organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­bromo­nitro­toluene

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS–Université Rennes 1, `Institut des Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', Bâtiment 10C, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: mlmedj@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 March 2016; accepted 12 April 2016; online 15 April 2016)

The title compound, C7H5Br2NO2 (common name: di­bromo­nitro­toluene; systematic name: 1,3-di­bromo-2-methyl-5-nitro­benzene) crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule A, the Br atoms lie almost in the plane of the benzene ring, with deviations of 0.012 (1) and 0.009 (1) Å, while for the methyl C atom the deviation is 0.038 (4) Å. In mol­ecule B, the opposite is observed; for the methyl C atom the deviation is 0.003 (4) Å, while the two Br atoms deviate by 0.032 (1) and 0.025 (1) Å. In the crystal, the B mol­ecules are linked via C—H⋯Br hydrogen bonds, forming chains along [101]. The A mol­ecules are also aligned along the same direction, and there is a short Br⋯O contact of 3.101 (4) Å involving the A and B mol­ecules. The mol­ecules stack in layers parallel to (101) and are linked by weak ππ inter­actions [inter­centroid distances = 3.564 (3) Å between A mol­ecules and 3.662 (3) Å between B mol­ecules].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In trihalogeno-mesitylene mol­ecules, for example 1,3,5-tri­bromo-2,4,6-tri­methyl­benzene (Bosch & Barnes, 2002[Bosch, E. & Barnes, C. L. (2002). Cryst. Growth Des. 2, 299-302.]), each methyl group is symmetrically surrounded by two halogens, the three potentials hindering the methyl-group rotation are rather large and different because they are mainly due to intra­molecular inter­actions. The question was to know if the same is true for the title compound.

The title compound, Fig. 1[link], crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The conformations of the two mol­ecules are similar, as shown the by mol­ecular overlap of mol­ecule B inverted onto mol­ecule A (Fig. 2[link]). The nitro group (N4/O41/O42) is inclined to the benzene ring (C1–C6) by 2.5 (5)° in mol­ecule A [the corresponding angle is 5.9 (4) ° in mol­ecule B]. In mol­ecule A, the methyl C atom (C7) is displaced from the benzene ring by 0.038 (4) Å, while the Br atoms lie almost in the plane of the benzene ring [deviations are −0.009 (1) Å for atom Br61 and −0.012 (1) Å for atom Br21]. In mol­ecule B, the opposite is observed; atom C8 lies in the plane of the benzene ring [deviation = 0.003 (4) Å], while atoms Br661 and Br221 deviate by 0.032 (1) and 0.025 (1) Å, respectively. In a very similar compound, methyl 3,5-di­bromo-4-methyl­benzoate (Saeed et al., 2010[Saeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, o982-o983.]), the situation is slightly different; the methyl C atom deviates from the benzene ring by 0.026 (3) Å, while the two Br atoms deviate by 0.006 (1) and 0.067 (1) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular overlap of the two independent mol­ecules (A black and B red; PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

In mol­ecule A, the cyclic C—C(CH3)—C angle C2—C1—C6 is 114.7 (3) °, while the cyclic C—C(Br)—C angles are C1—C6—C5 = 123.6 (3) and C1—C2—C3 = 123.7 (3) °. In mol­ecule B, the cyclic C—C(CH3)—C angle C22—C11—C66 is 116.2 (3)°, while the cyclic C—C(Br)—C angles are C11—C66—C55 = 122.9 (3) and C11—C22—C33 =123.0 (3)°. This is similar to the situation in 1,3,5-tri­bromo-2,4,6-tri­methyl­benzene (Bosch & Barnes, 2002[Bosch, E. & Barnes, C. L. (2002). Cryst. Growth Des. 2, 299-302.]) and methyl 3,5-di­bromo-4-methyl­benzoate (Saeed et al., 2010[Saeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, o982-o983.]), where the cyclic C—C(CH3)-C angles average ca 115.1°, and the cyclic C—C(Br)—C angles average ca 124.5°.

In the crystal, there is a short Br⋯O contact of 3.101 (4) Å involving the A and B mol­ecules [Br661⋯O42i; symmetry code (i): − x + 1, − y + 1, − z + 1]. The B mol­ecules are linked by C—H⋯Br hydrogen bonds, forming chains along [101]; see Fig. 3[link] and Table 1[link]. The A mol­ecules also align along the same direction. The mol­ecules stack in layers parallel to (101) and are linked by weak ππ inter­actions (Fig. 3[link]): Cg1⋯Cg1ii = 3.564 (3) Å, inter­planar distance = 3.4396 (15) Å, slippage = 0.932 Å, symmetry code (ii): − x + 1, − y, − z; Cg2⋯Cg2iii = 3.662 (3) Å, inter­planar distance = 3.3875 (16) Å, slippage = 1.391 Å, symmetry code (iii): − x + 2, − y + 1, − z + 1; where Cg1 is the centroid of the benzene ring C1–C6 in mol­ecule A, and Cg2 is the centroid of the benzene ring C11–C66 in mol­ecule B. Inter­molecular Br⋯O and Br⋯Br inter­actions of < 4 Å are shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C55—H551⋯Br21i 0.96 2.92 3.799 (5) 153
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound, with the C—H⋯Br and shortest Car⋯Car (ar = aromatic) inter­actions shown as dashed lines (mol­ecule A blue and mol­ecule B red).
[Figure 4]
Figure 4
Inter­molcular Br⋯O and Br⋯Br inter­actions.

Synthesis and crystallization

The title compound is commercially available (Sigma–Aldrich). It was recrystallized from ethanol solution giving large needle-shaped single crystals, many of which were twinned.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the methyl groups are disordered over two positions, rotated by 60°.

Table 2
Experimental details

Crystal data
Chemical formula C7H5Br2NO2
Mr 294.93
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.755 (5), 9.533 (5), 10.897 (5)
α, β, γ (°) 91.324 (5), 90.517 (5), 103.216 (5)
V3) 885.1 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.12
Crystal size (mm) 0.34 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.116, 0.335
No. of measured, independent and observed [I > 3.0σ(I)] reflections 8470, 4040, 3256
Rint 0.031
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.053, 0.85
No. of reflections 3064
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2003 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

The title compound is commercially available (Sigma–Aldrich). It was recrystallized from ethanol solution giving large needle-shaped single crystals, many of which were twinned.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of the methyl groups are disordered over two positions, rotated by 60°.

Structure description top

In trihalogeno-mesitylene molecules, for example 1,3,5-tribromo-2,4,6-trimethylbenzene (Bosch & Barnes, 2002), each methyl group is symmetrically surrounded by two halogens, the three potentials hindering the methyl-group rotation are rather large and different because they are mainly due to intramolecular interactions. The question was to know if the same is true for the title compound.

The title compound, Fig. 1, crystallizes with two independent molecules (A and B) in the asymmetric unit. The conformations of the two molecules are similar, as shown the by molecular overlap of molecule B inverted onto molecule A (Fig. 2). The nitro group (N4/O41/O42) is inclined to the benzene ring (C1–C6) by 2.5 (5)° in molecule A [the corresponding angle is 5.9 (4) ° in molecule B]. In molecule A, the methyl C atom (C7) is displaced from the benzene ring by 0.038 (4) Å, while the Br atoms lie almost in the plane of the benzene ring [deviations are -0.009 (1) Å for atom Br61 and -0.012 (1) Å for atom Br21]. In molecule B, the opposite is observed; atom C8 lies in the plane of the benzene ring [deviation = 0.003 (4) Å], while atoms Br661 and Br221 deviate by 0.032 (1) and 0.025 (1) Å, respectively. In a very similar compound, methyl 3,5-dibromo-4-methylbenzoate (Saeed et al., 2010), the situation is slightly different; the methyl C atom deviates from the benzene ring by 0.026 (3) Å, while the two Br atoms deviate by 0.006 (1) and 0.067 (1) Å.

In molecule A, the cyclic C—C(CH3)—C angle C2—C1—C6 is 114.7 (3) °, while the cyclic C—C(Br)—C angles are C1—C6—C5 = 123.6 (3) and C1—C2—C3 = 123.7 (3) °. In molecule B ,the cyclic C—C(CH3)—C angle C22—C11—C66 is 116.2 (3)°, while the cyclic C—C(Br)—C angles are C11—C66—C55 = 122.9 (3) and C11—C22—C33 =123.0 (3)°. This is similar to the situation in 1,3,5-tribromo-2,4,6-trimethylbenzene (Bosch & Barnes, 2002) and methyl 3,5-dibromo-4-methylbenzoate (Saeed et al., 2010), where the cyclic C—C(CH3)-C angles average ca 115.1°, and the cyclic C—C(Br)—C angles average ca 124.5°.

In the crystal, there is a short Br···O contact of 3.101 (4) Å involving the A and B molecules [Br661···O42i; symmetry code (i): - x + 1, - y + 1, - z + 1]. The B molecules are linked by C—H···Br hydrogen bonds, forming chains along [101]; see Fig. 3 and Table 1. The A molecules also align along the same direction. The molecules stack in layers parallel to (101) and are linked by weak ππ interactions (Fig. 3): Cg1···Cg1ii = 3.564 (3) Å, interplanar distance = 3.4396 (15) Å, slippage = 0.932 Å, symmetry code (ii): - x + 1, - y, - z; Cg2···Cg2iii = 3.662 (3) Å, interplanar distance = 3.3875 (16) Å, slippage = 1.391 Å, symmetry code (iii): - x + 2, - y + 1, - z + 1; where Cg1 is the centroid of the benzene ring C1–C6 in molecule A, and Cg2 is the centroid of the benzene ring C11–C66 in molecule B. Intermolecular Br···O and Br···Br interactions of < 4 Å are shown in Fig. 4.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2003 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular overlap of the two independent molecules (A black and B red; PLATON; Spek, 2009).
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound, with the C—H···Br and shortest Car···Car (ar = aromatic) interactions shown as dashed lines (molecule A blue and molecule B red).
[Figure 4] Fig. 4. Intermolcular Br···O and Br···Br interactions.
1,3-Dibromo-2-methyl-5-nitrobenzene top
Crystal data top
C7H5Br2NO2Z = 4
Mr = 294.93F(000) = 560
Triclinic, P1Dx = 2.213 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.755 (5) ÅCell parameters from 3096 reflections
b = 9.533 (5) Åθ = 2.9–27.4°
c = 10.897 (5) ŵ = 9.12 mm1
α = 91.324 (5)°T = 150 K
β = 90.517 (5)°Block, colourless
γ = 103.216 (5)°0.34 × 0.21 × 0.12 mm
V = 885.1 (8) Å3
Data collection top
Bruker APEXII
diffractometer
3256 reflections with I > 3.0σ(I)
Graphite monochromatorRint = 0.031
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 119
Tmin = 0.116, Tmax = 0.335k = 1112
8470 measured reflectionsl = 1314
4040 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.053 Method, part 1, Chebychev polynomial, [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 12.2 14.7 6.04
S = 0.85(Δ/σ)max = 0.001
3064 reflectionsΔρmax = 0.63 e Å3
218 parametersΔρmin = 0.48 e Å3
0 restraints
Crystal data top
C7H5Br2NO2γ = 103.216 (5)°
Mr = 294.93V = 885.1 (8) Å3
Triclinic, P1Z = 4
a = 8.755 (5) ÅMo Kα radiation
b = 9.533 (5) ŵ = 9.12 mm1
c = 10.897 (5) ÅT = 150 K
α = 91.324 (5)°0.34 × 0.21 × 0.12 mm
β = 90.517 (5)°
Data collection top
Bruker APEXII
diffractometer
4040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3256 reflections with I > 3.0σ(I)
Tmin = 0.116, Tmax = 0.335Rint = 0.031
8470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 0.85Δρmax = 0.63 e Å3
3064 reflectionsΔρmin = 0.48 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br210.73115 (5)0.09978 (5)0.53248 (4)0.0289
C20.8164 (4)0.2686 (4)0.4435 (3)0.0187
C30.7672 (5)0.3919 (4)0.4745 (3)0.0224
C40.8284 (5)0.5151 (4)0.4102 (4)0.0217
N40.7810 (4)0.6497 (4)0.4438 (3)0.0303
O410.8408 (4)0.7582 (3)0.3882 (3)0.0405
O420.6863 (5)0.6461 (4)0.5250 (3)0.0474
C50.9344 (5)0.5165 (4)0.3171 (4)0.0221
C60.9806 (4)0.3910 (4)0.2894 (3)0.0197
C10.9253 (4)0.2614 (4)0.3505 (3)0.0173
C70.9797 (5)0.1263 (4)0.3212 (4)0.0236
Br611.12679 (6)0.39735 (5)0.16074 (4)0.0344
Br6610.45446 (5)0.18993 (4)0.27224 (4)0.0245
C660.5718 (4)0.0850 (4)0.1767 (3)0.0185
C550.5606 (4)0.0581 (4)0.2075 (4)0.0208
C440.6430 (5)0.1374 (4)0.1372 (4)0.0206
N440.6302 (4)0.2905 (3)0.1650 (3)0.0250
O4410.5369 (4)0.3445 (3)0.2432 (3)0.0360
O4420.7129 (4)0.3558 (3)0.1075 (3)0.0410
C330.7364 (4)0.0797 (4)0.0402 (3)0.0194
C220.7452 (4)0.0633 (4)0.0139 (3)0.0180
C110.6644 (4)0.1508 (4)0.0807 (3)0.0173
C80.6755 (5)0.3058 (4)0.0494 (4)0.0281
Br2210.87104 (5)0.13891 (4)0.12061 (4)0.0275
H310.69280.39230.53870.0500*
H510.97470.60230.27280.0500*
H5510.49750.10040.27470.0500*
H3310.79320.13690.00700.0500*
H810.74310.33160.01810.0500*0.5000
H820.71560.36720.11850.0500*0.5000
H830.57380.31980.02850.0500*0.5000
H840.61300.34770.10450.0500*0.5000
H850.78160.35900.05640.0500*0.5000
H860.63850.31180.03230.0500*0.5000
H711.05300.14270.25580.0500*0.5000
H721.02910.09720.39130.0500*0.5000
H730.89260.05050.29650.0500*0.5000
H740.92880.05040.37230.0500*0.5000
H751.09050.14280.33370.0500*0.5000
H760.95580.09760.23720.0500*0.5000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br210.0327 (2)0.0265 (2)0.0289 (2)0.00771 (17)0.01083 (17)0.01296 (17)
C20.0211 (18)0.0186 (18)0.0155 (17)0.0026 (14)0.0028 (14)0.0031 (14)
C30.027 (2)0.025 (2)0.0169 (18)0.0095 (16)0.0003 (15)0.0027 (15)
C40.0235 (19)0.0186 (19)0.025 (2)0.0095 (15)0.0067 (15)0.0047 (15)
N40.037 (2)0.0242 (19)0.033 (2)0.0169 (16)0.0093 (17)0.0098 (15)
O410.052 (2)0.0189 (16)0.053 (2)0.0135 (15)0.0124 (17)0.0046 (14)
O420.063 (2)0.042 (2)0.045 (2)0.0311 (19)0.0102 (18)0.0090 (16)
C50.026 (2)0.0133 (17)0.026 (2)0.0026 (15)0.0017 (16)0.0039 (15)
C60.0215 (19)0.0189 (18)0.0179 (18)0.0030 (14)0.0012 (14)0.0014 (14)
C10.0169 (17)0.0166 (17)0.0190 (17)0.0055 (13)0.0024 (14)0.0023 (14)
C70.026 (2)0.0174 (19)0.029 (2)0.0090 (15)0.0044 (16)0.0022 (15)
Br610.0379 (3)0.0332 (2)0.0347 (2)0.01147 (19)0.0199 (2)0.01220 (19)
Br6610.0240 (2)0.0237 (2)0.0281 (2)0.01057 (16)0.00368 (16)0.00436 (15)
C660.0188 (17)0.0168 (18)0.0198 (18)0.0044 (14)0.0006 (14)0.0067 (14)
C550.0204 (18)0.0208 (19)0.0211 (19)0.0043 (15)0.0023 (15)0.0036 (15)
C440.0239 (19)0.0131 (17)0.025 (2)0.0059 (14)0.0058 (15)0.0019 (14)
N440.0322 (19)0.0147 (16)0.0287 (18)0.0071 (14)0.0044 (15)0.0028 (13)
O4410.0384 (18)0.0256 (16)0.0425 (19)0.0024 (13)0.0040 (15)0.0169 (14)
O4420.062 (2)0.0196 (15)0.048 (2)0.0205 (15)0.0084 (17)0.0045 (14)
C330.0173 (17)0.0191 (18)0.0225 (19)0.0061 (14)0.0047 (14)0.0011 (15)
C220.0181 (17)0.0155 (17)0.0182 (18)0.0010 (14)0.0014 (14)0.0024 (14)
C110.0191 (17)0.0107 (16)0.0212 (18)0.0019 (13)0.0043 (14)0.0007 (13)
C80.029 (2)0.0190 (19)0.036 (2)0.0057 (17)0.0023 (18)0.0027 (17)
Br2210.0310 (2)0.0247 (2)0.0265 (2)0.00517 (16)0.01052 (17)0.00595 (16)
Geometric parameters (Å, º) top
Br21—C21.904 (4)Br661—C661.892 (4)
C2—C31.377 (5)C66—C551.395 (5)
C2—C11.408 (5)C66—C111.398 (5)
C3—C41.384 (6)C55—C441.382 (5)
C3—H310.961C55—H5510.961
C4—N41.476 (5)C44—N441.476 (5)
C4—C51.380 (6)C44—C331.387 (5)
N4—O411.224 (5)N44—O4411.225 (5)
N4—O421.213 (5)N44—O4421.225 (5)
C5—C61.376 (5)C33—C221.385 (5)
C5—H510.957C33—H3310.962
C6—C11.406 (5)C22—C111.406 (5)
C6—Br611.899 (4)C22—Br2211.897 (4)
C1—C71.501 (5)C11—C81.506 (5)
C7—H710.955C8—H810.949
C7—H720.952C8—H820.955
C7—H730.955C8—H830.956
C7—H740.953C8—H840.956
C7—H750.954C8—H850.953
C7—H760.957C8—H860.952
Br21—C2—C3117.4 (3)Br661—C66—C55116.6 (3)
Br21—C2—C1118.9 (3)Br661—C66—C11120.5 (3)
C3—C2—C1123.7 (3)C55—C66—C11122.9 (3)
C2—C3—C4117.9 (4)C66—C55—C44117.5 (3)
C2—C3—H31121.1C66—C55—H551121.3
C4—C3—H31121.1C44—C55—H551121.2
C3—C4—N4119.0 (4)C55—C44—N44118.9 (3)
C3—C4—C5122.0 (3)C55—C44—C33122.8 (3)
N4—C4—C5119.0 (4)N44—C44—C33118.3 (3)
C4—N4—O41117.6 (4)C44—N44—O441118.1 (3)
C4—N4—O42118.1 (4)C44—N44—O442117.8 (3)
O41—N4—O42124.3 (4)O441—N44—O442124.1 (3)
C4—C5—C6118.2 (3)C44—C33—C22117.7 (3)
C4—C5—H51121.0C44—C33—H331121.2
C6—C5—H51120.8C22—C33—H331121.1
C5—C6—C1123.6 (3)C33—C22—C11123.0 (3)
C5—C6—Br61116.9 (3)C33—C22—Br221116.9 (3)
C1—C6—Br61119.5 (3)C11—C22—Br221120.2 (3)
C2—C1—C6114.7 (3)C22—C11—C66116.2 (3)
C2—C1—C7122.4 (3)C22—C11—C8121.8 (3)
C6—C1—C7122.9 (3)C66—C11—C8122.0 (3)
C1—C7—H71109.9C11—C8—H81110.3
C1—C7—H72110.3C11—C8—H82109.9
H71—C7—H72108.9H81—C8—H82109.1
C1—C7—H73110.1C11—C8—H83110.0
H71—C7—H73108.7H81—C8—H83109.0
H72—C7—H73108.9H82—C8—H83108.5
C1—C7—H74110.3C11—C8—H84109.9
H71—C7—H74139.8H81—C8—H84139.9
H72—C7—H7457.0H82—C8—H8455.2
H73—C7—H7455.1H83—C8—H8456.4
C1—C7—H75110.1C11—C8—H85110.1
H71—C7—H7556.8H81—C8—H8555.6
H72—C7—H7555.3H82—C8—H8556.8
H73—C7—H75139.8H83—C8—H85139.9
H74—C7—H75109.1H84—C8—H85108.8
C1—C7—H76109.9C11—C8—H86110.2
H71—C7—H7654.8H81—C8—H8656.7
H72—C7—H76139.8H82—C8—H86139.9
H73—C7—H7657.0H83—C8—H8655.5
H74—C7—H76108.9H84—C8—H86108.8
H75—C7—H76108.5H85—C8—H86109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C55—H551···Br21i0.962.923.799 (5)153
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C55—H551···Br21i0.962.923.799 (5)153
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H5Br2NO2
Mr294.93
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.755 (5), 9.533 (5), 10.897 (5)
α, β, γ (°)91.324 (5), 90.517 (5), 103.216 (5)
V3)885.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)9.12
Crystal size (mm)0.34 × 0.21 × 0.12
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.116, 0.335
No. of measured, independent and
observed [I > 3.0σ(I)] reflections
8470, 4040, 3256
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.053, 0.85
No. of reflections3064
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.48

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2003 (Burla et al., 2005), CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2008), CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

 

Acknowledgements

We would like to thank the Centre de Diffractométrie de l'Université de Rennes 1 for the opportunity to collect data.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBosch, E. & Barnes, C. L. (2002). Cryst. Growth Des. 2, 299–302.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, o982–o983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds