organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1E,2E)-N1,N2-Bis(5′-methyl-[1,1′:3′,1′′-terphen­yl]-4′-yl)ace­naphthyl­ene-1,2-di­imine unknown solvent

aKey Laboratory of Bioelectrochemical and Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: zhaoyan2532@126.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 31 March 2016; accepted 10 April 2016; online 15 April 2016)

The title compound, C50H36N2, synthesized by the condensation reaction of 2-methyl-4,6-di­phenyl­aniline and ace­naphthyl­ene-1,2-dione, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The two mol­ecules differ essentially in the orientation of the phenyl ring at position 3′ of the terphenyl group with respect to the central ring of this unit. In mol­ecule A this dihedral angle is 16.68 (14)°, while in mol­ecule B the corresponding angle is 33.10 (16)°. The three-fused-ring 1,2-di­hydro­ace­naphthyl­ene units are planar in each mol­ecule; r.m.s. deviation of 0.025 Å in mol­ecule A and 0.017 Å in mol­ecule B. The central rings of the terphenyl groups are almost normal to the mean plane of the three-fused-ring units with dihedral angles of 79.43 (12) and 82.66 (13)° in mol­ecule A and 88.99 (13) and 87.98 (12)° in mol­ecule B. In the crystal, the two mol­ecules are linked via a C—H⋯N hydrogen bond. These AB units are linked by a pair of C—H⋯π inter­actions, forming a four-mol­ecule unit located about an inversion center. These four-mol­ecule units are linked by weak ππ inter­actions [most significant inter­centroid distance = 3.794 (2) Å], forming columns along direction [010]. A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The formula mass and unit-cell characteristics of this unknown solvent were not be taken into account during the refinement.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the past few decades, there has been a rapid development of a series of α-di­imine palladium and nickel complex catalysts [MX2(α-di­imine)] (where M = Ni, Pd; X = halide) for the polymerization of α-olefins since the original discovery of highly active α-di­imine nickel catalysts (Johnson et al., 1995[Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414-6415.]). The catalytic activity and properties of the resulting polymers are greatly dependent on the reaction conditions (Helldörfer et al., 2003[Helldörfer, M., Milius, W. & Alt, H. G. (2003). J. Mol. Catal. A Chem. 197, 1-13.]) and ligand structures (Meinhard et al., 2007[Meinhard, D., Wegner, M., Kipiani, G., Hearley, A., Reuter, P., Fischer, S., Marti, O. & Rieger, B. (2007). J. Am. Chem. Soc. 129, 9182-9191.]; Popeney et al., 2011[Popeney, C. S., Levins, C. M. & Guan, Z. B. (2011). Organometallics, 30, 2432-2452.]; Yuan et al., 2005[Yuan, J. C., Silva, L. C., Gomes, P. T., Valerga, P., Campos, J. M., Ribeiro, M. R., Chien, J. C. W. & Marques, M. M. (2005). Polymer, 46, 2122-2132.]; 2013[Yuan, J. C., Jia, Z., Li, J., Song, F. Y., Wang, F. Z. & Yuan, B. N. (2013). Transition Met. Chem. 38, 341-350.]). Nickel and palladium metal complex catalysts have a high catalytic activity for ethyl­ene polymerization which gives high branched polyethyl­ene, and the copolymerization of ethyl­ene and polar monomers have also high catalytic activity. In this study, we describe the synthesis and crystal structure of the title compound, a new potential bidentate ligand prepared by the condensation reaction of 2-methyl-4,6-di­phenyl­aniline (1) and ace­naphthyl­ene-1,2-dione (2); Fig. 1[link].

[Figure 1]
Figure 1
The condensation reaction of 2-methyl-4,6-di­phenyl­aniline (1) and ace­naphthyl­ene-1,2-dione (2), giving the title compound.

The title compound crystallizes with two independent mol­ecules in the asymmetric unit. The mol­ecular structure of mol­ecule A is illustrated in Fig. 2[link], while that of mol­ecule B is illustrated in Fig. 3[link]. The AutoMolFit of mol­ecule B inverted on mol­ecule A gives the best fit (Fig. 4[link]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The two mol­ecules having weighted and unit weight r.m.s. fits of 0.317 and 0.278 Å, respectively, for the 52 non-H atoms. The two mol­ecules differ essentially in the orientation of the phenyl ring at position 3′ of the terphenyl group with respect to the central ring of this unit. In mol­ecule A this dihedral angle (C7–C12/C1-C6) is 16.68 (14)°, while in mol­ecule B the corres­ponding angle (C94–C99/C82–C87) is 33.10 (16)°. The three-fused-ring 1,2-di­hydro­ace­naphthyl­ene units (C20–C31 in mol­ecule A, and C70–C81 in mol­ecule B) are planar in each mol­ecule with r.m.s. deviation of 0.025 Å in mol­ecule A and 0.017 Å in mol­ecule B. The central ring of the terphenyl groups (C1–C6 and C32–C37 in mol­ecule A, and C82–C88 and C51–C56 in mol­ecule B) are almost normal to the mean plane of the three-fused-ring units, with dihedral angles of 79.43 (12) and 82.66 (13)°, respectively, in mol­ecule A, and 88.99 (13) and 87.98 (12)°, respectively, in mol­ecule B.

[Figure 2]
Figure 2
The mol­ecular structure of mol­ecule A of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of mol­ecule B of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The AutoMolFit of mol­ecule B (red) inverted on mol­ecule A (black) gives the best fit (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

In the crystal, the two mol­ecules are linked via a C—H⋯N hydrogen bond (Table 1[link] and Fig. 5[link]). These AB units are linked about a center of inversion by a pair of C—H⋯π inter­actions, forming a four-mol­ecule unit (Table 1[link] and Fig. 5[link]). These four-mol­ecule units are linked by slipped parallel ππ inter­actions forming columns along the b-axis direction [Cg3⋯ Cg18i = 3.794 (2) Å, inter­planar distance = 3.590 (1) Å, slippage = 0.787 Å, Cg3 is the centroid of ring C7–C12 in mol­ecule A and Cg18 is the centroid of ring C71–C75/C80 in mol­ecule B, symmetry code (i): − x + 1, − y + 2, − z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of ring C1–C6 in mol­ecule A.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯N3i 0.93 2.60 3.517 (6) 168
C92—H92⋯Cg2ii 0.93 2.95 3.789 (5) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z-1.
[Figure 5]
Figure 5
A view along the c axis of the crystal packing of the title compound. The C—H⋯N hydrogen bonds and C—H⋯π inter­actions are represented by dashed lines (see Table 1[link]). H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 1[link].

Synthesis of 2-methyl-4,6-di­phenyl­aniline (1): 2-methyl-4,6-di­bromo-aniline (2 mmol, 0.53 g) was dissolved in PEG-400 (10 ml) containing phenyl­boronic acid (0.586 g, 4.8 mmol), K2CO3 (0,828 g;0.6 mmol) PdCl2 (50 µg). The solution was placed in a round-bottomed flask and stirred at room temperature for 12 h. After the reaction, the solution was eluted with ethyl acetate/petroleum ether (v/v = 1:15) through a column, giving compound (1) as a colourless liquid (yield: 0.75 g, 79%).

Synthesis of the title compound: Formic acid (0.5 ml) was added to a stirred solution of ace­naphthyl­ene-1,2-dione (2) [0.18 g, 1.00 mmol] and compound (1) [0.57 g, 2.2 mmol) in ethanol (10 ml]. The mixture was refluxed for 24 h, and then cooled and the precipitate separated by filtration. The solid was recrystallized from EtOH/CH2Cl2 (v/v = 10:1), washed and dried under vacuum (yield: 0.43 g, 72%). Crystals suitable for X–ray structure analysis were grown from a cyclo­hexa­ne/di­chloro­methane (v/v = 1:2) solution by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]): volume ca 690 Å3 for two regions of 36 and 65 electron counts. The formula mass and unit-cell characteristics of this unknown solvent were not taken into account during the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C50H36N2
Mr 664.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 15.579 (3), 16.799 (4), 17.332 (4)
α, β, γ (°) 72.622 (2), 73.116 (2), 84.324 (2)
V3) 4142.0 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.23 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.986, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 29357, 14707, 5868
Rint 0.041
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.144, 1.04
No. of reflections 14707
No. of parameters 930
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Experimental top

The synthesis of the title compound is illustrated in Fig. 1.

Synthesis of 2-methyl-4,6-diphenylaniline (1): 2-methyl-4,6-dibromo-aniline (2 mmol, 0.53 g) was dissolved in PEG-400 (10 ml) containing phenylboronic acid (0.586 g, 4.8 mmol), K2CO3 (0,828 g;0.6 mmol) PdCl2 (50 µg). The solution was placed in a round-bottomed flask and stirred at room temperature for 12 h. After the reaction, the solution was eluted with ethyl acetate/petroleum ether (v/v = 1:15) through a column, giving compound (1) as a colourless liquid (yield: 0.75 g, 79%).

Synthesis of the title compound: Formic acid (0.5 ml) was added to a stirred solution of acenaphthylene-1,2-dione (2) [0.18 g, 1.00 mmol] and compound (1) [0.57 g, 2.2 mmol) in ethanol (10 ml]. The mixture was refluxed for 24 h, and then cooled and the precipitate separated by filtration. The solid was recrystallized from EtOH/CH2Cl2 (v/v = 10:1), washed and dried under vacuum (yield: 0.43 g, 72%). Crystals suitable for X–ray structure analysis were grown from a cyclohexane/dichloromethane (v/v = 1:2) solution by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015): volume ca 690 Å3 for two regions of 36 and 65 electron counts. The formula mass and unit-cell characteristics of this unknown solvent were not taken into account during the refinement.

Structure description top

In the past few decades, there has been a rapid development of a series of α-diimine palladium and nickel complex catalysts [MX2(α-diimine)] (where M = Ni, Pd; X = halide) for the polymerization of α-olefins since the original discovery of highly active α-diimine nickel catalysts (Johnson et al., 1995). The catalytic activity and properties of the resulting polymers are greatly dependent on the reaction conditions (Helldörfer et al., 2003) and ligand structures (Meinhard et al., 2007; Popeney et al., 2011; Yuan et al., 2005; 2013). Nickel and palladium metal complex catalysts have a high catalytic activity for ethylene polymerization which gives high branched polyethylene, and the copolymerization of ethylene and polar monomers have also high catalytic activity. In this study, we describe the synthesis and crystal structure of the title compound, a new potential bidentate ligand prepared by the condensation reaction of 2-methyl-4,6-diphenylaniline (1) and acenaphthylene-1,2-dione (2); Fig. 1.

The title compound crystallizes with two independent molecules in the asymmetric unit. The molecular structure of molecule A is illustrated in Fig. 2, while that of molecule B is illustrated in Fig. 3. The AutoMolFit of molecule B inverted on molecule A gives the best fit (Fig. 4; Spek, 2009). The two molecules having weighted and unit weight r.m.s. fits of 0.317 and 0.278 Å, respectively, for the 52 non-H atoms. The two molecules differ essentially in the orientation of the phenyl ring at position 3' of the terphenyl group with respect to the central ring of this unit. In molecule A this dihedral angle (C7–C12/C1-C6) is 16.68 (14)°, while in molecule B the corresponding angle (C94–C99/C82–C87) is 33.10 (16)°. The three-fused-ring 1,2-dihydroacenaphthylene units (C20–C31 in molecule A, and C70–C81 in molecule B) are planar in each molecule with r.m.s. deviation of 0.025 Å in molecule A and 0.017 Å in molecule B. The central ring of the terphenyl groups (C1–C6 and C32–C37 in molecule A, and C82–C88 and C51–C56 in molecule B) are almost normal to the mean plane of the three-fused-ring units, with dihedral angles of 79.43 (12) and 82.66 (13)°, respectively, in molecule A, and 88.99 (13) and 87.98 (12)°, respectively, in molecule B.

In the crystal, the two molecules are linked via a C—H···N hydrogen bond (Table 1 and Fig. 5). These AB units are linked about a center of inversion by a pair of C—H···π interactions, forming a four-molecule unit (Table 1 and Fig. 5). These four-molecule units are linked by slipped parallel ππ interactions forming columns along the b-axis direction [Cg3··· Cg18i = 3.794 (2) Å, interplanar distance = 3.590 (1) Å, slippage = 0.787 Å, Cg3 is the centroid of ring C7–C12 in molecule A and Cg18 is the centroid of ring C71–C75/C80 in molecule B, symmetry code (i): - x + 1, - y + 2, - z + 1].

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The condensation reaction of 2-methyl-4,6-diphenylaniline (1) and acenaphthylene-1,2-dione (2), giving the title compound.
[Figure 2] Fig. 2. The molecular structure of molecule A of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of molecule B of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The AutoMolFit of molecule B (red) inverted on molecule A (black) gives the best fit (PLATON; Spek, 2009).
[Figure 5] Fig. 5. A view along the c axis of the crystal packing of the title compound. The C—H···N hydrogen bonds and C—H···π interactions are represented by dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.
(1E,2E)-N1,N2-Bis(5'-methyl-[1,1':3',1''-\ terphenyl]-4'-yl)acenaphthylene-1,2-diimine unknown solvent top
Crystal data top
C50H36N2Z = 4
Mr = 664.81F(000) = 1400
Triclinic, P1Dx = 1.066 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 15.579 (3) ÅCell parameters from 3879 reflections
b = 16.799 (4) Åθ = 2.3–21.0°
c = 17.332 (4) ŵ = 0.06 mm1
α = 72.622 (2)°T = 296 K
β = 73.116 (2)°Block, colorless
γ = 84.324 (2)°0.23 × 0.21 × 0.16 mm
V = 4142.0 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
14707 independent reflections
Radiation source: fine-focus sealed tube5868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.986, Tmax = 0.990k = 2020
29357 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.040P)2 + 0.3174P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
14707 reflectionsΔρmax = 0.24 e Å3
930 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (2)
Crystal data top
C50H36N2γ = 84.324 (2)°
Mr = 664.81V = 4142.0 (15) Å3
Triclinic, P1Z = 4
a = 15.579 (3) ÅMo Kα radiation
b = 16.799 (4) ŵ = 0.06 mm1
c = 17.332 (4) ÅT = 296 K
α = 72.622 (2)°0.23 × 0.21 × 0.16 mm
β = 73.116 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
14707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5868 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.990Rint = 0.041
29357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
14707 reflectionsΔρmin = 0.29 e Å3
930 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.31195 (15)0.84290 (16)0.84423 (15)0.0510 (8)
C80.34685 (16)0.92224 (15)0.82139 (13)0.0807 (11)
H80.35710.95560.76610.097*
C90.36642 (16)0.95177 (14)0.8812 (2)0.0916 (13)
H90.38981.00490.86590.110*
C100.35108 (18)0.9020 (2)0.96375 (17)0.0931 (14)
H100.36420.92171.00370.112*
C110.3162 (2)0.82262 (19)0.98659 (12)0.1235 (18)
H110.30590.78931.04190.148*
C120.29661 (18)0.79309 (13)0.92683 (18)0.0998 (14)
H120.27330.74000.94210.120*
C10.26934 (19)0.7493 (2)0.65182 (19)0.0488 (8)
C20.2781 (2)0.8342 (2)0.6375 (2)0.0611 (9)
C30.2890 (2)0.8636 (2)0.7015 (2)0.0630 (10)
H30.29280.92080.69220.076*
C40.29437 (19)0.8097 (2)0.77868 (19)0.0521 (8)
C50.28410 (19)0.7258 (2)0.79027 (19)0.0534 (9)
H50.28720.68840.84130.064*
C60.26940 (19)0.6942 (2)0.72966 (19)0.0483 (8)
C130.2546 (2)0.6033 (2)0.74996 (19)0.0557 (9)
C140.3040 (2)0.5452 (2)0.7955 (2)0.0742 (11)
H140.34880.56320.81190.089*
C150.2878 (3)0.4594 (3)0.8174 (2)0.0891 (13)
H150.32040.42100.84920.107*
C160.2237 (4)0.4331 (3)0.7916 (3)0.0936 (14)
H160.21400.37630.80430.112*
C170.1739 (3)0.4891 (3)0.7474 (3)0.1001 (14)
H170.12930.47070.73120.120*
C180.1896 (3)0.5727 (3)0.7268 (2)0.0771 (11)
H180.15520.61020.69610.093*
C190.2785 (3)0.8948 (2)0.5528 (2)0.1027 (14)
H19A0.33310.88760.51190.154*
H19B0.27460.95090.55690.154*
H19C0.22820.88420.53610.154*
C200.3182 (2)0.68981 (18)0.54082 (19)0.0470 (8)
C210.4137 (2)0.67354 (19)0.5368 (2)0.0521 (8)
C220.4692 (2)0.6909 (2)0.5773 (2)0.0704 (10)
H220.44710.71720.61950.084*
C230.5600 (3)0.6685 (3)0.5545 (3)0.0869 (12)
H230.59780.68100.58190.104*
C240.5952 (3)0.6293 (2)0.4938 (3)0.0850 (12)
H240.65580.61480.48110.102*
C250.5400 (3)0.6105 (2)0.4502 (2)0.0668 (10)
C260.5655 (3)0.5709 (2)0.3845 (3)0.0845 (12)
H260.62450.55270.36730.101*
C270.5042 (3)0.5597 (2)0.3468 (2)0.0863 (12)
H270.52260.53310.30460.104*
C280.4146 (3)0.5862 (2)0.3686 (2)0.0707 (10)
H280.37460.57850.34080.085*
C290.3871 (2)0.62395 (19)0.4323 (2)0.0542 (9)
C300.4493 (2)0.63508 (18)0.4723 (2)0.0532 (8)
C310.3009 (2)0.65909 (18)0.47245 (18)0.0504 (8)
C320.2104 (2)0.6412 (2)0.3931 (2)0.0538 (9)
C330.2297 (2)0.6958 (2)0.3117 (2)0.0534 (9)
C340.2151 (2)0.6676 (2)0.2489 (2)0.0624 (9)
H340.22790.70330.19450.075*
C350.1830 (2)0.5901 (2)0.2629 (2)0.0639 (10)
C360.1594 (2)0.5397 (2)0.3458 (2)0.0689 (10)
H360.13410.48810.35740.083*
C370.1723 (2)0.5637 (2)0.4115 (2)0.0630 (10)
C380.2641 (2)0.7811 (2)0.2913 (2)0.0509 (8)
C390.2268 (2)0.8331 (2)0.3420 (2)0.0675 (10)
H390.18140.81350.39130.081*
C400.2569 (3)0.9140 (2)0.3193 (3)0.0781 (11)
H400.23160.94800.35390.094*
C410.3232 (3)0.9444 (2)0.2471 (3)0.0763 (11)
H410.34270.99890.23210.092*
C420.3601 (2)0.8938 (2)0.1975 (2)0.0729 (11)
H420.40520.91380.14810.088*
C430.3314 (2)0.8131 (2)0.2199 (2)0.0639 (10)
H430.35840.77920.18550.077*
C440.1732 (3)0.5603 (2)0.1918 (2)0.0604 (10)
C450.2328 (3)0.5863 (2)0.1142 (3)0.0896 (13)
H450.27760.62330.10550.108*
C460.2273 (4)0.5581 (3)0.0477 (3)0.1095 (16)
H460.26880.57530.00470.131*
C470.1602 (5)0.5047 (3)0.0605 (4)0.1186 (19)
H470.15550.48650.01620.142*
C480.0998 (4)0.4778 (3)0.1380 (4)0.1112 (17)
H480.05490.44070.14730.133*
C490.1077 (3)0.5081 (2)0.2038 (3)0.0855 (12)
H490.06650.49150.25640.103*
C500.1477 (3)0.5070 (2)0.4999 (2)0.0949 (13)
H50A0.20110.49010.51800.142*
H50B0.11830.45870.50160.142*
H50C0.10810.53610.53660.142*
C510.8308 (2)0.76630 (18)0.26840 (19)0.0506 (8)
C520.9136 (2)0.72957 (19)0.2736 (2)0.0539 (9)
C530.9371 (2)0.71489 (19)0.3476 (2)0.0591 (9)
H530.99260.69040.35090.071*
C540.8800 (2)0.73574 (19)0.4176 (2)0.0538 (9)
C550.7973 (2)0.77178 (18)0.41044 (19)0.0545 (9)
H550.75810.78570.45650.065*
C560.7713 (2)0.78774 (17)0.33696 (19)0.0471 (8)
C570.9076 (2)0.71895 (18)0.4972 (2)0.0527 (9)
C580.9928 (3)0.7233 (2)0.4962 (2)0.0766 (11)
H581.03680.73400.44510.092*
C591.0182 (3)0.7122 (2)0.5705 (3)0.0910 (13)
H591.07800.71630.56820.109*
C600.9536 (3)0.6954 (2)0.6464 (3)0.0825 (12)
H600.96930.68860.69590.099*
C610.8648 (3)0.6886 (2)0.6488 (2)0.0790 (11)
H610.82090.67600.70000.095*
C620.8416 (2)0.70062 (19)0.5749 (2)0.0664 (10)
H620.78190.69650.57660.080*
C630.6810 (2)0.8266 (2)0.33531 (19)0.0552 (9)
C640.6497 (3)0.8902 (2)0.3721 (2)0.0710 (10)
H640.68740.91140.39400.085*
C650.5653 (3)0.9229 (3)0.3773 (2)0.0985 (14)
H650.54640.96590.40200.118*
C660.5085 (3)0.8927 (4)0.3462 (3)0.1140 (18)
H660.45050.91420.35070.137*
C670.5375 (3)0.8304 (4)0.3084 (3)0.1068 (16)
H670.49940.81060.28600.128*
C680.6237 (3)0.7964 (2)0.3032 (2)0.0784 (11)
H680.64250.75350.27810.094*
C690.9770 (2)0.7041 (2)0.1997 (2)0.0746 (11)
H69A1.03560.69320.20840.112*
H69B0.98010.74840.14890.112*
H69C0.95520.65470.19520.112*
C700.81620 (19)0.8452 (2)0.13499 (19)0.0456 (8)
C710.8550 (2)0.92518 (18)0.12345 (19)0.0486 (8)
C720.8870 (2)0.9589 (2)0.1719 (2)0.0654 (10)
H720.88710.92830.22630.078*
C730.9201 (2)1.0411 (2)0.1382 (3)0.0797 (11)
H730.94141.06410.17150.096*
C740.9218 (3)1.0874 (2)0.0591 (3)0.0862 (12)
H740.94441.14110.03930.103*
C750.8898 (2)1.0551 (2)0.0065 (2)0.0670 (10)
C760.8858 (3)1.0956 (2)0.0769 (3)0.0879 (12)
H760.90721.14960.10290.105*
C770.8513 (3)1.0568 (3)0.1192 (2)0.0824 (12)
H770.84971.08510.17380.099*
C780.8178 (2)0.9754 (2)0.0835 (2)0.0629 (9)
H780.79470.95000.11390.075*
C790.82002 (19)0.93409 (19)0.0025 (2)0.0493 (8)
C800.8562 (2)0.9742 (2)0.0411 (2)0.0502 (8)
C810.79069 (19)0.8515 (2)0.05548 (18)0.0450 (8)
C820.7271 (2)0.80212 (19)0.02622 (19)0.0504 (8)
C830.7878 (2)0.77977 (18)0.09352 (19)0.0480 (8)
C840.7617 (2)0.79215 (18)0.16637 (19)0.0517 (8)
H840.80200.77840.21200.062*
C850.6780 (2)0.82414 (19)0.17419 (19)0.0520 (8)
C860.6187 (2)0.8422 (2)0.1044 (2)0.0616 (9)
H860.56140.86190.10730.074*
C870.6419 (2)0.8317 (2)0.0305 (2)0.0618 (9)
C880.8793 (2)0.7470 (2)0.0903 (2)0.0512 (8)
C890.8943 (2)0.6866 (2)0.0210 (2)0.0653 (10)
H890.84620.66730.02590.078*
C900.9794 (3)0.6543 (2)0.0199 (3)0.0821 (12)
H900.98810.61370.02720.099*
C911.0508 (3)0.6828 (3)0.0891 (3)0.0894 (13)
H911.10820.66170.08870.107*
C921.0378 (3)0.7421 (3)0.1585 (2)0.0778 (11)
H921.08590.76090.20560.093*
C930.9524 (3)0.7738 (2)0.1581 (2)0.0657 (10)
H930.94410.81470.20520.079*
C940.6529 (2)0.83902 (18)0.2551 (2)0.0498 (8)
C950.7146 (2)0.86355 (19)0.3299 (2)0.0637 (10)
H950.77360.87030.33130.076*
C960.6921 (3)0.8790 (2)0.4048 (2)0.0782 (11)
H960.73590.89490.45600.094*
C970.6048 (3)0.8706 (2)0.4028 (3)0.0884 (13)
H970.58880.88060.45250.106*
C980.5420 (3)0.8474 (2)0.3274 (3)0.0878 (12)
H980.48250.84230.32560.105*
C990.5658 (3)0.8315 (2)0.2534 (2)0.0717 (10)
H990.52240.81560.20200.086*
C1000.5755 (2)0.8559 (3)0.0424 (2)0.0992 (14)
H10A0.57460.81310.09380.149*
H10B0.51680.86230.03380.149*
H10C0.59320.90760.04580.149*
N10.25457 (17)0.72250 (15)0.58708 (16)0.0530 (7)
N20.22359 (19)0.66608 (15)0.46041 (15)0.0557 (7)
N30.80571 (17)0.77649 (16)0.19320 (16)0.0552 (7)
N40.74955 (16)0.79299 (16)0.04974 (14)0.0514 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.048 (2)0.060 (2)0.054 (2)0.0065 (18)0.0176 (18)0.0279 (19)
C80.110 (3)0.089 (3)0.063 (3)0.006 (2)0.034 (2)0.040 (2)
C90.116 (3)0.096 (3)0.084 (3)0.004 (3)0.035 (3)0.047 (3)
C100.103 (3)0.122 (4)0.086 (3)0.032 (3)0.050 (3)0.063 (3)
C110.217 (6)0.098 (4)0.073 (3)0.002 (4)0.063 (3)0.027 (3)
C120.167 (4)0.083 (3)0.074 (3)0.003 (3)0.055 (3)0.036 (3)
C10.053 (2)0.055 (2)0.042 (2)0.0005 (17)0.0165 (17)0.0169 (18)
C20.080 (3)0.064 (3)0.050 (2)0.006 (2)0.034 (2)0.019 (2)
C30.084 (3)0.048 (2)0.062 (2)0.0010 (19)0.028 (2)0.0161 (19)
C40.052 (2)0.058 (2)0.049 (2)0.0044 (18)0.0151 (17)0.0205 (19)
C50.057 (2)0.057 (2)0.041 (2)0.0026 (18)0.0085 (17)0.0130 (17)
C60.050 (2)0.053 (2)0.046 (2)0.0001 (16)0.0105 (17)0.0227 (18)
C130.063 (2)0.053 (2)0.047 (2)0.001 (2)0.0061 (19)0.0175 (18)
C140.089 (3)0.063 (3)0.068 (3)0.004 (2)0.016 (2)0.021 (2)
C150.116 (4)0.060 (3)0.072 (3)0.007 (3)0.006 (3)0.013 (2)
C160.119 (4)0.066 (3)0.082 (3)0.030 (3)0.003 (3)0.022 (3)
C170.108 (4)0.084 (4)0.103 (4)0.037 (3)0.015 (3)0.020 (3)
C180.083 (3)0.071 (3)0.080 (3)0.018 (2)0.024 (2)0.019 (2)
C190.179 (4)0.068 (3)0.073 (3)0.007 (3)0.059 (3)0.010 (2)
C200.058 (2)0.042 (2)0.040 (2)0.0046 (17)0.0121 (18)0.0100 (16)
C210.047 (2)0.058 (2)0.053 (2)0.0069 (17)0.0139 (18)0.0170 (18)
C220.059 (3)0.085 (3)0.070 (3)0.005 (2)0.013 (2)0.030 (2)
C230.063 (3)0.106 (3)0.097 (3)0.013 (2)0.025 (3)0.030 (3)
C240.053 (3)0.095 (3)0.096 (3)0.000 (2)0.008 (3)0.023 (3)
C250.060 (3)0.069 (3)0.063 (3)0.001 (2)0.008 (2)0.016 (2)
C260.067 (3)0.086 (3)0.084 (3)0.015 (2)0.002 (2)0.027 (2)
C270.082 (3)0.097 (3)0.078 (3)0.010 (3)0.002 (3)0.044 (2)
C280.080 (3)0.074 (3)0.061 (2)0.007 (2)0.015 (2)0.030 (2)
C290.061 (2)0.052 (2)0.048 (2)0.0013 (18)0.0097 (19)0.0166 (17)
C300.055 (2)0.046 (2)0.052 (2)0.0002 (17)0.0056 (19)0.0113 (17)
C310.065 (3)0.046 (2)0.038 (2)0.0045 (18)0.0092 (19)0.0123 (16)
C320.064 (2)0.056 (2)0.057 (2)0.0057 (19)0.0253 (19)0.033 (2)
C330.064 (2)0.054 (2)0.051 (2)0.0033 (18)0.0215 (19)0.0237 (19)
C340.083 (3)0.058 (2)0.055 (2)0.001 (2)0.029 (2)0.0207 (19)
C350.087 (3)0.049 (2)0.068 (3)0.001 (2)0.034 (2)0.021 (2)
C360.094 (3)0.050 (2)0.077 (3)0.004 (2)0.036 (2)0.026 (2)
C370.082 (3)0.056 (2)0.060 (3)0.001 (2)0.026 (2)0.023 (2)
C380.057 (2)0.055 (2)0.049 (2)0.0020 (19)0.0208 (19)0.0228 (19)
C390.076 (3)0.062 (3)0.065 (2)0.002 (2)0.013 (2)0.025 (2)
C400.099 (3)0.064 (3)0.079 (3)0.001 (2)0.022 (3)0.034 (2)
C410.104 (3)0.056 (3)0.072 (3)0.013 (2)0.029 (3)0.014 (2)
C420.084 (3)0.073 (3)0.065 (3)0.013 (2)0.017 (2)0.022 (2)
C430.074 (3)0.067 (3)0.062 (3)0.003 (2)0.021 (2)0.033 (2)
C440.088 (3)0.048 (2)0.064 (3)0.001 (2)0.042 (2)0.025 (2)
C450.138 (4)0.069 (3)0.080 (3)0.013 (3)0.043 (3)0.032 (3)
C460.172 (5)0.089 (3)0.085 (3)0.016 (3)0.050 (3)0.033 (3)
C470.214 (6)0.078 (4)0.102 (4)0.002 (4)0.097 (4)0.030 (3)
C480.178 (5)0.075 (3)0.116 (4)0.013 (3)0.085 (4)0.030 (3)
C490.117 (4)0.073 (3)0.084 (3)0.006 (3)0.051 (3)0.027 (2)
C500.142 (4)0.073 (3)0.072 (3)0.027 (3)0.028 (3)0.018 (2)
C510.067 (2)0.047 (2)0.043 (2)0.0067 (18)0.0208 (19)0.0126 (16)
C520.066 (3)0.051 (2)0.047 (2)0.0028 (18)0.016 (2)0.0160 (17)
C530.060 (2)0.064 (2)0.057 (2)0.0094 (18)0.024 (2)0.0199 (19)
C540.060 (2)0.058 (2)0.048 (2)0.0054 (18)0.0225 (19)0.0172 (17)
C550.060 (2)0.058 (2)0.047 (2)0.0003 (18)0.0162 (18)0.0149 (17)
C560.058 (2)0.045 (2)0.040 (2)0.0047 (17)0.0185 (18)0.0086 (16)
C570.063 (3)0.056 (2)0.046 (2)0.0036 (18)0.025 (2)0.0168 (17)
C580.065 (3)0.111 (3)0.052 (2)0.004 (2)0.017 (2)0.023 (2)
C590.077 (3)0.129 (4)0.078 (3)0.015 (3)0.034 (3)0.039 (3)
C600.098 (3)0.097 (3)0.069 (3)0.023 (3)0.044 (3)0.036 (2)
C610.097 (3)0.086 (3)0.056 (3)0.022 (2)0.026 (2)0.027 (2)
C620.078 (3)0.072 (2)0.059 (3)0.017 (2)0.035 (2)0.023 (2)
C630.059 (2)0.061 (2)0.044 (2)0.007 (2)0.0239 (19)0.0011 (18)
C640.073 (3)0.075 (3)0.062 (2)0.018 (2)0.025 (2)0.015 (2)
C650.098 (4)0.115 (4)0.076 (3)0.040 (3)0.037 (3)0.018 (3)
C660.076 (4)0.166 (5)0.080 (4)0.022 (4)0.027 (3)0.009 (3)
C670.071 (4)0.164 (5)0.080 (3)0.014 (3)0.039 (3)0.004 (3)
C680.074 (3)0.092 (3)0.066 (3)0.010 (2)0.030 (2)0.005 (2)
C690.080 (3)0.083 (3)0.064 (2)0.005 (2)0.018 (2)0.029 (2)
C700.051 (2)0.045 (2)0.042 (2)0.0048 (17)0.0136 (17)0.0131 (17)
C710.057 (2)0.043 (2)0.053 (2)0.0048 (17)0.0235 (18)0.0168 (18)
C720.082 (3)0.063 (3)0.067 (2)0.005 (2)0.038 (2)0.023 (2)
C730.101 (3)0.060 (3)0.101 (3)0.015 (2)0.054 (3)0.028 (2)
C740.097 (3)0.054 (3)0.113 (4)0.016 (2)0.042 (3)0.013 (3)
C750.071 (3)0.051 (2)0.080 (3)0.009 (2)0.029 (2)0.010 (2)
C760.101 (3)0.063 (3)0.084 (3)0.025 (2)0.030 (3)0.013 (2)
C770.094 (3)0.078 (3)0.066 (3)0.008 (2)0.028 (2)0.002 (2)
C780.069 (3)0.064 (3)0.051 (2)0.003 (2)0.0188 (19)0.0078 (19)
C790.051 (2)0.051 (2)0.046 (2)0.0044 (17)0.0161 (17)0.0109 (18)
C800.050 (2)0.044 (2)0.055 (2)0.0045 (17)0.0164 (18)0.0079 (18)
C810.044 (2)0.053 (2)0.044 (2)0.0024 (17)0.0110 (16)0.0239 (18)
C820.051 (2)0.069 (2)0.040 (2)0.0087 (18)0.0155 (18)0.0228 (17)
C830.053 (2)0.058 (2)0.043 (2)0.0071 (17)0.0157 (18)0.0230 (17)
C840.052 (2)0.064 (2)0.043 (2)0.0032 (18)0.0102 (18)0.0237 (17)
C850.053 (2)0.064 (2)0.048 (2)0.0019 (18)0.0176 (19)0.0242 (18)
C860.050 (2)0.082 (3)0.059 (2)0.0000 (18)0.014 (2)0.031 (2)
C870.058 (2)0.093 (3)0.046 (2)0.002 (2)0.0128 (19)0.037 (2)
C880.058 (2)0.061 (2)0.044 (2)0.0061 (19)0.016 (2)0.0242 (18)
C890.065 (3)0.072 (3)0.058 (2)0.002 (2)0.012 (2)0.022 (2)
C900.087 (3)0.089 (3)0.077 (3)0.019 (3)0.039 (3)0.024 (2)
C910.060 (3)0.118 (4)0.100 (4)0.017 (3)0.029 (3)0.044 (3)
C920.059 (3)0.103 (3)0.069 (3)0.000 (2)0.015 (2)0.024 (2)
C930.065 (3)0.080 (3)0.054 (2)0.001 (2)0.016 (2)0.023 (2)
C940.049 (2)0.051 (2)0.051 (2)0.0012 (17)0.012 (2)0.0198 (17)
C950.079 (3)0.066 (2)0.055 (2)0.000 (2)0.028 (2)0.0213 (19)
C960.101 (4)0.080 (3)0.051 (3)0.005 (2)0.021 (2)0.017 (2)
C970.108 (4)0.107 (3)0.066 (3)0.028 (3)0.047 (3)0.035 (3)
C980.083 (3)0.124 (4)0.072 (3)0.015 (3)0.037 (3)0.041 (3)
C990.076 (3)0.091 (3)0.061 (3)0.003 (2)0.026 (2)0.034 (2)
C1000.070 (3)0.177 (4)0.075 (3)0.016 (3)0.022 (2)0.075 (3)
N10.0632 (19)0.0567 (18)0.0465 (17)0.0013 (14)0.0177 (15)0.0238 (14)
N20.061 (2)0.0595 (18)0.0519 (18)0.0010 (15)0.0178 (16)0.0212 (14)
N30.072 (2)0.0536 (19)0.0468 (18)0.0049 (15)0.0221 (15)0.0173 (15)
N40.0555 (18)0.0631 (19)0.0427 (17)0.0100 (14)0.0117 (14)0.0243 (14)
Geometric parameters (Å, º) top
C7—C81.3900C51—C521.389 (4)
C7—C121.3900C51—C561.397 (4)
C7—C41.505 (3)C51—N31.425 (3)
C8—C91.3900C52—C531.380 (4)
C8—H80.9300C52—C691.518 (4)
C9—C101.3900C53—C541.397 (4)
C9—H90.9300C53—H530.9300
C10—C111.3900C54—C551.391 (4)
C10—H100.9300C54—C571.503 (4)
C11—C121.3900C55—C561.390 (4)
C11—H110.9300C55—H550.9300
C12—H120.9300C56—C631.495 (4)
C1—C21.386 (4)C57—C581.331 (4)
C1—C61.390 (4)C57—C621.406 (4)
C1—N11.410 (3)C58—C591.410 (4)
C2—C31.397 (4)C58—H580.9300
C2—C191.514 (4)C59—C601.374 (5)
C3—C41.394 (4)C59—H590.9300
C3—H30.9300C60—C611.387 (5)
C4—C51.383 (4)C60—H600.9300
C5—C61.390 (4)C61—C621.383 (4)
C5—H50.9300C61—H610.9300
C6—C131.486 (4)C62—H620.9300
C13—C141.384 (4)C63—C641.382 (4)
C13—C181.384 (4)C63—C681.383 (4)
C14—C151.405 (5)C64—C651.363 (5)
C14—H140.9300C64—H640.9300
C15—C161.363 (5)C65—C661.363 (5)
C15—H150.9300C65—H650.9300
C16—C171.357 (5)C66—C671.368 (6)
C16—H160.9300C66—H660.9300
C17—C181.370 (5)C67—C681.395 (5)
C17—H170.9300C67—H670.9300
C18—H180.9300C68—H680.9300
C19—H19A0.9600C69—H69A0.9600
C19—H19B0.9600C69—H69B0.9600
C19—H19C0.9600C69—H69C0.9600
C20—N11.273 (3)C70—N31.274 (3)
C20—C211.472 (4)C70—C711.463 (4)
C20—C311.524 (4)C70—C811.514 (4)
C21—C221.359 (4)C71—C721.363 (4)
C21—C301.405 (4)C71—C801.414 (4)
C22—C231.400 (4)C72—C731.413 (4)
C22—H220.9300C72—H720.9300
C23—C241.359 (5)C73—C741.352 (4)
C23—H230.9300C73—H730.9300
C24—C251.408 (5)C74—C751.410 (4)
C24—H240.9300C74—H740.9300
C25—C301.407 (4)C75—C801.398 (4)
C25—C261.427 (5)C75—C761.418 (5)
C26—C271.359 (4)C76—C771.354 (4)
C26—H260.9300C76—H760.9300
C27—C281.401 (4)C77—C781.405 (4)
C27—H270.9300C77—H770.9300
C28—C291.376 (4)C78—C791.376 (4)
C28—H280.9300C78—H780.9300
C29—C301.400 (4)C79—C801.404 (4)
C29—C311.478 (4)C79—C811.473 (4)
C31—N21.269 (3)C81—N41.267 (3)
C32—C371.394 (4)C82—C871.385 (4)
C32—C331.399 (4)C82—C831.395 (4)
C32—N21.423 (3)C82—N41.420 (3)
C33—C341.390 (4)C83—C841.388 (4)
C33—C381.485 (4)C83—C881.488 (4)
C34—C351.370 (4)C84—C851.387 (4)
C34—H340.9300C84—H840.9300
C35—C361.394 (4)C85—C861.386 (4)
C35—C441.511 (4)C85—C941.508 (4)
C36—C371.388 (4)C86—C871.387 (4)
C36—H360.9300C86—H860.9300
C37—C501.503 (4)C87—C1001.515 (4)
C38—C431.371 (4)C88—C931.374 (4)
C38—C391.391 (4)C88—C891.383 (4)
C39—C401.386 (4)C89—C901.384 (4)
C39—H390.9300C89—H890.9300
C40—C411.367 (4)C90—C911.377 (5)
C40—H400.9300C90—H900.9300
C41—C421.359 (4)C91—C921.366 (5)
C41—H410.9300C91—H910.9300
C42—C431.377 (4)C92—C931.382 (4)
C42—H420.9300C92—H920.9300
C43—H430.9300C93—H930.9300
C44—C491.341 (4)C94—C951.344 (4)
C44—C451.365 (5)C94—C991.365 (4)
C45—C461.397 (5)C95—C961.387 (4)
C45—H450.9300C95—H950.9300
C46—C471.371 (6)C96—C971.370 (5)
C46—H460.9300C96—H960.9300
C47—C481.372 (6)C97—C981.359 (5)
C47—H470.9300C97—H970.9300
C48—C491.420 (5)C98—C991.381 (4)
C48—H480.9300C98—H980.9300
C49—H490.9300C99—H990.9300
C50—H50A0.9600C100—H10A0.9600
C50—H50B0.9600C100—H10B0.9600
C50—H50C0.9600C100—H10C0.9600
C8—C7—C12120.0C56—C51—N3120.7 (3)
C8—C7—C4119.9 (2)C53—C52—C51119.1 (3)
C12—C7—C4120.1 (2)C53—C52—C69120.2 (3)
C9—C8—C7120.0C51—C52—C69120.7 (3)
C9—C8—H8120.0C52—C53—C54121.9 (3)
C7—C8—H8120.0C52—C53—H53119.0
C8—C9—C10120.0C54—C53—H53119.0
C8—C9—H9120.0C55—C54—C53117.4 (3)
C10—C9—H9120.0C55—C54—C57121.9 (3)
C9—C10—C11120.0C53—C54—C57120.6 (3)
C9—C10—H10120.0C56—C55—C54122.4 (3)
C11—C10—H10120.0C56—C55—H55118.8
C12—C11—C10120.0C54—C55—H55118.8
C12—C11—H11120.0C55—C56—C51118.2 (3)
C10—C11—H11120.0C55—C56—C63118.5 (3)
C11—C12—C7120.0C51—C56—C63123.3 (3)
C11—C12—H12120.0C58—C57—C62118.9 (3)
C7—C12—H12120.0C58—C57—C54121.8 (3)
C2—C1—C6120.2 (3)C62—C57—C54119.3 (3)
C2—C1—N1117.7 (3)C57—C58—C59121.9 (4)
C6—C1—N1122.0 (3)C57—C58—H58119.0
C1—C2—C3119.4 (3)C59—C58—H58119.0
C1—C2—C19120.7 (3)C60—C59—C58119.3 (4)
C3—C2—C19119.9 (3)C60—C59—H59120.3
C4—C3—C2121.9 (3)C58—C59—H59120.3
C4—C3—H3119.0C59—C60—C61119.5 (4)
C2—C3—H3119.0C59—C60—H60120.2
C5—C4—C3116.5 (3)C61—C60—H60120.2
C5—C4—C7122.9 (3)C62—C61—C60120.0 (4)
C3—C4—C7120.6 (3)C62—C61—H61120.0
C4—C5—C6123.4 (3)C60—C61—H61120.0
C4—C5—H5118.3C61—C62—C57120.4 (3)
C6—C5—H5118.3C61—C62—H62119.8
C1—C6—C5118.4 (3)C57—C62—H62119.8
C1—C6—C13122.4 (3)C64—C63—C68117.9 (3)
C5—C6—C13119.2 (3)C64—C63—C56120.3 (3)
C14—C13—C18116.8 (3)C68—C63—C56121.6 (3)
C14—C13—C6121.0 (3)C65—C64—C63121.9 (4)
C18—C13—C6122.2 (3)C65—C64—H64119.1
C13—C14—C15121.0 (4)C63—C64—H64119.1
C13—C14—H14119.5C66—C65—C64120.3 (4)
C15—C14—H14119.5C66—C65—H65119.8
C16—C15—C14119.4 (4)C64—C65—H65119.8
C16—C15—H15120.3C65—C66—C67119.4 (5)
C14—C15—H15120.3C65—C66—H66120.3
C17—C16—C15120.6 (4)C67—C66—H66120.3
C17—C16—H16119.7C66—C67—C68120.7 (5)
C15—C16—H16119.7C66—C67—H67119.7
C16—C17—C18119.8 (4)C68—C67—H67119.7
C16—C17—H17120.1C63—C68—C67119.8 (4)
C18—C17—H17120.1C63—C68—H68120.1
C17—C18—C13122.4 (4)C67—C68—H68120.1
C17—C18—H18118.8C52—C69—H69A109.5
C13—C18—H18118.8C52—C69—H69B109.5
C2—C19—H19A109.5H69A—C69—H69B109.5
C2—C19—H19B109.5C52—C69—H69C109.5
H19A—C19—H19B109.5H69A—C69—H69C109.5
C2—C19—H19C109.5H69B—C69—H69C109.5
H19A—C19—H19C109.5N3—C70—C71133.4 (3)
H19B—C19—H19C109.5N3—C70—C81119.4 (3)
N1—C20—C21133.3 (3)C71—C70—C81107.0 (3)
N1—C20—C31120.0 (3)C72—C71—C80118.4 (3)
C21—C20—C31106.7 (3)C72—C71—C70135.3 (3)
C22—C21—C30119.2 (3)C80—C71—C70106.3 (3)
C22—C21—C20134.4 (3)C71—C72—C73119.0 (3)
C30—C21—C20106.3 (3)C71—C72—H72120.5
C21—C22—C23118.9 (3)C73—C72—H72120.5
C21—C22—H22120.5C74—C73—C72122.3 (3)
C23—C22—H22120.5C74—C73—H73118.8
C24—C23—C22122.7 (4)C72—C73—H73118.8
C24—C23—H23118.6C73—C74—C75120.8 (4)
C22—C23—H23118.6C73—C74—H74119.6
C23—C24—C25120.1 (4)C75—C74—H74119.6
C23—C24—H24120.0C80—C75—C74116.2 (3)
C25—C24—H24120.0C80—C75—C76116.0 (3)
C24—C25—C30116.6 (3)C74—C75—C76127.8 (4)
C24—C25—C26127.7 (4)C77—C76—C75121.0 (4)
C30—C25—C26115.7 (4)C77—C76—H76119.5
C27—C26—C25120.3 (4)C75—C76—H76119.5
C27—C26—H26119.8C76—C77—C78122.3 (4)
C25—C26—H26119.8C76—C77—H77118.8
C26—C27—C28123.1 (4)C78—C77—H77118.8
C26—C27—H27118.4C79—C78—C77118.5 (3)
C28—C27—H27118.4C79—C78—H78120.7
C29—C28—C27118.3 (3)C77—C78—H78120.7
C29—C28—H28120.8C78—C79—C80119.1 (3)
C27—C28—H28120.8C78—C79—C81134.4 (3)
C28—C29—C30119.2 (3)C80—C79—C81106.5 (3)
C28—C29—C31134.2 (3)C75—C80—C79123.0 (3)
C30—C29—C31106.6 (3)C75—C80—C71123.3 (3)
C29—C30—C21114.3 (3)C79—C80—C71113.7 (3)
C29—C30—C25123.3 (3)N4—C81—C79132.5 (3)
C21—C30—C25122.3 (3)N4—C81—C70121.1 (3)
N2—C31—C29133.1 (3)C79—C81—C70106.4 (3)
N2—C31—C20120.8 (3)C87—C82—C83121.0 (3)
C29—C31—C20106.1 (3)C87—C82—N4117.8 (3)
C37—C32—C33121.1 (3)C83—C82—N4121.2 (3)
C37—C32—N2118.2 (3)C84—C83—C82117.8 (3)
C33—C32—N2120.5 (3)C84—C83—C88120.0 (3)
C34—C33—C32117.5 (3)C82—C83—C88122.1 (3)
C34—C33—C38120.1 (3)C85—C84—C83122.9 (3)
C32—C33—C38122.4 (3)C85—C84—H84118.5
C35—C34—C33123.5 (3)C83—C84—H84118.5
C35—C34—H34118.2C86—C85—C84117.1 (3)
C33—C34—H34118.2C86—C85—C94121.4 (3)
C34—C35—C36117.0 (3)C84—C85—C94121.5 (3)
C34—C35—C44121.6 (3)C85—C86—C87122.1 (3)
C36—C35—C44121.4 (3)C85—C86—H86118.9
C37—C36—C35122.5 (3)C87—C86—H86118.9
C37—C36—H36118.8C82—C87—C86118.9 (3)
C35—C36—H36118.8C82—C87—C100121.3 (3)
C36—C37—C32118.1 (3)C86—C87—C100119.8 (3)
C36—C37—C50121.0 (3)C93—C88—C89117.3 (3)
C32—C37—C50120.9 (3)C93—C88—C83120.7 (3)
C43—C38—C39117.3 (3)C89—C88—C83122.0 (3)
C43—C38—C33121.3 (3)C90—C89—C88121.5 (3)
C39—C38—C33121.3 (3)C90—C89—H89119.2
C40—C39—C38120.2 (3)C88—C89—H89119.2
C40—C39—H39119.9C91—C90—C89119.4 (4)
C38—C39—H39119.9C91—C90—H90120.3
C41—C40—C39121.1 (3)C89—C90—H90120.3
C41—C40—H40119.4C92—C91—C90120.2 (4)
C39—C40—H40119.4C92—C91—H91119.9
C42—C41—C40118.9 (4)C90—C91—H91119.9
C42—C41—H41120.6C91—C92—C93119.4 (4)
C40—C41—H41120.6C91—C92—H92120.3
C41—C42—C43120.5 (4)C93—C92—H92120.3
C41—C42—H42119.8C88—C93—C92122.2 (3)
C43—C42—H42119.8C88—C93—H93118.9
C38—C43—C42122.0 (3)C92—C93—H93118.9
C38—C43—H43119.0C95—C94—C99119.0 (3)
C42—C43—H43119.0C95—C94—C85120.8 (3)
C49—C44—C45119.5 (3)C99—C94—C85120.1 (3)
C49—C44—C35121.1 (4)C94—C95—C96121.5 (3)
C45—C44—C35119.4 (4)C94—C95—H95119.3
C44—C45—C46120.9 (4)C96—C95—H95119.3
C44—C45—H45119.5C97—C96—C95119.3 (4)
C46—C45—H45119.5C97—C96—H96120.3
C47—C46—C45119.3 (5)C95—C96—H96120.3
C47—C46—H46120.3C98—C97—C96119.4 (4)
C45—C46—H46120.3C98—C97—H97120.3
C46—C47—C48120.6 (5)C96—C97—H97120.3
C46—C47—H47119.7C97—C98—C99120.4 (4)
C48—C47—H47119.7C97—C98—H98119.8
C47—C48—C49118.2 (5)C99—C98—H98119.8
C47—C48—H48120.9C94—C99—C98120.4 (4)
C49—C48—H48120.9C94—C99—H99119.8
C44—C49—C48121.5 (4)C98—C99—H99119.8
C44—C49—H49119.3C87—C100—H10A109.5
C48—C49—H49119.3C87—C100—H10B109.5
C37—C50—H50A109.5H10A—C100—H10B109.5
C37—C50—H50B109.5C87—C100—H10C109.5
H50A—C50—H50B109.5H10A—C100—H10C109.5
C37—C50—H50C109.5H10B—C100—H10C109.5
H50A—C50—H50C109.5C20—N1—C1120.5 (3)
H50B—C50—H50C109.5C31—N2—C32119.7 (3)
C52—C51—C56120.9 (3)C70—N3—C51121.9 (3)
C52—C51—N3118.2 (3)C81—N4—C82118.8 (3)
C12—C7—C8—C90.0C53—C54—C55—C560.5 (4)
C4—C7—C8—C9177.5 (2)C57—C54—C55—C56179.8 (3)
C7—C8—C9—C100.0C54—C55—C56—C510.2 (4)
C8—C9—C10—C110.0C54—C55—C56—C63179.9 (3)
C9—C10—C11—C120.0C52—C51—C56—C550.4 (4)
C10—C11—C12—C70.0N3—C51—C56—C55176.2 (3)
C8—C7—C12—C110.0C52—C51—C56—C63179.4 (3)
C4—C7—C12—C11177.5 (2)N3—C51—C56—C633.6 (4)
C6—C1—C2—C31.4 (5)C55—C54—C57—C58147.3 (3)
N1—C1—C2—C3177.3 (3)C53—C54—C57—C5833.1 (5)
C6—C1—C2—C19179.7 (3)C55—C54—C57—C6230.7 (4)
N1—C1—C2—C194.4 (5)C53—C54—C57—C62148.9 (3)
C1—C2—C3—C42.2 (5)C62—C57—C58—C591.7 (5)
C19—C2—C3—C4176.1 (3)C54—C57—C58—C59176.3 (3)
C2—C3—C4—C53.0 (5)C57—C58—C59—C600.8 (6)
C2—C3—C4—C7176.1 (3)C58—C59—C60—C610.8 (6)
C8—C7—C4—C5161.4 (2)C59—C60—C61—C621.4 (5)
C12—C7—C4—C516.1 (4)C60—C61—C62—C570.6 (5)
C8—C7—C4—C317.6 (3)C58—C57—C62—C611.0 (5)
C12—C7—C4—C3164.9 (2)C54—C57—C62—C61177.1 (3)
C3—C4—C5—C60.2 (4)C55—C56—C63—C6441.2 (4)
C7—C4—C5—C6178.8 (3)C51—C56—C63—C64139.1 (3)
C2—C1—C6—C54.0 (4)C55—C56—C63—C68133.8 (3)
N1—C1—C6—C5179.7 (3)C51—C56—C63—C6846.0 (4)
C2—C1—C6—C13176.1 (3)C68—C63—C64—C650.1 (5)
N1—C1—C6—C130.4 (4)C56—C63—C64—C65175.1 (3)
C4—C5—C6—C13.2 (4)C63—C64—C65—C660.5 (6)
C4—C5—C6—C13176.9 (3)C64—C65—C66—C671.3 (7)
C1—C6—C13—C14139.5 (3)C65—C66—C67—C681.5 (7)
C5—C6—C13—C1440.3 (4)C64—C63—C68—C670.2 (5)
C1—C6—C13—C1842.4 (4)C56—C63—C68—C67175.3 (3)
C5—C6—C13—C18137.7 (3)C66—C67—C68—C631.0 (6)
C18—C13—C14—C150.5 (5)N3—C70—C71—C726.8 (6)
C6—C13—C14—C15177.6 (3)C81—C70—C71—C72177.2 (3)
C13—C14—C15—C161.6 (5)N3—C70—C71—C80173.5 (3)
C14—C15—C16—C172.1 (6)C81—C70—C71—C802.4 (3)
C15—C16—C17—C181.5 (6)C80—C71—C72—C730.1 (5)
C16—C17—C18—C130.5 (6)C70—C71—C72—C73179.7 (3)
C14—C13—C18—C170.0 (5)C71—C72—C73—C740.6 (5)
C6—C13—C18—C17178.1 (3)C72—C73—C74—C750.3 (6)
N1—C20—C21—C224.0 (6)C73—C74—C75—C800.5 (5)
C31—C20—C21—C22175.6 (3)C73—C74—C75—C76179.1 (4)
N1—C20—C21—C30179.6 (3)C80—C75—C76—C770.1 (5)
C31—C20—C21—C300.9 (3)C74—C75—C76—C77178.6 (4)
C30—C21—C22—C231.1 (5)C75—C76—C77—C780.0 (6)
C20—C21—C22—C23177.2 (3)C76—C77—C78—C790.3 (5)
C21—C22—C23—C240.6 (6)C77—C78—C79—C800.6 (5)
C22—C23—C24—C250.8 (6)C77—C78—C79—C81178.6 (3)
C23—C24—C25—C300.7 (5)C74—C75—C80—C79178.5 (3)
C23—C24—C25—C26179.1 (4)C76—C75—C80—C790.3 (5)
C24—C25—C26—C27177.8 (4)C74—C75—C80—C711.2 (5)
C30—C25—C26—C270.6 (5)C76—C75—C80—C71179.9 (3)
C25—C26—C27—C280.7 (6)C78—C79—C80—C750.6 (5)
C26—C27—C28—C291.3 (6)C81—C79—C80—C75178.8 (3)
C27—C28—C29—C300.5 (5)C78—C79—C80—C71179.7 (3)
C27—C28—C29—C31179.7 (3)C81—C79—C80—C710.9 (3)
C28—C29—C30—C21179.4 (3)C72—C71—C80—C751.0 (5)
C31—C29—C30—C210.8 (4)C70—C71—C80—C75179.3 (3)
C28—C29—C30—C250.9 (5)C72—C71—C80—C79178.7 (3)
C31—C29—C30—C25179.0 (3)C70—C71—C80—C791.0 (3)
C22—C21—C30—C29177.0 (3)C78—C79—C81—N43.9 (6)
C20—C21—C30—C290.1 (4)C80—C79—C81—N4175.4 (3)
C22—C21—C30—C252.7 (5)C78—C79—C81—C70178.4 (3)
C20—C21—C30—C25179.9 (3)C80—C79—C81—C702.3 (3)
C24—C25—C30—C29177.2 (3)N3—C70—C81—N48.3 (4)
C26—C25—C30—C291.4 (5)C71—C70—C81—N4175.1 (3)
C24—C25—C30—C212.5 (5)N3—C70—C81—C79173.6 (3)
C26—C25—C30—C21178.9 (3)C71—C70—C81—C793.0 (3)
C28—C29—C31—N20.5 (6)C87—C82—C83—C843.2 (4)
C30—C29—C31—N2179.3 (3)N4—C82—C83—C84178.7 (3)
C28—C29—C31—C20178.9 (3)C87—C82—C83—C88179.3 (3)
C30—C29—C31—C201.3 (3)N4—C82—C83—C881.2 (4)
N1—C20—C31—N20.4 (4)C82—C83—C84—C851.1 (4)
C21—C20—C31—N2179.1 (3)C88—C83—C84—C85178.6 (3)
N1—C20—C31—C29179.0 (3)C83—C84—C85—C861.5 (4)
C21—C20—C31—C291.4 (3)C83—C84—C85—C94178.3 (3)
C37—C32—C33—C344.4 (5)C84—C85—C86—C872.1 (5)
N2—C32—C33—C34179.9 (3)C94—C85—C86—C87177.6 (3)
C37—C32—C33—C38175.4 (3)C83—C82—C87—C862.7 (5)
N2—C32—C33—C380.1 (5)N4—C82—C87—C86179.2 (3)
C32—C33—C34—C350.2 (5)C83—C82—C87—C100179.9 (3)
C38—C33—C34—C35179.6 (3)N4—C82—C87—C1001.7 (5)
C33—C34—C35—C363.7 (5)C85—C86—C87—C820.1 (5)
C33—C34—C35—C44176.5 (3)C85—C86—C87—C100177.4 (3)
C34—C35—C36—C373.8 (5)C84—C83—C88—C9340.2 (4)
C44—C35—C36—C37176.4 (3)C82—C83—C88—C93137.1 (3)
C35—C36—C37—C320.1 (5)C84—C83—C88—C89137.4 (3)
C35—C36—C37—C50178.7 (3)C82—C83—C88—C8945.2 (4)
C33—C32—C37—C364.3 (5)C93—C88—C89—C900.2 (5)
N2—C32—C37—C36179.9 (3)C83—C88—C89—C90177.6 (3)
C33—C32—C37—C50177.1 (3)C88—C89—C90—C910.1 (5)
N2—C32—C37—C501.5 (5)C89—C90—C91—C920.4 (6)
C34—C33—C38—C4342.3 (4)C90—C91—C92—C930.8 (6)
C32—C33—C38—C43137.9 (3)C89—C88—C93—C920.5 (5)
C34—C33—C38—C39134.9 (3)C83—C88—C93—C92177.2 (3)
C32—C33—C38—C3944.9 (4)C91—C92—C93—C880.9 (5)
C43—C38—C39—C400.7 (5)C86—C85—C94—C95145.4 (3)
C33—C38—C39—C40176.6 (3)C84—C85—C94—C9534.4 (4)
C38—C39—C40—C410.3 (5)C86—C85—C94—C9931.5 (4)
C39—C40—C41—C420.6 (5)C84—C85—C94—C99148.8 (3)
C40—C41—C42—C430.2 (5)C99—C94—C95—C961.9 (5)
C39—C38—C43—C421.4 (5)C85—C94—C95—C96178.8 (3)
C33—C38—C43—C42175.9 (3)C94—C95—C96—C971.2 (5)
C41—C42—C43—C381.2 (5)C95—C96—C97—C980.1 (6)
C34—C35—C44—C49147.9 (3)C96—C97—C98—C990.8 (6)
C36—C35—C44—C4932.0 (5)C95—C94—C99—C981.2 (5)
C34—C35—C44—C4532.9 (5)C85—C94—C99—C98178.1 (3)
C36—C35—C44—C45147.3 (4)C97—C98—C99—C940.2 (5)
C49—C44—C45—C461.2 (6)C21—C20—N1—C12.1 (5)
C35—C44—C45—C46178.1 (3)C31—C20—N1—C1178.5 (3)
C44—C45—C46—C471.1 (6)C2—C1—N1—C20103.1 (3)
C45—C46—C47—C481.2 (7)C6—C1—N1—C2081.1 (4)
C46—C47—C48—C491.3 (7)C29—C31—N2—C324.2 (5)
C45—C44—C49—C481.3 (6)C20—C31—N2—C32176.4 (3)
C35—C44—C49—C48178.0 (3)C37—C32—N2—C31100.5 (4)
C47—C48—C49—C441.4 (6)C33—C32—N2—C3183.9 (4)
C56—C51—C52—C530.5 (4)C71—C70—N3—C512.7 (5)
N3—C51—C52—C53176.4 (3)C81—C70—N3—C51178.3 (3)
C56—C51—C52—C69178.2 (3)C52—C51—N3—C7097.4 (3)
N3—C51—C52—C692.3 (4)C56—C51—N3—C7086.7 (4)
C51—C52—C53—C540.1 (5)C79—C81—N4—C822.4 (5)
C69—C52—C53—C54178.6 (3)C70—C81—N4—C82179.9 (3)
C52—C53—C54—C550.4 (5)C87—C82—N4—C8195.6 (3)
C52—C53—C54—C57180.0 (3)C83—C82—N4—C8186.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of ring C1–C6 in molecule A.
D—H···AD—HH···AD···AD—H···A
C16—H16···N3i0.932.603.517 (6)168
C92—H92···Cg2ii0.932.953.789 (5)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of ring C1–C6 in molecule A.
D—H···AD—HH···AD···AD—H···A
C16—H16···N3i0.932.603.517 (6)168
C92—H92···Cg2ii0.932.953.789 (5)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC50H36N2
Mr664.81
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)15.579 (3), 16.799 (4), 17.332 (4)
α, β, γ (°)72.622 (2), 73.116 (2), 84.324 (2)
V3)4142.0 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.23 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.986, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
29357, 14707, 5868
Rint0.041
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.144, 1.04
No. of reflections14707
No. of parameters930
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We thank the Key Laboratory of Bioelectrochemical and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, (Northwest Normal University), for financial support.

References

First citationBruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHelldörfer, M., Milius, W. & Alt, H. G. (2003). J. Mol. Catal. A Chem. 197, 1–13.  Google Scholar
First citationJohnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeinhard, D., Wegner, M., Kipiani, G., Hearley, A., Reuter, P., Fischer, S., Marti, O. & Rieger, B. (2007). J. Am. Chem. Soc. 129, 9182–9191.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPopeney, C. S., Levins, C. M. & Guan, Z. B. (2011). Organometallics, 30, 2432–2452.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuan, J. C., Jia, Z., Li, J., Song, F. Y., Wang, F. Z. & Yuan, B. N. (2013). Transition Met. Chem. 38, 341–350.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, J. C., Silva, L. C., Gomes, P. T., Valerga, P., Campos, J. M., Ribeiro, M. R., Chien, J. C. W. & Marques, M. M. (2005). Polymer, 46, 2122–2132.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds