organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 4-(4-chloro­phen­yl)-5-cyano-2-methyl-6-sulfanyl­idene­-1,6-di­hydro­pyridine-3-carboxyl­ate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 March 2016; accepted 29 March 2016; online 5 April 2016)

In the title compound, C16H13ClN2O2S, the dihedral angle between the 4-chloro­phenyl ring and the pyridine ring is 63.53 (6)°. There is an intra­molecular C—H⋯O contact present. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming slabs parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine scaffold compounds continue to attract great inter­est due to their wide variety of inter­esting biological activities. They exhibit anti­cancer, analgesic, anti­microbial and anti­depressant activities (Kumar et al., 2011[Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv. 2, 71-78.]). In addition, pyridines are used in the pharmaceutical industry as raw materials for various drugs, vitamins and fungicides (Kumar et al., 2011[Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv. 2, 71-78.]). These facts promoted us to synthesize and determine the crystal structure of the title compound.

In the title compound, Fig. 1[link], the pyridine and chloro­benzene rings make a dihedral angle of 63.53 (8)° with each other. The C3—C4—C14—O1, C3—C4—C14—O2, C4—C14—O2—C15 and C14—O2—C15—C16 torsion angles are −133.26 (19), 47.2 (2), 179.63 (13) and 88.8 (2)°, respectively. The conformation of the mol­ecule is partially determined by a weak intra­molecular C6—H6A⋯O1 contact (Table 1[link]). In the crystal, pairwise N—H⋯S hydrogen bonds link the mol­ecules to form inversion dimers which further associate via C—H⋯O and C—H⋯N hydrogen bonds, forming slabs parallel to the ab plane (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.91 2.40 3.2911 (14) 166
C6—H6A⋯O1 0.98 2.36 3.047 (2) 127
C6—H6B⋯N2ii 0.98 2.45 3.305 (2) 145
C15—H15B⋯O1iii 0.99 2.41 3.327 (2) 153
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x+1, y-1, z; (iii) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and 50% probability ellipsoids.
[Figure 2]
Figure 2
The crystal packing of the title compound projected onto ([\overline{1}]10), with the hydrogen bonds shown as blue and black dashed lines (see Table 1[link]).

Synthesis and crystallization

To a mixture of 4-chloro­benzyl­idene­cyano­thio­acetamide (2.22 g, 10 mmol) and ethyl aceto­acetate (1.3 ml, 10 mmol) in ethanol (35 ml), three drops of piperidine were added. The resulting mixture was heated under reflux for 3 h and then allowed to stand overnight. The solid that separated was collected and recrystallized from ethanol as orange plates of the title compound (yield: 64%; m.p. 528 K). IR (KBr, cm−1) ν = 3200 (NH), 2220 (C N), 1700 (C=O). 1H NMR (DMSO-d6, p.p.m.): δ 13.6 (s, 1H, NH), 7.4–7.8 (dd, 4H, ArH), 3.8–4.1(q, 2H, OCH2), 2.6 (s, 3H, CH3 at C-6), 0.8–1.0 (t, 3H, CH3)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H13ClN2O2S
Mr 332.79
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 5.9498 (2), 8.0999 (2), 16.3919 (4)
α, β, γ (°) 85.990 (1), 81.410 (1), 82.294 (1)
V3) 773.05 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.52
Crystal size (mm) 0.25 × 0.20 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.])
Tmin, Tmax 0.69, 0.90
No. of measured, independent and observed [I > 2σ(I)] reflections 5834, 2833, 2591
Rint 0.027
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.05
No. of reflections 2833
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.37
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

To a mixture of 4-chlorobenzylidenecyanothioacetamide (2.22 g, 10 mmol) and ethyl acetoacetate (1.3 ml, 10 mmol) in ethanol (35 ml), three drops of piperidine were added. The resulting mixture was heated under reflux for 3 h and then allowed to stand overnight. The solid that separated was collected and recrystallized from ethanol as orange plates of the title compound (yield: 64%; m.p. 528 K). IR (KBr, cm-1) ν = 3200 (NH), 2220 (CN), 1700 (C O). 1H NMR (DMSO-d6, p.p.m.): δ 13.6 (s, 1H, NH), 7.4–7.8 (dd, 4H, ArH), 3.8–4.1(q, 2H, OCH2), 2.6 (s, 3H, CH3 at C-6), 0.8–1.0 (t, 3H, CH3)

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Pyridine scaffold compounds continue to attract great interest due to their wide variety of interesting biological activities. They exhibit anticancer, analgesic, antimicrobial and antidepressant activities (Kumar et al., 2011). In addition, pyridines are used in the pharmaceutical industry as raw materials for various drugs, vitamins and fungicides (Kumar et al., 2011). These facts promoted us to synthesize and determine the crystal structure of the title compound.

In the title compound, Fig. 1, the pyridine and chlorobenzene rings make a dihedral angle of 63.53 (8)° with each other. The C3—C4—C14—O1, C3—C4—C14—O2, C4—C14—O2—C15 and C14—O2—C15—C16 torsion angles are -133.26 (19), 47.2 (2), 179.63 (13) and 88.8 (2)°, respectively. The conformation of the molecule is partially determined by a weak intramolecular C6—H6A···O1 contact (Table 1). In the crystal, pairwise N—H···S hydrogen bonds link the molecules to form inversion dimers which further associate via C—H···O and C—H···N hydrogen bonds, forming slabs parallel to the ab plane (Fig. 2 and Table 1).

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling and 50% probability ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound projected onto (110), with the hydrogen bonds shown as blue and black dashed lines (see Table 1).
Ethyl 4-(4-chlorophenyl)-5-cyano-2-methyl-6-sulfanylidene-1,6-dihydropyridine-3-carboxylate top
Crystal data top
C16H13ClN2O2SZ = 2
Mr = 332.79F(000) = 344
Triclinic, P1Dx = 1.430 Mg m3
a = 5.9498 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.0999 (2) ÅCell parameters from 4687 reflections
c = 16.3919 (4) Åθ = 2.7–72.1°
α = 85.990 (1)°µ = 3.52 mm1
β = 81.410 (1)°T = 150 K
γ = 82.294 (1)°Plate, yellow
V = 773.05 (4) Å30.25 × 0.20 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2833 independent reflections
Radiation source: INCOATEC IµS micro–focus source2591 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 72.1°, θmin = 2.7°
ω scansh = 76
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 99
Tmin = 0.69, Tmax = 0.90l = 2019
5834 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.2083P]
where P = (Fo2 + 2Fc2)/3
2833 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H13ClN2O2Sγ = 82.294 (1)°
Mr = 332.79V = 773.05 (4) Å3
Triclinic, P1Z = 2
a = 5.9498 (2) ÅCu Kα radiation
b = 8.0999 (2) ŵ = 3.52 mm1
c = 16.3919 (4) ÅT = 150 K
α = 85.990 (1)°0.25 × 0.20 × 0.03 mm
β = 81.410 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2833 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
2591 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.90Rint = 0.027
5834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
2833 reflectionsΔρmin = 0.37 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while that attached to nitrogen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09171 (9)0.76572 (7)0.95570 (3)0.04561 (17)
S11.25779 (7)0.71159 (5)0.50649 (2)0.02518 (14)
O10.9605 (2)0.10792 (18)0.79003 (9)0.0391 (3)
O20.6182 (2)0.21882 (14)0.75633 (7)0.0241 (3)
N11.2163 (2)0.41120 (16)0.58006 (8)0.0217 (3)
H11.35130.38210.54730.032*
N20.7694 (3)0.93321 (19)0.63377 (11)0.0366 (4)
C11.1310 (3)0.5763 (2)0.57500 (10)0.0211 (3)
C20.9336 (3)0.62163 (19)0.63293 (10)0.0210 (3)
C30.8416 (3)0.5079 (2)0.69179 (10)0.0210 (3)
C40.9405 (3)0.3390 (2)0.69120 (10)0.0216 (3)
C51.1289 (3)0.2924 (2)0.63341 (10)0.0225 (3)
C61.2464 (3)0.1199 (2)0.61975 (12)0.0283 (4)
H6A1.17750.04200.66160.042*
H6B1.40950.11630.62410.042*
H6C1.22940.08810.56460.042*
C70.8412 (3)0.7947 (2)0.63293 (10)0.0242 (4)
C80.6520 (3)0.56935 (19)0.75689 (10)0.0215 (3)
C90.6899 (3)0.5590 (2)0.83914 (10)0.0257 (4)
H90.83300.50810.85350.031*
C100.5192 (3)0.6227 (2)0.90009 (11)0.0298 (4)
H100.54600.61860.95590.036*
C110.3092 (3)0.6923 (2)0.87861 (11)0.0287 (4)
C120.2688 (3)0.7062 (2)0.79737 (11)0.0290 (4)
H120.12480.75650.78350.035*
C130.4419 (3)0.6454 (2)0.73635 (10)0.0251 (4)
H130.41700.65570.68020.030*
C140.8448 (3)0.2090 (2)0.75146 (10)0.0246 (4)
C150.5085 (3)0.0965 (2)0.81314 (11)0.0287 (4)
H15A0.61400.00880.81500.034*
H15B0.36840.07240.79280.034*
C160.4470 (5)0.1599 (3)0.89807 (13)0.0514 (6)
H16A0.36880.07770.93450.077*
H16B0.34530.26530.89600.077*
H16C0.58660.17810.91940.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0386 (3)0.0553 (3)0.0385 (3)0.0061 (2)0.0172 (2)0.0194 (2)
S10.0246 (2)0.0228 (2)0.0251 (2)0.00264 (15)0.00473 (17)0.00094 (15)
O10.0257 (7)0.0429 (8)0.0452 (8)0.0029 (5)0.0042 (6)0.0177 (6)
O20.0204 (6)0.0236 (6)0.0274 (6)0.0048 (4)0.0009 (5)0.0001 (5)
N10.0190 (7)0.0217 (7)0.0228 (7)0.0020 (5)0.0020 (6)0.0028 (5)
N20.0318 (9)0.0269 (8)0.0459 (10)0.0004 (6)0.0076 (7)0.0016 (7)
C10.0209 (8)0.0221 (8)0.0205 (7)0.0027 (6)0.0026 (6)0.0037 (6)
C20.0211 (8)0.0206 (8)0.0210 (7)0.0022 (6)0.0013 (6)0.0042 (6)
C30.0185 (8)0.0262 (8)0.0186 (7)0.0035 (6)0.0020 (6)0.0036 (6)
C40.0197 (8)0.0230 (8)0.0221 (7)0.0035 (6)0.0019 (6)0.0015 (6)
C50.0208 (8)0.0229 (8)0.0236 (8)0.0038 (6)0.0015 (7)0.0017 (6)
C60.0262 (9)0.0206 (8)0.0348 (9)0.0003 (6)0.0036 (7)0.0008 (7)
C70.0218 (9)0.0247 (9)0.0241 (8)0.0025 (6)0.0034 (7)0.0023 (6)
C80.0227 (8)0.0205 (8)0.0209 (8)0.0055 (6)0.0015 (6)0.0035 (6)
C90.0283 (9)0.0258 (8)0.0223 (8)0.0028 (6)0.0016 (7)0.0022 (6)
C100.0380 (10)0.0310 (9)0.0200 (8)0.0087 (7)0.0020 (7)0.0036 (7)
C110.0293 (10)0.0279 (9)0.0268 (8)0.0072 (7)0.0100 (7)0.0093 (7)
C120.0236 (9)0.0287 (9)0.0337 (9)0.0031 (6)0.0010 (7)0.0050 (7)
C130.0234 (9)0.0295 (9)0.0225 (8)0.0052 (6)0.0000 (7)0.0044 (6)
C140.0225 (9)0.0245 (8)0.0257 (8)0.0036 (6)0.0006 (7)0.0011 (6)
C150.0272 (9)0.0279 (9)0.0305 (9)0.0113 (7)0.0037 (7)0.0007 (7)
C160.0672 (16)0.0527 (13)0.0337 (11)0.0275 (12)0.0154 (11)0.0070 (10)
Geometric parameters (Å, º) top
Cl1—C111.7422 (17)C6—H6B0.9800
S1—C11.6814 (17)C6—H6C0.9800
O1—C141.204 (2)C8—C131.395 (2)
O2—C141.331 (2)C8—C91.395 (2)
O2—C151.4620 (19)C9—C101.387 (3)
N1—C51.357 (2)C9—H90.9500
N1—C11.367 (2)C10—C111.385 (3)
N1—H10.9099C10—H100.9500
N2—C71.146 (2)C11—C121.383 (3)
C1—C21.420 (2)C12—C131.389 (3)
C2—C31.390 (2)C12—H120.9500
C2—C71.435 (2)C13—H130.9500
C3—C41.415 (2)C15—C161.494 (3)
C3—C81.491 (2)C15—H15A0.9900
C4—C51.384 (2)C15—H15B0.9900
C4—C141.502 (2)C16—H16A0.9800
C5—C61.492 (2)C16—H16B0.9800
C6—H6A0.9800C16—H16C0.9800
C14—O2—C15115.95 (13)C10—C9—H9119.9
C5—N1—C1126.21 (14)C8—C9—H9119.9
C5—N1—H1118.0C11—C10—C9119.25 (16)
C1—N1—H1115.5C11—C10—H10120.4
N1—C1—C2114.40 (14)C9—C10—H10120.4
N1—C1—S1121.52 (13)C12—C11—C10121.55 (17)
C2—C1—S1124.07 (12)C12—C11—Cl1119.24 (15)
C3—C2—C1122.33 (14)C10—C11—Cl1119.20 (14)
C3—C2—C7120.41 (15)C11—C12—C13118.94 (17)
C1—C2—C7117.08 (14)C11—C12—H12120.5
C2—C3—C4118.89 (14)C13—C12—H12120.5
C2—C3—C8119.03 (14)C12—C13—C8120.49 (16)
C4—C3—C8121.95 (14)C12—C13—H13119.8
C5—C4—C3119.21 (15)C8—C13—H13119.8
C5—C4—C14119.27 (14)O1—C14—O2124.50 (16)
C3—C4—C14121.52 (14)O1—C14—C4123.73 (16)
N1—C5—C4118.84 (15)O2—C14—C4111.76 (13)
N1—C5—C6114.21 (14)O2—C15—C16110.94 (14)
C4—C5—C6126.90 (15)O2—C15—H15A109.5
C5—C6—H6A109.5C16—C15—H15A109.5
C5—C6—H6B109.5O2—C15—H15B109.5
H6A—C6—H6B109.5C16—C15—H15B109.5
C5—C6—H6C109.5H15A—C15—H15B108.0
H6A—C6—H6C109.5C15—C16—H16A109.5
H6B—C6—H6C109.5C15—C16—H16B109.5
N2—C7—C2179.0 (2)H16A—C16—H16B109.5
C13—C8—C9119.50 (16)C15—C16—H16C109.5
C13—C8—C3121.05 (14)H16A—C16—H16C109.5
C9—C8—C3119.35 (15)H16B—C16—H16C109.5
C10—C9—C8120.20 (17)
C5—N1—C1—C20.7 (2)C4—C3—C8—C13121.73 (17)
C5—N1—C1—S1179.31 (12)C2—C3—C8—C9114.02 (17)
N1—C1—C2—C32.4 (2)C4—C3—C8—C961.9 (2)
S1—C1—C2—C3176.18 (12)C13—C8—C9—C100.5 (2)
N1—C1—C2—C7177.60 (14)C3—C8—C9—C10176.94 (15)
S1—C1—C2—C71.0 (2)C8—C9—C10—C111.8 (3)
C1—C2—C3—C43.5 (2)C9—C10—C11—C122.7 (3)
C7—C2—C3—C4178.47 (14)C9—C10—C11—Cl1177.79 (13)
C1—C2—C3—C8172.56 (14)C10—C11—C12—C131.4 (3)
C7—C2—C3—C82.4 (2)Cl1—C11—C12—C13179.14 (13)
C2—C3—C4—C51.4 (2)C11—C12—C13—C80.9 (3)
C8—C3—C4—C5174.47 (14)C9—C8—C13—C121.9 (2)
C2—C3—C4—C14178.12 (14)C3—C8—C13—C12178.24 (15)
C8—C3—C4—C146.0 (2)C15—O2—C14—O10.1 (2)
C1—N1—C5—C42.6 (2)C15—O2—C14—C4179.63 (13)
C1—N1—C5—C6174.96 (15)C5—C4—C14—O147.2 (2)
C3—C4—C5—N11.4 (2)C3—C4—C14—O1133.26 (19)
C14—C4—C5—N1179.01 (14)C5—C4—C14—O2132.40 (16)
C3—C4—C5—C6175.77 (15)C3—C4—C14—O247.2 (2)
C14—C4—C5—C63.8 (3)C14—O2—C15—C1688.8 (2)
C2—C3—C8—C1362.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.912.403.2911 (14)166
C6—H6A···O10.982.363.047 (2)127
C6—H6B···N2ii0.982.453.305 (2)145
C15—H15B···O1iii0.992.413.327 (2)153
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+1, y1, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.912.403.2911 (14)166
C6—H6A···O10.982.363.047 (2)127
C6—H6B···N2ii0.982.453.305 (2)145
C15—H15B···O1iii0.992.413.327 (2)153
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+1, y1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13ClN2O2S
Mr332.79
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.9498 (2), 8.0999 (2), 16.3919 (4)
α, β, γ (°)85.990 (1), 81.410 (1), 82.294 (1)
V3)773.05 (4)
Z2
Radiation typeCu Kα
µ (mm1)3.52
Crystal size (mm)0.25 × 0.20 × 0.03
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.69, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
5834, 2833, 2591
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.05
No. of reflections2833
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.37

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.  Google Scholar
First citationKumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv. 2, 71–78.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds