organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(2,6-Di­hy­droxy­phen­yl)tetra­decan-1-one: isolated from the fruit rinds of Myristica malabarica

aBio-Organic Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India, bFB Material-und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D64287 Darmstadt, Germany, and cAccident and Emergency Department, Franco Vietnamese Hospital, 7-Nguyen Luong Bang Street, HoChiMinh City, Vietnam
*Correspondence e-mail: nguyendonhuquynh@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 April 2016; accepted 7 April 2016; online 12 April 2016)

The title compound, C20H32O3, was isolated from the Indian spice M. malabarica. It is built up by a C—C linkage between a 2,6-di­hydroxy­phenyl moiety and the terminal carbonyl C atom of tetradecanal, which has an extended chain conformation. There is an intra­molecular O—H⋯O hydrogen bond enclosing an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming zigzag chains propagating along [001]. The chains pack in a herringbone arrangement up the a axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The origin of the title compound is fruit rinds of M. malabarica, popularly known as Ram patri in the local dialect in Mumbai. It is used as an exotic spice in various Indian cuisines and as a phytomedicine for the treatment of various kinds of ailments (Forrest & Heacock, 1972[Forrest, J. E. & Heacock, R. A. (1972). Lloydia, 35, 440-449.]). It has been isolated for the first time from the diethyl ether extract by column chromatography over silica gel with gradient solvent elution. It is soluble in various organic solvents such as diethyl ether, chloro­form, methanol etc. and undergoes reactions with different kind of chemical reagents such as dilute aqueous sodium hydroxide, neutral ferric chloride solution to exhibit a pale yellow and greenish blue colour due to the formation of the respective sodium salt and ferric complex of the phenol (Dean, 1963[Dean, F. M. (1963). Naturally Occurring Oxygen Ring Compounds, pp. 288-89. London: Butterworth & Co Ltd.]). This chemical test indicates the presence of the 3-hy­droxy ketone moiety in this mol­ecule, which is also confirmed by UV absorption by performing a bathochromic shift at around 30 nm upon the addition of AlCl3 as shift reagent under the condition of acidic pH. The anti­leishmanial activity of the title mol­ecule has been evaluated against Leishmania donovani by using the MTS–PMS assay (Manna et al., 2012[Manna, A., Saha, P., Sarkar, A., Mukhopadhyay, D., Bauri, A. K., Kumar, D., Das, P., Chattopadhyay, S. & Chatterjee, M. (2012). PLoS One, 45, 518-526.]). The experimental result of the bioassay revealed that it possesses very good inhibitory activity against the protozoan parasite Leishmania donovani (Sen et al., 2007[Sen, R., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2007). Phytother. Res. 21, 592-595.]).

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. It is composed of a 2,6-di­hydroxy­benzene group linked to the carbonyl C atom, C7, of tetra­deca­nal. The latter has an extended chain conformation. There is an intra­molecular O—H⋯Ocarbon­yl hydrogen bond forming an S(6) loop.

[Figure 1]
Figure 1
An view of mol­ecular structure of the title mol­ecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming zigzag chains propagating along the c-axis direction (Table 1[link] and Fig. 2[link]). The chains pack in a herringbone arrangement up the a axis (Fig. 2[link]). There are no other significant inter­molecular inter­actions present in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.84 (2) 1.75 (3) 2.485 (4) 146 (4)
O1—H1O⋯O2i 0.84 (2) 1.94 (2) 2.760 (3) 168 (4)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the mol­ecular packing of the title compound.

Synthesis and crystallization

The title mol­ecule was isolated as a small trace qu­antity from a methanol extract of the fruit rind of M. malabarica by column chromatography over silica gel with gradient solvent elution by using a binary solvent mixture of methanol and chloro­form. Suitable crystals for X-ray diffraction analysis were obtained by recrystallization (× 3) from hexa­ne:ethyl acetate (4:1) at room temperature, by slow evaporation (m.p. 363 K). Spectroscopic analysis: 1H NMR data (CDCl3, 200 MHz): 12.80 (s, chelated-OH), 7.07 (dd, 1H, J = 8.2 Hz, H-4′), 6.22 (d, 2H, J = 8.2 Hz, H-3′ & H-5′), 2.99 (dd, 2H, J = 7.0 Hz, H-2), 1.67–1.40 (m, 4H, H-3 & H-13), 1.16 (brs, 18H, 9 × -CH2–), 0.78 (t, 3H, J = 6.0 Hz, -CH3). 13C NMR data (50 MHz, CDCl3): 209.59 (C-1, >C=O), 163.40 (C-2′ & C-6′, Ar—C—OH), 143.90 (C-1′, Ar—C—C), 111.35 (C-5′, Ar—C—H), 108.31 (C-3′, Ar—C—H), 45.70 (C-2, –CH2—CO–), 30.52 (C-3, –CH2—CH3), 30.45 (C-5, –CH2—CH3), 30.27 (9 × C–CH2–), 14.47 (–CH3), 17.09 (C-8, –CH2–). EIMS (70 ev) data: EIMS m/z (%) [M+] 320 (12), 320 (14), 278 (2), 256 (3), 202 (4), 189 (7), 176 (5), 165 (12), 151 (37), 137 (100; base peak), 123 (12), 109 (9), 96 (14), 83 (11), 69 (5).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H32O3
Mr 320.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 4.2047 (6), 34.146 (4), 13.347 (3)
β (°) 97.67 (1)
V3) 1899.1 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.50 × 0.12 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.964, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 6324, 3396, 2217
Rint 0.025
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.160, 1.30
No. of reflections 3396
No. of parameters 214
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.16
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

The title molecule was isolated as a small trace quantity from a methanol extract of the fruit rind of M. malabarica by column chromatography over silica gel with gradient solvent elution by using a binary solvent mixture of methanol and chloroform. Suitable crystals for X-ray diffraction analysis were obtained by recrystallization (× 3) from hexane:ethyl acetate (4:1) at room temperature, by slow evaporation (m.p. 363 K). Spectroscopic analysis: 1H NMR data (CDCl3, 200 MHz): 12.80 (s, chelated-OH), 7.07 (dd, 1H, J = 8.2 Hz, H-4'), 6.22 (d, 2H, J = 8.2 Hz, H-3' & H-5'), 2.99 (dd, 2H, J = 7.0 Hz, H-2), 1.67–1.40 (m, 4H, H-3 & H-13), 1.16 (brs, 18H, 9 × -CH2–), 0.78 (t, 3H, J = 6.0 Hz,-CH3). 13C NMR data (50 MHz, CDCl3): 209.59 (C-1, >CO), 163.40 (C-2' & C-6', Ar—C—OH), 143.90 (C-1', Ar—C—C), 111.35 (C-5', Ar—C—H), 108.31 (C-3', Ar—C—H), 45.70 (C-2, –CH2—CO–), 30.52 (C-3, –CH2—CH3), 30.45 (C-5, –CH2—CH3), 30.27 (9 × C–CH2–), 14.47 (–CH3), 17.09 (C-8, –CH2–). EIMS (70 ev) data: EIMS m/z (%) [M+] 320 (12), 320 (14), 278 (2), 256 (3), 202 (4), 189 (7), 176 (5), 165 (12), 151 (37), 137 (100; base peak), 123 (12), 109 (9), 96 (14), 83 (11), 69 (5).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The origin of the title compound is fruit rinds of M. malabarica, popularly known as Ram patri in the local dialect in Mumbai. It is used as an exotic spice in various Indian cuisines and as a phytomedicine for the treatment of various kinds of ailments (Forrest & Heacock, 1972). It has been isolated for the first time from the diethyl ether extract by column chromatography over silica gel with gradient solvent elution. It is soluble in various organic solvents such as diethyl ether, chloroform, methanol etc. and undergoes reactions with different kind of chemical reagents such as dilute aqueous sodium hydroxide, neutral ferric chloride solution to exhibit a pale yellow and greenish blue colour due to the formation of the respective sodium salt and ferric complex of the phenol (Dean, 1963). This chemical test indicates the presence of the 3-hydroxy ketone moiety in this molecule, which is also confirmed by UV absorption by performing a bathochromic shift at around 30 nm upon the addition of AlCl3 as shift reagent under the condition of acidic pH. The antileishmanial activity of the title molecule has been evaluated against Leishmania donovani by using the MTS–PMS assay (Manna et al., 2012). The experimental result of the bioassay revealed that it possesses very good inhibitory activity against the protozoan parasite Leishmania donovani (Sen et al., 2007).

The molecular structure of the title compound is illustrated in Fig. 1. It is composed of a 2,6-dihydroxybenzene group linked to the carbonyl C atom, C7, of tetradecanal. The latter has an extended chain conformation. There is an intramolecular O—H···Ocarbonyl hydrogen bond forming an S(6) loop.

In the crystal, molecules are linked by O—H···O hydrogen bonds, forming zigzag chains propagating along the c-axis direction (Table 1 and Fig. 2). The chains pack in a herringbone arrangement up the a axis (Fig. 2). There are no other significant intermolecular interactions present in the crystal.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An view of molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular packing of the title compound.
1-(2,6-Dihydroxyphenyl)tetradecan-1-one top
Crystal data top
C20H32O3F(000) = 704
Mr = 320.46Dx = 1.121 Mg m3
Monoclinic, P21/cMelting point: 363 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.2047 (6) ÅCell parameters from 1086 reflections
b = 34.146 (4) Åθ = 2.8–27.9°
c = 13.347 (3) ŵ = 0.07 mm1
β = 97.67 (1)°T = 293 K
V = 1899.1 (6) Å3Needle, colourless
Z = 40.50 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur, Sapphire CCD
diffractometer
3396 independent reflections
Radiation source: fine-focus sealed tube2217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Rotation method data acquisition using ω scans.θmax = 25.3°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 52
Tmin = 0.964, Tmax = 0.994k = 4133
6324 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.30 w = 1/[σ2(Fo2) + (0.0204P)2 + 1.6101P]
where P = (Fo2 + 2Fc2)/3
3396 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C20H32O3V = 1899.1 (6) Å3
Mr = 320.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.2047 (6) ŵ = 0.07 mm1
b = 34.146 (4) ÅT = 293 K
c = 13.347 (3) Å0.50 × 0.12 × 0.08 mm
β = 97.67 (1)°
Data collection top
Oxford Diffraction Xcalibur, Sapphire CCD
diffractometer
3396 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2217 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.994Rint = 0.025
6324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0862 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.30Δρmax = 0.19 e Å3
3396 reflectionsΔρmin = 0.16 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0113 (8)0.72255 (9)0.2460 (2)0.0393 (8)
C20.0688 (8)0.74981 (10)0.3212 (2)0.0425 (8)
C30.2542 (9)0.78269 (10)0.2988 (2)0.0532 (9)
H30.29050.80000.34980.064*
C40.3858 (10)0.78977 (12)0.2000 (3)0.0640 (11)
H40.51210.81190.18470.077*
C50.3317 (9)0.76445 (11)0.1246 (3)0.0597 (10)
H50.42090.76950.05830.072*
C60.1467 (8)0.73162 (10)0.1462 (2)0.0464 (9)
C70.1710 (9)0.68584 (10)0.2653 (2)0.0470 (9)
C80.3023 (8)0.67262 (9)0.3702 (2)0.0454 (8)
H8A0.13330.67460.41280.054*
H8B0.47260.69040.39710.054*
C90.4330 (9)0.63108 (9)0.3769 (2)0.0492 (9)
H9A0.26580.61300.34940.059*
H9B0.60840.62890.33680.059*
C100.5516 (8)0.62006 (10)0.4857 (2)0.0498 (9)
H10A0.72750.63730.51090.060*
H10B0.37970.62460.52610.060*
C110.6644 (9)0.57805 (10)0.5009 (2)0.0512 (9)
H11A0.83700.57340.46090.061*
H11B0.48890.56060.47630.061*
C120.7816 (9)0.56813 (10)0.6106 (2)0.0508 (9)
H12A0.96180.58500.63400.061*
H12B0.61140.57400.65070.061*
C130.8842 (9)0.52598 (10)0.6300 (3)0.0534 (9)
H13A0.70340.50900.60820.064*
H13B1.05260.51980.58950.064*
C141.0047 (9)0.51736 (10)0.7395 (2)0.0515 (9)
H14A0.83720.52410.77990.062*
H14B1.18700.53420.76070.062*
C151.1044 (9)0.47527 (10)0.7621 (3)0.0540 (9)
H15A0.92080.45840.74310.065*
H15B1.26840.46820.72070.065*
C161.2325 (9)0.46803 (10)0.8721 (3)0.0532 (9)
H16A1.41500.48510.89080.064*
H16B1.06790.47520.91320.064*
C171.3348 (9)0.42633 (10)0.8971 (3)0.0533 (9)
H17A1.49770.41880.85570.064*
H17B1.15190.40910.88010.064*
C181.4666 (9)0.42050 (10)1.0074 (3)0.0525 (9)
H18A1.64730.43801.02420.063*
H18B1.30250.42801.04840.063*
C191.5747 (10)0.37927 (10)1.0357 (3)0.0635 (11)
H19A1.39390.36171.02000.076*
H19B1.73790.37160.99460.076*
C201.7081 (10)0.37452 (12)1.1458 (3)0.0743 (12)
H20A1.54700.38161.18710.111*
H20B1.89190.39121.16160.111*
H20C1.77010.34771.15870.111*
O10.0677 (7)0.74329 (7)0.41776 (17)0.0621 (7)
H1O0.008 (9)0.7602 (9)0.456 (2)0.075*
O20.0966 (7)0.70821 (7)0.06808 (17)0.0638 (8)
H2O0.016 (8)0.6889 (8)0.088 (3)0.077*
O30.2155 (8)0.66456 (7)0.19388 (18)0.0763 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.052 (2)0.0385 (18)0.0266 (16)0.0058 (15)0.0025 (14)0.0033 (14)
C20.053 (2)0.0442 (19)0.0296 (18)0.0059 (16)0.0030 (15)0.0015 (15)
C30.071 (3)0.051 (2)0.038 (2)0.0043 (19)0.0059 (17)0.0029 (17)
C40.077 (3)0.060 (2)0.053 (2)0.019 (2)0.003 (2)0.008 (2)
C50.074 (3)0.065 (3)0.036 (2)0.002 (2)0.0069 (18)0.0120 (18)
C60.064 (2)0.044 (2)0.0304 (18)0.0107 (17)0.0021 (16)0.0013 (15)
C70.067 (2)0.044 (2)0.0305 (18)0.0081 (17)0.0069 (16)0.0006 (15)
C80.055 (2)0.046 (2)0.0340 (18)0.0023 (16)0.0012 (15)0.0036 (15)
C90.058 (2)0.044 (2)0.044 (2)0.0003 (17)0.0033 (16)0.0028 (16)
C100.054 (2)0.049 (2)0.045 (2)0.0015 (17)0.0014 (16)0.0065 (17)
C110.060 (2)0.048 (2)0.045 (2)0.0040 (17)0.0024 (17)0.0059 (16)
C120.057 (2)0.049 (2)0.046 (2)0.0035 (17)0.0056 (17)0.0072 (17)
C130.063 (2)0.046 (2)0.050 (2)0.0060 (18)0.0031 (17)0.0081 (17)
C140.058 (2)0.049 (2)0.047 (2)0.0050 (17)0.0066 (17)0.0089 (17)
C150.063 (2)0.048 (2)0.049 (2)0.0026 (18)0.0007 (18)0.0065 (17)
C160.060 (2)0.048 (2)0.051 (2)0.0050 (18)0.0042 (18)0.0065 (17)
C170.062 (2)0.045 (2)0.052 (2)0.0017 (17)0.0035 (18)0.0066 (17)
C180.058 (2)0.046 (2)0.054 (2)0.0039 (17)0.0073 (18)0.0075 (17)
C190.077 (3)0.049 (2)0.064 (3)0.002 (2)0.003 (2)0.008 (2)
C200.084 (3)0.068 (3)0.068 (3)0.008 (2)0.000 (2)0.023 (2)
O10.096 (2)0.0599 (17)0.0268 (13)0.0189 (15)0.0037 (12)0.0071 (11)
O20.111 (2)0.0497 (16)0.0279 (13)0.0022 (15)0.0005 (13)0.0004 (12)
O30.138 (3)0.0541 (16)0.0363 (15)0.0235 (16)0.0090 (15)0.0027 (13)
Geometric parameters (Å, º) top
C1—C61.412 (4)C12—H12B0.9700
C1—C21.413 (4)C13—C141.510 (4)
C1—C71.474 (4)C13—H13A0.9700
C2—O11.357 (4)C13—H13B0.9700
C2—C31.377 (5)C14—C151.516 (4)
C3—C41.381 (5)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.369 (5)C15—C161.516 (4)
C4—H40.9300C15—H15A0.9700
C5—C61.373 (5)C15—H15B0.9700
C5—H50.9300C16—C171.512 (4)
C6—O21.352 (4)C16—H16A0.9700
C7—O31.233 (4)C16—H16B0.9700
C7—C81.503 (4)C17—C181.515 (4)
C8—C91.520 (4)C17—H17A0.9700
C8—H8A0.9700C17—H17B0.9700
C8—H8B0.9700C18—C191.512 (4)
C9—C101.519 (4)C18—H18A0.9700
C9—H9A0.9700C18—H18B0.9700
C9—H9B0.9700C19—C201.510 (5)
C10—C111.516 (4)C19—H19A0.9700
C10—H10A0.9700C19—H19B0.9700
C10—H10B0.9700C20—H20A0.9600
C11—C121.519 (4)C20—H20B0.9600
C11—H11A0.9700C20—H20C0.9600
C11—H11B0.9700O1—H1O0.836 (18)
C12—C131.515 (4)O2—H2O0.835 (18)
C12—H12A0.9700
C6—C1—C2116.1 (3)C14—C13—C12113.7 (3)
C6—C1—C7119.1 (3)C14—C13—H13A108.8
C2—C1—C7124.8 (3)C12—C13—H13A108.8
O1—C2—C3119.7 (3)C14—C13—H13B108.8
O1—C2—C1118.4 (3)C12—C13—H13B108.8
C3—C2—C1121.9 (3)H13A—C13—H13B107.7
C2—C3—C4119.6 (3)C13—C14—C15115.1 (3)
C2—C3—H3120.2C13—C14—H14A108.5
C4—C3—H3120.2C15—C14—H14A108.5
C5—C4—C3120.4 (4)C13—C14—H14B108.5
C5—C4—H4119.8C15—C14—H14B108.5
C3—C4—H4119.8H14A—C14—H14B107.5
C4—C5—C6120.4 (3)C16—C15—C14113.6 (3)
C4—C5—H5119.8C16—C15—H15A108.9
C6—C5—H5119.8C14—C15—H15A108.9
O2—C6—C5117.6 (3)C16—C15—H15B108.9
O2—C6—C1120.9 (3)C14—C15—H15B108.9
C5—C6—C1121.5 (3)H15A—C15—H15B107.7
O3—C7—C1119.7 (3)C17—C16—C15114.9 (3)
O3—C7—C8117.9 (3)C17—C16—H16A108.5
C1—C7—C8122.4 (3)C15—C16—H16A108.5
C7—C8—C9114.9 (3)C17—C16—H16B108.5
C7—C8—H8A108.6C15—C16—H16B108.5
C9—C8—H8A108.6H16A—C16—H16B107.5
C7—C8—H8B108.6C16—C17—C18113.2 (3)
C9—C8—H8B108.6C16—C17—H17A108.9
H8A—C8—H8B107.5C18—C17—H17A108.9
C10—C9—C8111.0 (3)C16—C17—H17B108.9
C10—C9—H9A109.4C18—C17—H17B108.9
C8—C9—H9A109.4H17A—C17—H17B107.7
C10—C9—H9B109.4C19—C18—C17115.1 (3)
C8—C9—H9B109.4C19—C18—H18A108.5
H9A—C9—H9B108.0C17—C18—H18A108.5
C11—C10—C9114.8 (3)C19—C18—H18B108.5
C11—C10—H10A108.6C17—C18—H18B108.5
C9—C10—H10A108.6H18A—C18—H18B107.5
C11—C10—H10B108.6C20—C19—C18113.8 (3)
C9—C10—H10B108.6C20—C19—H19A108.8
H10A—C10—H10B107.5C18—C19—H19A108.8
C10—C11—C12113.3 (3)C20—C19—H19B108.8
C10—C11—H11A108.9C18—C19—H19B108.8
C12—C11—H11A108.9H19A—C19—H19B107.7
C10—C11—H11B108.9C19—C20—H20A109.5
C12—C11—H11B108.9C19—C20—H20B109.5
H11A—C11—H11B107.7H20A—C20—H20B109.5
C13—C12—C11115.2 (3)C19—C20—H20C109.5
C13—C12—H12A108.5H20A—C20—H20C109.5
C11—C12—H12A108.5H20B—C20—H20C109.5
C13—C12—H12B108.5C2—O1—H1O110 (3)
C11—C12—H12B108.5C6—O2—H2O111 (3)
H12A—C12—H12B107.5
C6—C1—C2—O1177.2 (3)C6—C1—C7—C8175.5 (3)
C7—C1—C2—O14.1 (5)C2—C1—C7—C83.2 (5)
C6—C1—C2—C31.8 (5)O3—C7—C8—C98.9 (5)
C7—C1—C2—C3176.9 (3)C1—C7—C8—C9170.0 (3)
O1—C2—C3—C4178.3 (3)C7—C8—C9—C10178.5 (3)
C1—C2—C3—C40.7 (5)C8—C9—C10—C11175.8 (3)
C2—C3—C4—C50.4 (6)C9—C10—C11—C12179.9 (3)
C3—C4—C5—C60.2 (6)C10—C11—C12—C13177.6 (3)
C4—C5—C6—O2178.6 (4)C11—C12—C13—C14179.0 (3)
C4—C5—C6—C11.0 (6)C12—C13—C14—C15179.0 (3)
C2—C1—C6—O2177.7 (3)C13—C14—C15—C16178.4 (3)
C7—C1—C6—O23.6 (5)C14—C15—C16—C17179.9 (3)
C2—C1—C6—C52.0 (5)C15—C16—C17—C18179.0 (3)
C7—C1—C6—C5176.8 (3)C16—C17—C18—C19179.5 (3)
C6—C1—C7—O33.4 (5)C17—C18—C19—C20179.4 (3)
C2—C1—C7—O3177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.84 (2)1.75 (3)2.485 (4)146 (4)
O1—H1O···O2i0.84 (2)1.94 (2)2.760 (3)168 (4)
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.84 (2)1.75 (3)2.485 (4)146 (4)
O1—H1O···O2i0.84 (2)1.94 (2)2.760 (3)168 (4)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H32O3
Mr320.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.2047 (6), 34.146 (4), 13.347 (3)
β (°) 97.67 (1)
V3)1899.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.12 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur, Sapphire CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.964, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
6324, 3396, 2217
Rint0.025
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.160, 1.30
No. of reflections3396
No. of parameters214
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, FB Material-und Geowissenschaften, Technische Universität Darmstadt, for diffractometer time.

References

First citationDean, F. M. (1963). Naturally Occurring Oxygen Ring Compounds, pp. 288–89. London: Butterworth & Co Ltd.  Google Scholar
First citationForrest, J. E. & Heacock, R. A. (1972). Lloydia, 35, 440–449.  CAS PubMed Web of Science Google Scholar
First citationManna, A., Saha, P., Sarkar, A., Mukhopadhyay, D., Bauri, A. K., Kumar, D., Das, P., Chattopadhyay, S. & Chatterjee, M. (2012). PLoS One, 45, 518–526.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSen, R., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2007). Phytother. Res. 21, 592–595.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds