organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,6-Di­propyl­phthalazino[2,3-a]cinnoline-8,13-dione

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry, CSIR–Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 March 2016; accepted 23 April 2016; online 29 April 2016)

In the title compound, C22H22N2O2, the two central fused pyridazine rings have screw-boat conformations and the dihedral angle between their mean planes is 36.22 (8)°. The mean plane of the cinnoline ring system makes a dihedral angle of 46.56 (5)° with the mean plane of the phthalazine ring to which it is fused. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains along the b axis. The chains are reinforced by C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Phthalazines, also called benzo-ortho-diazines or benzopyridazines, are a group of heterocyclic compounds, isomeric with the cinnolines. The practical inter­est in phthal­azine derivatives is based on their widespread applications (Coates, 1999[Coates, W. J. (1999). In Comprehensive Heterocyclic Chemistry II . 30, Vol. 6, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon Press.]). Benzopyrid­azines, like other members of the isomeric diazene series, have found wide applications, including as therapeutic agents, ligands in transition metal catalysis, chemiluminescent and optical materials (Cheng et al., 1999[Cheng, Y., Ma, B. & Wudl, F. (1999). J. Mater. Chem. 9, 2183-2188.]). Phthalazine derivatives have played an important role in the development of corrosion science as they can inhibit the corrosion of mild steel (Musa et al., 2012[Musa, A. Y., Jalgham, R. T. T. & Mohamad, A. B. (2012). Corros. Sci. 56, 176-183.]). Moreover, they are of particular inter­est owing to their biological activity and optical properties (Caira et al., 2011[Caira, M. R., Georgescu, E., Georgescu, F., Albota, F. & Dumitrascu, F. (2011). Monatsh. Chem. 142, 743-748.]). Against this background, the crystal structure of the title compound has been determined and the results are presented herein.

In the title compound, Fig. 1[link], the two pyridazine rings (C5/C6/C7/N1/N2/C8 and N1/C9/C14–C16/N2) are conjugated and their mean planes are oriented at a dihedral angle of 36.22 (8)°. The phthalazine (N1/N2/C9–C16) unit consists of a benzene ring and a pyridazine ring which is fused with the cinnoline (N1/N2/C1–C8) ring system. The mean plane of the cinnoline ring system is inclined to the mean plane of the phthalazine ring by 46.56 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atomic labelling and displacement ellipsoids drawn at the 30% probability level.

In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, leading to chains along the b axis (Table 1[link] and Fig. 2[link]). In addition, within the chains there are C—H⋯π inter­actions, involving a benzene ring (C1–C6) H atom and the benzene ring (C9–C14) of an adjacent mol­ecule (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯O2i 0.97 2.54 3.400 (3) 148
C4—H4⋯Cg4ii 0.93 2.83 3.633 145
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]); C-bound H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

2-Phenyl-2,3-di­hydro­phthalazine-1,4-dione (0.3 mmol) was treated with oct-4-yne (0.3 mmol) in the presence of [RuCl2(p-cymene)2] (2.5 mol%), Cu(OAc)2·H2O (1 equiv) and AgSbF6 (0.03 mmol) in 1,2-di­chloro­ethane at 273 K for 2.5 h in an open atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with di­chloro­ethane, filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate as eluent, giving the title compound in pure form as block-like orange crystals (yield 90%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H22N2O2
Mr 346.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.8711 (7), 8.6175 (6), 23.698 (2)
β (°) 99.672 (4)
V3) 1785.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.983, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 24172, 3153, 2644
Rint 0.022
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.148, 1.08
No. of reflections 3153
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.30
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Experimental top

2-Phenyl-2,3-dihydrophthalazine-1, 4-dione (0.3 mmol) was treated with oct-4-yne (0.3 mmol) in the presence of [RuCl2(p-cymene)2] (2.5 mol%), Cu(OAc)2·H2O (1 equiv) and AgSbF6 (0.03 mmol) in 1,2-dichloroethane at 273 K for 2.5 h in an open atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with dichloroethane, filtered through Celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using petroleum ether and ethyl acetate as eluent, giving the title compound in pure form as block-like orange crystals (yield 90%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Phthalazines, also called benzo-ortho-diazines or benzopyridazines, are a group of heterocyclic compounds, isomeric with the cinnolines. The practical interest in phthalazine derivatives is based on their widespread applications (Coates, 1999). Benzopyridazines, like other members of the isomeric diazene series, have found wide applications, including as therapeutic agents, ligands in transition metal catalysis, chemiluminescent and optical materials (Cheng et al., 1999). Phthalazine derivatives have played an important role in the development of corrosion science as they can inhibit the corrosion of mild steel (Musa et al., 2012). Moreover, they are of particular interest owing to their biological activity and optical properties (Caira et al., 2011). Against this background, the crystal structure of the title compound has been determined and the results are presented herein.

In the title compound, Fig. 1, the two pyridazine rings (C5/C6/C7/N1/N2/C8 and N1/C9/C2/C14–C16/N2) are conjugated and their mean planes are oriented at a dihedral angle of 36.22 (8)°. The phthalazine (N1/N2/C9–C16) unit consists of a benzene ring and a pyridazine ring which is fused with the cinnoline (N1/N2/C1–C8) ring system. The mean plane of the cinnoline ring system is inclined to the mean plane of the phthalazine ring by 46.56 (5)°.

In the crystal, molecules are connected by C—H···O hydrogen bonds, leading to chains along the b axis (Table 1 and Fig. 2). In addition, within the chains there are C—H···π interactions, involving a benzene ring (C1–C6) H atom and the benzene ring (C9–C14) of an adjacent molecule (Table 1 and Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atomic labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds and C—H···π interactions are shown as dashed lines (see Table 1); C-bound H atoms not involved in these interactions have been omitted for clarity.
5,6-Dipropylphthalazino[2,3-a]cinnoline-8,13-dione top
Crystal data top
C22H22N2O2F(000) = 736
Mr = 346.42Dx = 1.277 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2644 reflections
a = 8.8711 (7) Åθ = 1.7–25.0°
b = 8.6175 (6) ŵ = 0.08 mm1
c = 23.698 (2) ÅT = 293 K
β = 99.672 (4)°Block, orange
V = 1785.9 (2) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3153 independent reflections
Radiation source: fine-focus sealed tube2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scanθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.983, Tmax = 0.986k = 1010
24172 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0908P)2 + 0.5529P]
where P = (Fo2 + 2Fc2)/3
3153 reflections(Δ/σ)max = 0.003
235 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H22N2O2V = 1785.9 (2) Å3
Mr = 346.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8711 (7) ŵ = 0.08 mm1
b = 8.6175 (6) ÅT = 293 K
c = 23.698 (2) Å0.22 × 0.20 × 0.18 mm
β = 99.672 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3153 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2644 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.022
24172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
3153 reflectionsΔρmin = 0.30 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C200.0632 (2)0.3401 (2)0.06495 (10)0.0484 (5)
H20A0.10290.32920.02440.058*
H20B0.13520.40340.08140.058*
C170.0105 (2)0.6434 (3)0.13449 (9)0.0482 (5)
H17A0.07740.57850.13720.058*
H17B0.02670.73880.11530.058*
C210.0576 (3)0.1802 (3)0.09234 (13)0.0697 (7)
H21A0.15980.13650.08590.084*
H21B0.00670.11340.07350.084*
C180.0925 (3)0.6819 (3)0.19488 (11)0.0718 (8)
H18A0.16940.76010.19200.086*
H18B0.01880.72710.21600.086*
C190.1672 (4)0.5497 (5)0.22811 (11)0.0994 (11)
H19A0.21640.58540.26500.149*
H19B0.24190.50470.20810.149*
H19C0.09170.47310.23280.149*
C220.0012 (4)0.1802 (4)0.15434 (17)0.1137 (14)
H22A0.00270.07590.16870.171*
H22B0.06380.24300.17360.171*
H22C0.10310.22180.16120.171*
N20.38243 (15)0.52725 (16)0.10830 (6)0.0355 (4)
N10.25819 (16)0.63184 (16)0.09974 (6)0.0363 (4)
O20.17675 (16)0.87531 (16)0.07850 (7)0.0556 (4)
C60.53518 (19)0.7336 (2)0.15617 (7)0.0361 (4)
C150.08719 (19)0.4259 (2)0.07134 (7)0.0362 (4)
C50.4304 (2)0.8411 (2)0.12868 (7)0.0356 (4)
O10.61735 (15)0.47147 (16)0.15763 (6)0.0540 (4)
C70.5168 (2)0.5669 (2)0.14328 (8)0.0376 (4)
C140.21374 (19)0.3577 (2)0.04659 (7)0.0348 (4)
C80.2802 (2)0.7886 (2)0.09832 (8)0.0376 (4)
C90.36383 (19)0.40445 (19)0.06747 (7)0.0327 (4)
C160.11139 (19)0.5610 (2)0.09891 (8)0.0362 (4)
C40.4611 (2)0.9990 (2)0.13425 (8)0.0453 (5)
H40.39221.07070.11530.054*
C10.6675 (2)0.7856 (2)0.19067 (9)0.0466 (5)
H10.73720.71460.20960.056*
C110.4621 (2)0.2265 (2)0.00602 (9)0.0482 (5)
H110.54460.18130.00730.058*
C100.4873 (2)0.3395 (2)0.04766 (8)0.0414 (4)
H100.58630.37160.06220.050*
C130.1931 (2)0.2441 (2)0.00413 (8)0.0457 (5)
H130.09470.21110.01090.055*
C20.6954 (3)0.9419 (3)0.19691 (10)0.0566 (6)
H20.78310.97630.22070.068*
C30.5940 (3)1.0488 (2)0.16794 (10)0.0550 (6)
H30.61571.15430.17130.066*
C120.3160 (3)0.1801 (2)0.01595 (9)0.0518 (5)
H120.29990.10500.04450.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C200.0313 (10)0.0492 (11)0.0627 (12)0.0042 (8)0.0022 (9)0.0059 (10)
C170.0334 (10)0.0559 (12)0.0555 (12)0.0040 (9)0.0084 (8)0.0095 (10)
C210.0503 (13)0.0545 (14)0.106 (2)0.0102 (11)0.0196 (13)0.0052 (13)
C180.0545 (14)0.103 (2)0.0605 (14)0.0009 (14)0.0172 (11)0.0256 (14)
C190.098 (2)0.148 (3)0.0507 (15)0.014 (2)0.0079 (15)0.0010 (18)
C220.102 (3)0.105 (3)0.126 (3)0.040 (2)0.005 (2)0.055 (2)
N20.0265 (7)0.0328 (8)0.0456 (8)0.0040 (6)0.0013 (6)0.0037 (6)
N10.0262 (7)0.0328 (8)0.0486 (9)0.0039 (6)0.0022 (6)0.0024 (6)
O20.0480 (8)0.0413 (8)0.0720 (10)0.0112 (7)0.0056 (7)0.0040 (7)
C60.0328 (9)0.0407 (10)0.0353 (9)0.0043 (8)0.0071 (7)0.0014 (7)
C150.0288 (9)0.0388 (9)0.0390 (9)0.0011 (7)0.0000 (7)0.0027 (8)
C50.0379 (9)0.0362 (9)0.0340 (9)0.0036 (7)0.0099 (7)0.0010 (7)
O10.0394 (8)0.0472 (8)0.0683 (10)0.0084 (6)0.0117 (7)0.0016 (7)
C70.0314 (9)0.0395 (10)0.0405 (9)0.0004 (8)0.0022 (7)0.0019 (8)
C140.0336 (9)0.0330 (9)0.0367 (9)0.0005 (7)0.0024 (7)0.0018 (7)
C80.0393 (10)0.0347 (9)0.0384 (9)0.0036 (8)0.0051 (8)0.0005 (7)
C90.0332 (9)0.0292 (8)0.0355 (9)0.0016 (7)0.0055 (7)0.0021 (7)
C160.0255 (8)0.0401 (10)0.0414 (9)0.0020 (7)0.0007 (7)0.0004 (8)
C40.0516 (12)0.0375 (10)0.0483 (11)0.0049 (9)0.0127 (9)0.0009 (9)
C10.0385 (10)0.0520 (12)0.0471 (11)0.0068 (9)0.0012 (8)0.0044 (9)
C110.0521 (12)0.0479 (11)0.0487 (11)0.0096 (9)0.0200 (9)0.0023 (9)
C100.0353 (10)0.0415 (10)0.0483 (10)0.0011 (8)0.0097 (8)0.0021 (8)
C130.0454 (11)0.0462 (11)0.0431 (10)0.0038 (9)0.0009 (8)0.0066 (9)
C20.0477 (12)0.0609 (14)0.0595 (13)0.0181 (11)0.0042 (10)0.0158 (11)
C30.0621 (14)0.0413 (11)0.0635 (13)0.0153 (10)0.0160 (11)0.0099 (10)
C120.0628 (14)0.0485 (12)0.0441 (11)0.0022 (10)0.0094 (10)0.0118 (9)
Geometric parameters (Å, º) top
C20—C151.511 (2)C6—C11.387 (3)
C20—C211.521 (3)C6—C51.394 (3)
C20—H20A0.9700C6—C71.473 (3)
C20—H20B0.9700C15—C161.335 (3)
C17—C161.506 (3)C15—C141.473 (2)
C17—C181.529 (3)C5—C41.389 (3)
C17—H17A0.9700C5—C81.475 (2)
C17—H17B0.9700O1—C71.219 (2)
C21—C221.474 (4)C14—C131.393 (3)
C21—H21A0.9700C14—C91.400 (2)
C21—H21B0.9700C9—C101.381 (2)
C18—C191.477 (4)C4—C31.376 (3)
C18—H18A0.9700C4—H40.9300
C18—H18B0.9700C1—C21.373 (3)
C19—H19A0.9600C1—H10.9300
C19—H19B0.9600C11—C121.373 (3)
C19—H19C0.9600C11—C101.378 (3)
C22—H22A0.9600C11—H110.9300
C22—H22B0.9600C10—H100.9300
C22—H22C0.9600C13—C121.376 (3)
N2—C71.376 (2)C13—H130.9300
N2—N11.4118 (19)C2—C31.387 (3)
N2—C91.425 (2)C2—H20.9300
N1—C81.366 (2)C3—H30.9300
N1—C161.435 (2)C12—H120.9300
O2—C81.215 (2)
C15—C20—C21115.80 (17)C16—C15—C14118.18 (16)
C15—C20—H20A108.3C16—C15—C20122.84 (17)
C21—C20—H20A108.3C14—C15—C20118.97 (16)
C15—C20—H20B108.3C6—C5—C4120.10 (17)
C21—C20—H20B108.3C6—C5—C8120.05 (16)
H20A—C20—H20B107.4C4—C5—C8119.58 (17)
C16—C17—C18113.12 (16)O1—C7—N2121.35 (16)
C16—C17—H17A109.0O1—C7—C6123.36 (16)
C18—C17—H17A109.0N2—C7—C6114.95 (15)
C16—C17—H17B109.0C13—C14—C9117.34 (17)
C18—C17—H17B109.0C13—C14—C15123.45 (16)
H17A—C17—H17B107.8C9—C14—C15119.18 (15)
C22—C21—C20113.9 (2)O2—C8—N1121.03 (17)
C22—C21—H21A108.8O2—C8—C5124.17 (16)
C20—C21—H21A108.8N1—C8—C5114.38 (15)
C22—C21—H21B108.8C10—C9—C14121.67 (16)
C20—C21—H21B108.8C10—C9—N2121.60 (15)
H21A—C21—H21B107.7C14—C9—N2116.67 (15)
C19—C18—C17115.6 (2)C15—C16—N1116.65 (16)
C19—C18—H18A108.4C15—C16—C17128.55 (17)
C17—C18—H18A108.4N1—C16—C17114.52 (15)
C19—C18—H18B108.4C3—C4—C5119.72 (19)
C17—C18—H18B108.4C3—C4—H4120.1
H18A—C18—H18B107.4C5—C4—H4120.1
C18—C19—H19A109.5C2—C1—C6120.0 (2)
C18—C19—H19B109.5C2—C1—H1120.0
H19A—C19—H19B109.5C6—C1—H1120.0
C18—C19—H19C109.5C12—C11—C10120.46 (18)
H19A—C19—H19C109.5C12—C11—H11119.8
H19B—C19—H19C109.5C10—C11—H11119.8
C21—C22—H22A109.5C11—C10—C9119.16 (18)
C21—C22—H22B109.5C11—C10—H10120.4
H22A—C22—H22B109.5C9—C10—H10120.4
C21—C22—H22C109.5C12—C13—C14121.06 (19)
H22A—C22—H22C109.5C12—C13—H13119.5
H22B—C22—H22C109.5C14—C13—H13119.5
C7—N2—N1120.31 (14)C1—C2—C3120.5 (2)
C7—N2—C9125.69 (14)C1—C2—H2119.7
N1—N2—C9112.21 (13)C3—C2—H2119.7
C8—N1—N2121.55 (14)C4—C3—C2120.10 (19)
C8—N1—C16123.60 (14)C4—C3—H3120.0
N2—N1—C16114.53 (13)C2—C3—H3120.0
C1—C6—C5119.51 (17)C11—C12—C13120.29 (18)
C1—C6—C7119.38 (17)C11—C12—H12119.9
C5—C6—C7120.64 (16)C13—C12—H12119.9
C15—C20—C21—C2258.1 (3)C13—C14—C9—C101.0 (3)
C16—C17—C18—C1953.8 (3)C15—C14—C9—C10177.11 (16)
C7—N2—N1—C834.3 (2)C13—C14—C9—N2176.26 (16)
C9—N2—N1—C8131.28 (17)C15—C14—C9—N25.6 (2)
C7—N2—N1—C16139.42 (16)C7—N2—C9—C1018.3 (3)
C9—N2—N1—C1654.97 (19)N1—N2—C9—C10146.39 (16)
C21—C20—C15—C16118.0 (2)C7—N2—C9—C14164.43 (16)
C21—C20—C15—C1461.5 (3)N1—N2—C9—C1430.9 (2)
C1—C6—C5—C42.3 (3)C14—C15—C16—N12.7 (2)
C7—C6—C5—C4169.90 (17)C20—C15—C16—N1177.77 (16)
C1—C6—C5—C8171.73 (16)C14—C15—C16—C17170.79 (17)
C7—C6—C5—C816.1 (3)C20—C15—C16—C178.7 (3)
N1—N2—C7—O1169.68 (17)C8—N1—C16—C15145.59 (18)
C9—N2—C7—O126.8 (3)N2—N1—C16—C1540.8 (2)
N1—N2—C7—C616.8 (2)C8—N1—C16—C1740.0 (2)
C9—N2—C7—C6146.75 (16)N2—N1—C16—C17133.61 (16)
C1—C6—C7—O16.0 (3)C18—C17—C16—C15125.2 (2)
C5—C6—C7—O1166.16 (18)C18—C17—C16—N148.4 (2)
C1—C6—C7—N2179.40 (16)C6—C5—C4—C31.3 (3)
C5—C6—C7—N27.2 (2)C8—C5—C4—C3172.72 (17)
C16—C15—C14—C13161.28 (18)C5—C6—C1—C20.9 (3)
C20—C15—C14—C1319.2 (3)C7—C6—C1—C2171.37 (19)
C16—C15—C14—C920.7 (2)C12—C11—C10—C90.7 (3)
C20—C15—C14—C9158.80 (16)C14—C9—C10—C110.4 (3)
N2—N1—C8—O2163.23 (17)N2—C9—C10—C11176.71 (16)
C16—N1—C8—O223.6 (3)C9—C14—C13—C120.5 (3)
N2—N1—C8—C523.9 (2)C15—C14—C13—C12177.50 (18)
C16—N1—C8—C5149.23 (16)C6—C1—C2—C31.4 (3)
C6—C5—C8—O2171.95 (18)C5—C4—C3—C21.0 (3)
C4—C5—C8—O22.1 (3)C1—C2—C3—C42.4 (3)
C6—C5—C8—N10.6 (2)C10—C11—C12—C131.1 (3)
C4—C5—C8—N1174.65 (16)C14—C13—C12—C110.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21B···O2i0.972.543.400 (3)148
C4—H4···Cg4ii0.932.833.633145
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21B···O2i0.972.543.400 (3)148
C4—H4···Cg4ii0.932.833.633145
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H22N2O2
Mr346.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.8711 (7), 8.6175 (6), 23.698 (2)
β (°) 99.672 (4)
V3)1785.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
24172, 3153, 2644
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.148, 1.08
No. of reflections3153
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.30

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaira, M. R., Georgescu, E., Georgescu, F., Albota, F. & Dumitrascu, F. (2011). Monatsh. Chem. 142, 743–748.  CrossRef CAS Google Scholar
First citationCheng, Y., Ma, B. & Wudl, F. (1999). J. Mater. Chem. 9, 2183–2188.  CrossRef CAS Google Scholar
First citationCoates, W. J. (1999). In Comprehensive Heterocyclic Chemistry II . 30, Vol. 6, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon Press.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMusa, A. Y., Jalgham, R. T. T. & Mohamad, A. B. (2012). Corros. Sci. 56, 176–183.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds