organic compounds
Dibromonitrotoluene
aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS–Université Rennes 1, `Institut des Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', Bâtiment 10C, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: mlmedj@gmail.com
The title compound, C7H5Br2NO2 (common name: dibromonitrotoluene; 1,3-dibromo-2-methyl-5-nitrobenzene) crystallizes with two independent molecules (A and B) in the In molecule A, the Br atoms lie almost in the plane of the benzene ring, with deviations of 0.012 (1) and 0.009 (1) Å, while for the methyl C atom the deviation is 0.038 (4) Å. In molecule B, the opposite is observed; for the methyl C atom the deviation is 0.003 (4) Å, while the two Br atoms deviate by 0.032 (1) and 0.025 (1) Å. In the crystal, the B molecules are linked via C—H⋯Br hydrogen bonds, forming chains along [101]. The A molecules are also aligned along the same direction, and there is a short Br⋯O contact of 3.101 (4) Å involving the A and B molecules. The molecules stack in layers parallel to (101) and are linked by weak π–π interactions [intercentroid distances = 3.564 (3) Å between A molecules and 3.662 (3) Å between B molecules].
CCDC reference: 1473718
Structure description
In trihalogeno-mesitylene molecules, for example 1,3,5-tribromo-2,4,6-trimethylbenzene (Bosch & Barnes, 2002), each methyl group is symmetrically surrounded by two halogens, the three potentials hindering the methyl-group rotation are rather large and different because they are mainly due to intramolecular interactions. The question was to know if the same is true for the title compound.
The title compound, Fig. 1, crystallizes with two independent molecules (A and B) in the The conformations of the two molecules are similar, as shown the by molecular overlap of molecule B inverted onto molecule A (Fig. 2). The nitro group (N4/O41/O42) is inclined to the benzene ring (C1–C6) by 2.5 (5)° in molecule A [the corresponding angle is 5.9 (4) ° in molecule B]. In molecule A, the methyl C atom (C7) is displaced from the benzene ring by 0.038 (4) Å, while the Br atoms lie almost in the plane of the benzene ring [deviations are −0.009 (1) Å for atom Br61 and −0.012 (1) Å for atom Br21]. In molecule B, the opposite is observed; atom C8 lies in the plane of the benzene ring [deviation = 0.003 (4) Å], while atoms Br661 and Br221 deviate by 0.032 (1) and 0.025 (1) Å, respectively. In a very similar compound, methyl 3,5-dibromo-4-methylbenzoate (Saeed et al., 2010), the situation is slightly different; the methyl C atom deviates from the benzene ring by 0.026 (3) Å, while the two Br atoms deviate by 0.006 (1) and 0.067 (1) Å.
In molecule A, the cyclic C—C(CH3)—C angle C2—C1—C6 is 114.7 (3) °, while the cyclic C—C(Br)—C angles are C1—C6—C5 = 123.6 (3) and C1—C2—C3 = 123.7 (3) °. In molecule B, the cyclic C—C(CH3)—C angle C22—C11—C66 is 116.2 (3)°, while the cyclic C—C(Br)—C angles are C11—C66—C55 = 122.9 (3) and C11—C22—C33 =123.0 (3)°. This is similar to the situation in 1,3,5-tribromo-2,4,6-trimethylbenzene (Bosch & Barnes, 2002) and methyl 3,5-dibromo-4-methylbenzoate (Saeed et al., 2010), where the cyclic C—C(CH3)-C angles average ca 115.1°, and the cyclic C—C(Br)—C angles average ca 124.5°.
In the crystal, there is a short Br⋯O contact of 3.101 (4) Å involving the A and B molecules [Br661⋯O42i; symmetry code (i): − x + 1, − y + 1, − z + 1]. The B molecules are linked by C—H⋯Br hydrogen bonds, forming chains along [101]; see Fig. 3 and Table 1. The A molecules also align along the same direction. The molecules stack in layers parallel to (101) and are linked by weak π–π interactions (Fig. 3): Cg1⋯Cg1ii = 3.564 (3) Å, interplanar distance = 3.4396 (15) Å, slippage = 0.932 Å, symmetry code (ii): − x + 1, − y, − z; Cg2⋯Cg2iii = 3.662 (3) Å, interplanar distance = 3.3875 (16) Å, slippage = 1.391 Å, symmetry code (iii): − x + 2, − y + 1, − z + 1; where Cg1 is the centroid of the benzene ring C1–C6 in molecule A, and Cg2 is the centroid of the benzene ring C11–C66 in molecule B. Intermolecular Br⋯O and Br⋯Br interactions of < 4 Å are shown in Fig. 4.
Synthesis and crystallization
The title compound is commercially available (Sigma–Aldrich). It was recrystallized from ethanol solution giving large needle-shaped single crystals, many of which were twinned.
Refinement
Crystal data, data collection and structure . The H atoms of the methyl groups are disordered over two positions, rotated by 60°.
details are summarized in Table 2Structural data
CCDC reference: 1473718
10.1107/S2414314616006210/su4025sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616006210/su4025Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616006210/su4025Isup3.cml
The title compound is commercially available (Sigma–Aldrich). It was recrystallized from ethanol solution giving large needle-shaped single crystals, many of which were twinned.
Crystal data, data collection and structure
details are summarized in Table 2. The H atoms of the methyl groups are disordered over two positions, rotated by 60°.In trihalogeno-mesitylene molecules, for example 1,3,5-tribromo-2,4,6-trimethylbenzene (Bosch & Barnes, 2002), each methyl group is symmetrically surrounded by two halogens, the three potentials hindering the methyl-group rotation are rather large and different because they are mainly due to intramolecular interactions. The question was to know if the same is true for the title compound.
The title compound, Fig. 1, crystallizes with two independent molecules (A and B) in the
The conformations of the two molecules are similar, as shown the by molecular overlap of molecule B inverted onto molecule A (Fig. 2). The nitro group (N4/O41/O42) is inclined to the benzene ring (C1–C6) by 2.5 (5)° in molecule A [the corresponding angle is 5.9 (4) ° in molecule B]. In molecule A, the methyl C atom (C7) is displaced from the benzene ring by 0.038 (4) Å, while the Br atoms lie almost in the plane of the benzene ring [deviations are -0.009 (1) Å for atom Br61 and -0.012 (1) Å for atom Br21]. In molecule B, the opposite is observed; atom C8 lies in the plane of the benzene ring [deviation = 0.003 (4) Å], while atoms Br661 and Br221 deviate by 0.032 (1) and 0.025 (1) Å, respectively. In a very similar compound, methyl 3,5-dibromo-4-methylbenzoate (Saeed et al., 2010), the situation is slightly different; the methyl C atom deviates from the benzene ring by 0.026 (3) Å, while the two Br atoms deviate by 0.006 (1) and 0.067 (1) Å.In molecule A, the cyclic C—C(CH3)—C angle C2—C1—C6 is 114.7 (3) °, while the cyclic C—C(Br)—C angles are C1—C6—C5 = 123.6 (3) and C1—C2—C3 = 123.7 (3) °. In molecule B ,the cyclic C—C(CH3)—C angle C22—C11—C66 is 116.2 (3)°, while the cyclic C—C(Br)—C angles are C11—C66—C55 = 122.9 (3) and C11—C22—C33 =123.0 (3)°. This is similar to the situation in 1,3,5-tribromo-2,4,6-trimethylbenzene (Bosch & Barnes, 2002) and methyl 3,5-dibromo-4-methylbenzoate (Saeed et al., 2010), where the cyclic C—C(CH3)-C angles average ca 115.1°, and the cyclic C—C(Br)—C angles average ca 124.5°.
In the crystal, there is a short Br···O contact of 3.101 (4) Å involving the A and B molecules [Br661···O42i; symmetry code (i): - x + 1, - y + 1, - z + 1]. The B molecules are linked by C—H···Br hydrogen bonds, forming chains along [101]; see Fig. 3 and Table 1. The A molecules also align along the same direction. The molecules stack in layers parallel to (101) and are linked by weak π–π interactions (Fig. 3): Cg1···Cg1ii = 3.564 (3) Å, interplanar distance = 3.4396 (15) Å, slippage = 0.932 Å, symmetry code (ii): - x + 1, - y, - z; Cg2···Cg2iii = 3.662 (3) Å, interplanar distance = 3.3875 (16) Å, slippage = 1.391 Å, symmetry code (iii): - x + 2, - y + 1, - z + 1; where Cg1 is the centroid of the benzene ring C1–C6 in molecule A, and Cg2 is the centroid of the benzene ring C11–C66 in molecule B. Intermolecular Br···O and Br···Br interactions of < 4 Å are shown in Fig. 4.
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2003 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view of the molecular overlap of the two independent molecules (A black and B red; PLATON; Spek, 2009). | |
Fig. 3. A view along the b axis of the crystal packing of the title compound, with the C—H···Br and shortest Car···Car (ar = aromatic) interactions shown as dashed lines (molecule A blue and molecule B red). | |
Fig. 4. Intermolcular Br···O and Br···Br interactions. |
C7H5Br2NO2 | Z = 4 |
Mr = 294.93 | F(000) = 560 |
Triclinic, P1 | Dx = 2.213 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 8.755 (5) Å | Cell parameters from 3096 reflections |
b = 9.533 (5) Å | θ = 2.9–27.4° |
c = 10.897 (5) Å | µ = 9.12 mm−1 |
α = 91.324 (5)° | T = 150 K |
β = 90.517 (5)° | Block, colourless |
γ = 103.216 (5)° | 0.34 × 0.21 × 0.12 mm |
V = 885.1 (8) Å3 |
Bruker APEXII diffractometer | 3256 reflections with I > 3.0σ(I) |
Graphite monochromator | Rint = 0.031 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −11→9 |
Tmin = 0.116, Tmax = 0.335 | k = −11→12 |
8470 measured reflections | l = −13→14 |
4040 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.053 | Method, part 1, Chebychev polynomial, [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 12.2 14.7 6.04 |
S = 0.85 | (Δ/σ)max = 0.001 |
3064 reflections | Δρmax = 0.63 e Å−3 |
218 parameters | Δρmin = −0.48 e Å−3 |
0 restraints |
C7H5Br2NO2 | γ = 103.216 (5)° |
Mr = 294.93 | V = 885.1 (8) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.755 (5) Å | Mo Kα radiation |
b = 9.533 (5) Å | µ = 9.12 mm−1 |
c = 10.897 (5) Å | T = 150 K |
α = 91.324 (5)° | 0.34 × 0.21 × 0.12 mm |
β = 90.517 (5)° |
Bruker APEXII diffractometer | 4040 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 3256 reflections with I > 3.0σ(I) |
Tmin = 0.116, Tmax = 0.335 | Rint = 0.031 |
8470 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 0.85 | Δρmax = 0.63 e Å−3 |
3064 reflections | Δρmin = −0.48 e Å−3 |
218 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br21 | 0.73115 (5) | 0.09978 (5) | 0.53248 (4) | 0.0289 | |
C2 | 0.8164 (4) | 0.2686 (4) | 0.4435 (3) | 0.0187 | |
C3 | 0.7672 (5) | 0.3919 (4) | 0.4745 (3) | 0.0224 | |
C4 | 0.8284 (5) | 0.5151 (4) | 0.4102 (4) | 0.0217 | |
N4 | 0.7810 (4) | 0.6497 (4) | 0.4438 (3) | 0.0303 | |
O41 | 0.8408 (4) | 0.7582 (3) | 0.3882 (3) | 0.0405 | |
O42 | 0.6863 (5) | 0.6461 (4) | 0.5250 (3) | 0.0474 | |
C5 | 0.9344 (5) | 0.5165 (4) | 0.3171 (4) | 0.0221 | |
C6 | 0.9806 (4) | 0.3910 (4) | 0.2894 (3) | 0.0197 | |
C1 | 0.9253 (4) | 0.2614 (4) | 0.3505 (3) | 0.0173 | |
C7 | 0.9797 (5) | 0.1263 (4) | 0.3212 (4) | 0.0236 | |
Br61 | 1.12679 (6) | 0.39735 (5) | 0.16074 (4) | 0.0344 | |
Br661 | 0.45446 (5) | 0.18993 (4) | 0.27224 (4) | 0.0245 | |
C66 | 0.5718 (4) | 0.0850 (4) | 0.1767 (3) | 0.0185 | |
C55 | 0.5606 (4) | −0.0581 (4) | 0.2075 (4) | 0.0208 | |
C44 | 0.6430 (5) | −0.1374 (4) | 0.1372 (4) | 0.0206 | |
N44 | 0.6302 (4) | −0.2905 (3) | 0.1650 (3) | 0.0250 | |
O441 | 0.5369 (4) | −0.3445 (3) | 0.2432 (3) | 0.0360 | |
O442 | 0.7129 (4) | −0.3558 (3) | 0.1075 (3) | 0.0410 | |
C33 | 0.7364 (4) | −0.0797 (4) | 0.0402 (3) | 0.0194 | |
C22 | 0.7452 (4) | 0.0633 (4) | 0.0139 (3) | 0.0180 | |
C11 | 0.6644 (4) | 0.1508 (4) | 0.0807 (3) | 0.0173 | |
C8 | 0.6755 (5) | 0.3058 (4) | 0.0494 (4) | 0.0281 | |
Br221 | 0.87104 (5) | 0.13891 (4) | −0.12061 (4) | 0.0275 | |
H31 | 0.6928 | 0.3923 | 0.5387 | 0.0500* | |
H51 | 0.9747 | 0.6023 | 0.2728 | 0.0500* | |
H551 | 0.4975 | −0.1004 | 0.2747 | 0.0500* | |
H331 | 0.7932 | −0.1369 | −0.0070 | 0.0500* | |
H81 | 0.7431 | 0.3316 | −0.0181 | 0.0500* | 0.5000 |
H82 | 0.7156 | 0.3672 | 0.1185 | 0.0500* | 0.5000 |
H83 | 0.5738 | 0.3198 | 0.0285 | 0.0500* | 0.5000 |
H84 | 0.6130 | 0.3477 | 0.1045 | 0.0500* | 0.5000 |
H85 | 0.7816 | 0.3590 | 0.0564 | 0.0500* | 0.5000 |
H86 | 0.6385 | 0.3118 | −0.0323 | 0.0500* | 0.5000 |
H71 | 1.0530 | 0.1427 | 0.2558 | 0.0500* | 0.5000 |
H72 | 1.0291 | 0.0972 | 0.3913 | 0.0500* | 0.5000 |
H73 | 0.8926 | 0.0505 | 0.2965 | 0.0500* | 0.5000 |
H74 | 0.9288 | 0.0504 | 0.3723 | 0.0500* | 0.5000 |
H75 | 1.0905 | 0.1428 | 0.3337 | 0.0500* | 0.5000 |
H76 | 0.9558 | 0.0976 | 0.2372 | 0.0500* | 0.5000 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br21 | 0.0327 (2) | 0.0265 (2) | 0.0289 (2) | 0.00771 (17) | 0.01083 (17) | 0.01296 (17) |
C2 | 0.0211 (18) | 0.0186 (18) | 0.0155 (17) | 0.0026 (14) | −0.0028 (14) | 0.0031 (14) |
C3 | 0.027 (2) | 0.025 (2) | 0.0169 (18) | 0.0095 (16) | 0.0003 (15) | −0.0027 (15) |
C4 | 0.0235 (19) | 0.0186 (19) | 0.025 (2) | 0.0095 (15) | −0.0067 (15) | −0.0047 (15) |
N4 | 0.037 (2) | 0.0242 (19) | 0.033 (2) | 0.0169 (16) | −0.0093 (17) | −0.0098 (15) |
O41 | 0.052 (2) | 0.0189 (16) | 0.053 (2) | 0.0135 (15) | −0.0124 (17) | −0.0046 (14) |
O42 | 0.063 (2) | 0.042 (2) | 0.045 (2) | 0.0311 (19) | 0.0102 (18) | −0.0090 (16) |
C5 | 0.026 (2) | 0.0133 (17) | 0.026 (2) | 0.0026 (15) | −0.0017 (16) | 0.0039 (15) |
C6 | 0.0215 (19) | 0.0189 (18) | 0.0179 (18) | 0.0030 (14) | 0.0012 (14) | −0.0014 (14) |
C1 | 0.0169 (17) | 0.0166 (17) | 0.0190 (17) | 0.0055 (13) | −0.0024 (14) | −0.0023 (14) |
C7 | 0.026 (2) | 0.0174 (19) | 0.029 (2) | 0.0090 (15) | 0.0044 (16) | −0.0022 (15) |
Br61 | 0.0379 (3) | 0.0332 (2) | 0.0347 (2) | 0.01147 (19) | 0.0199 (2) | 0.01220 (19) |
Br661 | 0.0240 (2) | 0.0237 (2) | 0.0281 (2) | 0.01057 (16) | 0.00368 (16) | −0.00436 (15) |
C66 | 0.0188 (17) | 0.0168 (18) | 0.0198 (18) | 0.0044 (14) | −0.0006 (14) | −0.0067 (14) |
C55 | 0.0204 (18) | 0.0208 (19) | 0.0211 (19) | 0.0043 (15) | −0.0023 (15) | 0.0036 (15) |
C44 | 0.0239 (19) | 0.0131 (17) | 0.025 (2) | 0.0059 (14) | −0.0058 (15) | 0.0019 (14) |
N44 | 0.0322 (19) | 0.0147 (16) | 0.0287 (18) | 0.0071 (14) | −0.0044 (15) | 0.0028 (13) |
O441 | 0.0384 (18) | 0.0256 (16) | 0.0425 (19) | 0.0024 (13) | 0.0040 (15) | 0.0169 (14) |
O442 | 0.062 (2) | 0.0196 (15) | 0.048 (2) | 0.0205 (15) | 0.0084 (17) | 0.0045 (14) |
C33 | 0.0173 (17) | 0.0191 (18) | 0.0225 (19) | 0.0061 (14) | −0.0047 (14) | −0.0011 (15) |
C22 | 0.0181 (17) | 0.0155 (17) | 0.0182 (18) | −0.0010 (14) | 0.0014 (14) | 0.0024 (14) |
C11 | 0.0191 (17) | 0.0107 (16) | 0.0212 (18) | 0.0019 (13) | −0.0043 (14) | −0.0007 (13) |
C8 | 0.029 (2) | 0.0190 (19) | 0.036 (2) | 0.0057 (17) | 0.0023 (18) | 0.0027 (17) |
Br221 | 0.0310 (2) | 0.0247 (2) | 0.0265 (2) | 0.00517 (16) | 0.01052 (17) | 0.00595 (16) |
Br21—C2 | 1.904 (4) | Br661—C66 | 1.892 (4) |
C2—C3 | 1.377 (5) | C66—C55 | 1.395 (5) |
C2—C1 | 1.408 (5) | C66—C11 | 1.398 (5) |
C3—C4 | 1.384 (6) | C55—C44 | 1.382 (5) |
C3—H31 | 0.961 | C55—H551 | 0.961 |
C4—N4 | 1.476 (5) | C44—N44 | 1.476 (5) |
C4—C5 | 1.380 (6) | C44—C33 | 1.387 (5) |
N4—O41 | 1.224 (5) | N44—O441 | 1.225 (5) |
N4—O42 | 1.213 (5) | N44—O442 | 1.225 (5) |
C5—C6 | 1.376 (5) | C33—C22 | 1.385 (5) |
C5—H51 | 0.957 | C33—H331 | 0.962 |
C6—C1 | 1.406 (5) | C22—C11 | 1.406 (5) |
C6—Br61 | 1.899 (4) | C22—Br221 | 1.897 (4) |
C1—C7 | 1.501 (5) | C11—C8 | 1.506 (5) |
C7—H71 | 0.955 | C8—H81 | 0.949 |
C7—H72 | 0.952 | C8—H82 | 0.955 |
C7—H73 | 0.955 | C8—H83 | 0.956 |
C7—H74 | 0.953 | C8—H84 | 0.956 |
C7—H75 | 0.954 | C8—H85 | 0.953 |
C7—H76 | 0.957 | C8—H86 | 0.952 |
Br21—C2—C3 | 117.4 (3) | Br661—C66—C55 | 116.6 (3) |
Br21—C2—C1 | 118.9 (3) | Br661—C66—C11 | 120.5 (3) |
C3—C2—C1 | 123.7 (3) | C55—C66—C11 | 122.9 (3) |
C2—C3—C4 | 117.9 (4) | C66—C55—C44 | 117.5 (3) |
C2—C3—H31 | 121.1 | C66—C55—H551 | 121.3 |
C4—C3—H31 | 121.1 | C44—C55—H551 | 121.2 |
C3—C4—N4 | 119.0 (4) | C55—C44—N44 | 118.9 (3) |
C3—C4—C5 | 122.0 (3) | C55—C44—C33 | 122.8 (3) |
N4—C4—C5 | 119.0 (4) | N44—C44—C33 | 118.3 (3) |
C4—N4—O41 | 117.6 (4) | C44—N44—O441 | 118.1 (3) |
C4—N4—O42 | 118.1 (4) | C44—N44—O442 | 117.8 (3) |
O41—N4—O42 | 124.3 (4) | O441—N44—O442 | 124.1 (3) |
C4—C5—C6 | 118.2 (3) | C44—C33—C22 | 117.7 (3) |
C4—C5—H51 | 121.0 | C44—C33—H331 | 121.2 |
C6—C5—H51 | 120.8 | C22—C33—H331 | 121.1 |
C5—C6—C1 | 123.6 (3) | C33—C22—C11 | 123.0 (3) |
C5—C6—Br61 | 116.9 (3) | C33—C22—Br221 | 116.9 (3) |
C1—C6—Br61 | 119.5 (3) | C11—C22—Br221 | 120.2 (3) |
C2—C1—C6 | 114.7 (3) | C22—C11—C66 | 116.2 (3) |
C2—C1—C7 | 122.4 (3) | C22—C11—C8 | 121.8 (3) |
C6—C1—C7 | 122.9 (3) | C66—C11—C8 | 122.0 (3) |
C1—C7—H71 | 109.9 | C11—C8—H81 | 110.3 |
C1—C7—H72 | 110.3 | C11—C8—H82 | 109.9 |
H71—C7—H72 | 108.9 | H81—C8—H82 | 109.1 |
C1—C7—H73 | 110.1 | C11—C8—H83 | 110.0 |
H71—C7—H73 | 108.7 | H81—C8—H83 | 109.0 |
H72—C7—H73 | 108.9 | H82—C8—H83 | 108.5 |
C1—C7—H74 | 110.3 | C11—C8—H84 | 109.9 |
H71—C7—H74 | 139.8 | H81—C8—H84 | 139.9 |
H72—C7—H74 | 57.0 | H82—C8—H84 | 55.2 |
H73—C7—H74 | 55.1 | H83—C8—H84 | 56.4 |
C1—C7—H75 | 110.1 | C11—C8—H85 | 110.1 |
H71—C7—H75 | 56.8 | H81—C8—H85 | 55.6 |
H72—C7—H75 | 55.3 | H82—C8—H85 | 56.8 |
H73—C7—H75 | 139.8 | H83—C8—H85 | 139.9 |
H74—C7—H75 | 109.1 | H84—C8—H85 | 108.8 |
C1—C7—H76 | 109.9 | C11—C8—H86 | 110.2 |
H71—C7—H76 | 54.8 | H81—C8—H86 | 56.7 |
H72—C7—H76 | 139.8 | H82—C8—H86 | 139.9 |
H73—C7—H76 | 57.0 | H83—C8—H86 | 55.5 |
H74—C7—H76 | 108.9 | H84—C8—H86 | 108.8 |
H75—C7—H76 | 108.5 | H85—C8—H86 | 109.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
C55—H551···Br21i | 0.96 | 2.92 | 3.799 (5) | 153 |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C55—H551···Br21i | 0.96 | 2.92 | 3.799 (5) | 153 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H5Br2NO2 |
Mr | 294.93 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 8.755 (5), 9.533 (5), 10.897 (5) |
α, β, γ (°) | 91.324 (5), 90.517 (5), 103.216 (5) |
V (Å3) | 885.1 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.12 |
Crystal size (mm) | 0.34 × 0.21 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.116, 0.335 |
No. of measured, independent and observed [I > 3.0σ(I)] reflections | 8470, 4040, 3256 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.053, 0.85 |
No. of reflections | 3064 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.48 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2003 (Burla et al., 2005), CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2008), CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).
Acknowledgements
We would like to thank the Centre de Diffractométrie de l'Université de Rennes 1 for the opportunity to collect data.
References
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bosch, E. & Barnes, C. L. (2002). Cryst. Growth Des. 2, 299–302. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Saeed, A., Rafique, H., Simpson, J. & Ashraf, Z. (2010). Acta Cryst. E66, o982–o983. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.