15)C15—C16—C21—C20177.38 (15)
C13—C8—C9—C103.2 (2)C25—C20—C21—C16176.57 (16)
N1—C9—C10—C11142.05 (15)C19—C20—C21—C163.0 (3)
C8—C9—C10—C1135.4 (2)C25—C20—C21—C222.8 (3)
N1—C9—C10—C15105.91 (17)C19—C20—C21—C22177.60 (17)
C8—C9—C10—C1576.61 (19)C16—C21—C22—C23176.50 (16)
C9—C10—C11—C1268.81 (16)C20—C21—C22—C232.9 (3)
C15—C10—C11—C1250.91 (16)C16—C21—C22—C145.43 (19)
C10—C11—C12—C1373.10 (16)C20—C21—C22—C14175.16 (15)
C10—C11—C12—C27157.13 (15)N2—C14—C22—C2364.8 (3)
C10—C11—C12—C1441.64 (17)C12—C14—C22—C2356.1 (3)
C7—C8—C13—O15.8 (2)C15—C14—C22—C23172.29 (19)
C9—C8—C13—O1172.71 (16)N2—C14—C22—C21112.90 (16)
C7—C8—C13—C12174.08 (14)C12—C14—C22—C21126.16 (15)
C9—C8—C13—C127.4 (2)C15—C14—C22—C2110.01 (17)
C11—C12—C13—O1137.17 (17)C21—C22—C23—C240.5 (3)
C27—C12—C13—O15.4 (2)C14—C22—C23—C24176.98 (18)
C14—C12—C13—O1112.08 (18)C22—C23—C24—C251.9 (3)
C11—C12—C13—C842.91 (18)C23—C24—C25—C202.0 (3)
C27—C12—C13—C8174.68 (13)C21—C20—C25—C240.3 (3)
C14—C12—C13—C867.84 (17)C19—C20—C25—C24179.9 (2)
C26—N2—C14—C2289.00 (17)C34—N2—C26—C27169.53 (17)
C34—N2—C14—C2236.0 (2)C14—N2—C26—C2742.71 (19)
C26—N2—C14—C1240.12 (17)N2—C26—C27—C2899.30 (18)
C34—N2—C14—C12165.16 (16)N2—C26—C27—C1225.9 (2)
C26—N2—C14—C15152.85 (15)C13—C12—C27—C28118.14 (16)
C34—N2—C14—C1582.11 (19)C11—C12—C27—C288.7 (2)
C13—C12—C14—N2145.22 (14)C14—C12—C27—C28122.61 (16)
C11—C12—C14—N2100.90 (15)C13—C12—C27—C26117.64 (17)
C27—C12—C14—N222.73 (17)C11—C12—C27—C26115.54 (18)
C13—C12—C14—C2217.71 (19)C14—C12—C27—C261.61 (19)
C11—C12—C14—C22131.58 (15)C26—C27—C28—C3336.1 (3)
C27—C12—C14—C22104.78 (17)C12—C27—C28—C3382.5 (2)
C13—C12—C14—C1597.27 (15)C26—C27—C28—C29142.47 (19)
C11—C12—C14—C1516.61 (17)C12—C27—C28—C2999.0 (2)
C27—C12—C14—C15140.24 (14)C33—C28—C29—C300.3 (3)
C9—C10—C15—O2163.29 (14)C27—C28—C29—C30178.93 (19)
C11—C10—C15—O280.11 (16)C28—C29—C30—C310.6 (3)
C9—C10—C15—C1636.7 (2)C29—C30—C31—C320.7 (4)
C11—C10—C15—C16153.30 (15)C29—C30—C31—Cl1179.10 (17)
C9—C10—C15—C1477.19 (17)C30—C31—C32—C330.3 (4)
C11—C10—C15—C1439.40 (16)Cl1—C31—C32—C33179.97 (19)
N2—C14—C15—O28.21 (19)C29—C28—C33—C321.3 (3)
C22—C14—C15—O2133.17 (15)C27—C28—C33—C32179.8 (2)
C12—C14—C15—O2102.35 (16)C31—C32—C33—C281.3 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N20.87 (3)2.20 (3)2.695 (2)116 (2)
O3—H3O···N10.822.282.984 (4)145
O2—H2O···O3ii0.87 (3)2.26 (3)3.021 (5)146 (2)
C33—H33···O3ii0.932.533.408 (6)157
Symmetry code: (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N20.87 (3)2.20 (3)2.695 (2)116 (2)
O3—H3O···N10.822.282.984 (4)145
O2—H2O···O3i0.87 (3)2.26 (3)3.021 (5)146 (2)
C33—H33···O3i0.932.533.408 (6)157
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC34H25ClN2O2·0.5CH4O
Mr544.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.3848 (3), 10.4306 (3), 14.4513 (4)
α, β, γ (°)69.394 (1), 72.388 (1), 70.871 (1)
V3)1352.92 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.22 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.966, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
20173, 5563, 4425
Rint0.019
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.178, 1.05
No. of reflections5563
No. of parameters386
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.44

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBabu, M. N., Sharma, L. & Madhavan, V. (2012). Int. J. ChemTech Res. 4, 903–909.  CAS Google Scholar
First citationBellina, F. & Rossi, R. (2006). Tetrahedron, 62, 7213–7256.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGovind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Rathna Durga, R. & Raghunathan, R. (2003). Acta Cryst. E59, o1875–o1877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y. L. & Xu, W. F. (2004). Bioorg. Med. Chem. 12, 5171–5180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1–12.  Web of Science CrossRef PubMed Google Scholar
First citationNirmala, S., Karthikeyan, K., Kamala, E. T. S., Sudha, L. & Perumal, P. T. (2009). Acta Cryst. E65, o1655–o1656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavithri, M. P., Suresh, M., Raghunathan, R., Vimala, G., Raja, R. & SubbiahPandi, A. (2014). Acta Cryst. E70, 94–97.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShivaraj, Y., Naveen, M. H., Vijayakumar, G. R. & Kumar, D. B. A. (2013). J. Korean Chem. Soc. 57, 241–245.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWróbel, M. Z., Chodkowski, A., Herold, F., Gomółka, A., Kleps, J., Mazurek, A. P., Pluciński, F., Mazurek, A., Nowak, G., Siwek, A., Stachowicz, K., Sławińska, A., Wolak, M., Szewczyk, B., Satała, G., Bojarski, A. J. & Turło, J. (2013). Eur. J. Med. Chem. 63, 484–500.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds