organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Benzoyl-2-(1H-indol-3-yl)-4-(naphthalen-2-yl)-1H-pyrrole-3-carbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 March 2016; accepted 29 March 2016; online 12 April 2016)

In the title compound, C30H19N3O, the indole and the naphthalene ring systems are inclined to the central pyrrole ring (r.m.s. deviation = 0.012 Å) by 29.09 (9) and 49.92 (9)°, respectively. The naphthalene ring system and the indole ring are inclined to one another by 73.57 (6) and by 42.58 (10) and 74.12 (10)°, respectively, to the benzoyl ring. In the crystal, mol­ecules are linked by pairs of Np—H⋯O (p = pyrrole) hydrogen bonds, forming inversion dimers with R22(10) loops. These dimers are linked via pairs of Ni—H⋯Nc (i = indole and c = carbo­nitrile) hydrogen bonds, enclosing R22(16) loops, which leads to the formation of chains propagating in [101]. The chains are linked by C—H⋯π inter­actions, forming slabs lying parallel to (10-1).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole derivatives exhibit anti­bacterial, anti­fungal (Singh et al. 2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]), anti­tumor (Andreani et al., 2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]), anti­hepatitis B virus (Chai et al., 2006[Chai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]) and anti-inflammatory (Rodriguez et al., 1985[Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3823.]) activities. Some of the indole alkaloids extracted from plants possess inter­esting cytotoxic and anti­parasitic properties (Quetin-Leclercq, 1994[Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.]). They are also used as bioactive drugs (Stevenson et al., 2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2699.]) and have also been shown to display high aldose reductase inhibitory (Rajeswaran et al., 1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]) and anti­microbial activities (Amal Raj et al., 2003[Amal Raj, A., Raghunathan, R., Sridevikumar, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]). As part of our studies of this family of compounds, we synthesized the title indole derivative and report herein on its crystal structure.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The five-membered central pyrrole ring (N2/C2–C5; r.m.s. deviation = 0.012 Å) makes dihedral angles of 29.09 (9) and 45.92 (9)° with the indole ring (N3/C23–C30) and the naphthalene ring system (C6–C15), respectively. The naphthalene ring system and the benzoyl ring (C17–C22) are inclined to the indole ring by 73.57 (6) and 74.12 (10)°, respectively. The bond lengths and bond angles are similar to those for reported similar structures (Vimala et al., 2015[Vimala, G., Raja, J. K., Naaz, Y. A., Preumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o335-o336.]; Inglebert et al., 2013[Inglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1585.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.

In the crystal, mol­ecules are linked by pairs of Np—H⋯O (p = pyrrole) hydrogen bonds, forming inversion dimers with [R_{2}^{2}](10) loops (Table 1[link] and Fig. 2[link]). These dimers are linked via pairs of Ni—H⋯Nc (i = indole and c = carbo­nitrile) hydrogen bonds, enclosing [R_{2}^{2}](16) loops, which leads to the formation of chains propagating in [101]; see Table 1[link] and Fig. 2[link]. The chains are linked by C—H⋯π inter­actions (Table 1[link]), forming slabs lying parallel to (10[\overline{1}]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg4 and Cg6 are the centroids of rings C6–C9/C14/C15, C9–C14 and C25–C30, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.15 2.875 (2) 141
N3—H3⋯N1ii 0.86 2.27 3.023 (3) 147
C22—H22⋯Cg6i 0.93 2.58 3.456 (2) 158
C26—H26⋯Cg4iii 0.93 2.98 3.784 (2) 146
C27—H27⋯Cg3iii 0.93 2.74 3.555 (2) 147
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1; (iii) x, y+1, z.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

To a stirred mixture of 2-naphthaldehyde 1 (1.0 mmol), 3-cyano­acetyl­indole 2 (1.0 mmol) and phenacyl­azide 3 (1.0 mmol) in water (3 ml), piperidine (0.25 mmol) was added at 353 K. The turbid solution slowly turned into a clear solution, followed by the formation of a solid after 2 h. After completion of the reaction, as indicated by TLC, the solid was filtered and washed with a petroleum ether–EtOAc mixture (1:1 ratio, v/v, 5 ml) to give the pure compound (as confirmed by TLC, NMR and mass spectroscopy). The compound was recrystallized from ethanol solution by slow evaporation, giving yellow block-like crystals of the title compound (yield 86%).

Refinement

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C30H19N3O
Mr 437.48
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.2688 (4), 10.5322 (4), 11.2934 (4)
α, β, γ (°) 111.720 (2), 93.883 (2), 91.653 (3)
V3) 1130.18 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.984, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 25456, 3992, 2997
Rint 0.030
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.129, 0.74
No. of reflections 3950
No. of parameters 307
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.20
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

To a stirred mixture of 2-naphthaldehyde 1 (1.0 mmol), 3-cyanoacetylindole 2 (1.0 mmol) and phenacylazide 3 (1.0 mmol) in water (3 ml), piperidine (0.25 mmol) was added at 353 K. The turbid solution slowly turned into a clear solution, followed by the formation of a solid after 2 h. After completion of the reaction, as indicated by TLC, the solid was filtered and washed with a petroleum ether–EtOAc mixture (1:1 ratio, v/v, 5 ml) to give a pure compound. This pure compound was recrystallized from ethanol by slow evaporation giving yellow block-like crystals of the title compound (yield 86%).

Refinement top

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2.

Structure description top

Indole derivatives exhibit antibacterial, antifungal (Singh et al. 2000), antitumor (Andreani et al., 2001), antihepatitis B virus (Chai et al., 2006) and anti-inflammatory (Rodriguez et al., 1985) activities. Some of the indole alkaloids extracted from plants possess interesting cytotoxic and antiparasitic properties (Quetin-Leclercq, 1994). They are also used as bioactive drugs (Stevenson et al., 2000) and have also been shown to display high aldose reductase inhibitory (Rajeswaran et al., 1999) and antimicrobial activities (Amal Raj et al., 2003). In view of the importance of such compounds, we synthesized the title indole derivative and report herein on its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The five-membered central pyrrole ring (N2/C2–C5; r.m.s. deviation = 0.012 Å) makes dihedral angles of 29.09 (9) and 45.92 (9)° with the indole ring (N3/C23–C30) and the naphthalene ring system (C6–C15), respectively. The naphthalene ring system and the benzoyl ring (C17–C22) are inclined to the indole ring by 73.57 (6) and 74.12 (10)°, respectively. The bond lengths and bond angles are similar to those for reported similar structures (Vimala et al., 2015; Inglebert et al., 2013).

In the crystal, molecules are linked by pairs of Np—H···O (p = pyrrole) hydrogen bonds, forming inversion dimers with R22(10) loops (Table 1 and Fig. 2). These dimers are linked via pairs of Ni—H···Nc (i = indole and c = carbonitrile) hydrogen bonds, enclosing R22(16) loops, which leads to the formation of chains propagating in [101]; see Table 1 and Fig. 2. The chains are linked by C—H···π interactions (Table 1), forming slabs lying parallel to (101).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.
5-Benzoyl-2-(1H-indol-3-yl)-4-(naphthalen-2-yl)-1H-pyrrole-3-carbonitrile top
Crystal data top
C30H19N3OZ = 2
Mr = 437.48F(000) = 456
Triclinic, P1Dx = 1.285 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2688 (4) ÅCell parameters from 2997 reflections
b = 10.5322 (4) Åθ = 2.0–25.0°
c = 11.2934 (4) ŵ = 0.08 mm1
α = 111.720 (2)°T = 293 K
β = 93.883 (2)°Block, yellow
γ = 91.653 (3)°0.30 × 0.25 × 0.20 mm
V = 1130.18 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3992 independent reflections
Radiation source: fine-focus sealed tube2997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.984, Tmax = 0.987k = 1212
25456 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.74 w = 1/[σ2(Fo2) + (0.0737P)2 + 1.3759P]
where P = (Fo2 + 2Fc2)/3
3950 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C30H19N3Oγ = 91.653 (3)°
Mr = 437.48V = 1130.18 (7) Å3
Triclinic, P1Z = 2
a = 10.2688 (4) ÅMo Kα radiation
b = 10.5322 (4) ŵ = 0.08 mm1
c = 11.2934 (4) ÅT = 293 K
α = 111.720 (2)°0.30 × 0.25 × 0.20 mm
β = 93.883 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3992 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2997 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.030
25456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.74Δρmax = 0.15 e Å3
3950 reflectionsΔρmin = 0.19 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.06088 (15)0.00372 (16)0.19168 (15)0.0361 (4)
H20.05500.04830.14840.043*
C60.04251 (18)0.29361 (19)0.27603 (18)0.0344 (4)
C160.14783 (18)0.12464 (19)0.09442 (17)0.0341 (4)
O10.14205 (14)0.08637 (15)0.00453 (13)0.0473 (4)
C150.08017 (18)0.40765 (19)0.17018 (18)0.0355 (4)
H150.07280.40490.08950.043*
C30.16176 (18)0.00371 (19)0.27732 (17)0.0343 (4)
C40.03160 (18)0.10523 (19)0.18232 (17)0.0340 (4)
C170.27269 (18)0.18422 (19)0.11539 (18)0.0360 (4)
C140.12994 (18)0.52944 (19)0.1799 (2)0.0383 (5)
C50.01315 (18)0.16945 (19)0.26318 (17)0.0338 (4)
C240.27135 (18)0.10241 (19)0.30757 (18)0.0363 (4)
C70.0546 (2)0.2977 (2)0.39845 (19)0.0446 (5)
H70.02930.22080.47120.054*
C20.13406 (18)0.09886 (19)0.32411 (18)0.0360 (4)
C250.27433 (18)0.23655 (19)0.30202 (17)0.0335 (4)
N30.47408 (17)0.19722 (19)0.36922 (18)0.0511 (5)
H30.55580.20720.39510.061*
C10.2157 (2)0.1277 (2)0.4167 (2)0.0413 (5)
C260.18131 (19)0.3171 (2)0.27229 (19)0.0392 (5)
H260.09530.28310.24560.047*
C90.1415 (2)0.5319 (2)0.3034 (2)0.0435 (5)
C180.3052 (2)0.1726 (2)0.2361 (2)0.0437 (5)
H180.24810.12610.30770.052*
N10.2814 (2)0.1508 (2)0.4910 (2)0.0592 (5)
C270.2193 (2)0.4470 (2)0.2832 (2)0.0476 (5)
H270.15750.50170.26540.057*
C80.1029 (2)0.4134 (2)0.4105 (2)0.0504 (6)
H80.11060.41410.49190.061*
C290.4423 (2)0.4229 (2)0.3486 (2)0.0473 (5)
H290.52870.45710.37180.057*
C100.1894 (2)0.6545 (2)0.3141 (3)0.0583 (6)
H100.19730.65720.39470.070*
C280.3479 (2)0.4990 (2)0.3203 (2)0.0508 (6)
H280.37030.58740.32600.061*
C300.40339 (19)0.2926 (2)0.34107 (18)0.0393 (5)
C130.1667 (2)0.6492 (2)0.0723 (2)0.0520 (6)
H130.16000.64910.00940.062*
C230.3952 (2)0.0853 (2)0.3500 (2)0.0489 (5)
H230.42130.00760.36360.059*
C220.3603 (2)0.2515 (2)0.0105 (2)0.0505 (6)
H220.34040.25720.07040.061*
C120.2121 (2)0.7655 (2)0.0868 (3)0.0656 (7)
H120.23560.84400.01500.079*
C110.2235 (3)0.7672 (3)0.2089 (3)0.0685 (8)
H110.25490.84680.21760.082*
C200.5076 (3)0.2994 (3)0.1439 (3)0.0733 (8)
H200.58640.33910.15340.088*
C210.4763 (2)0.3098 (3)0.0249 (3)0.0678 (7)
H210.53390.35650.04630.081*
C190.4231 (2)0.2306 (3)0.2493 (2)0.0604 (7)
H190.44510.22300.33000.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0379 (9)0.0380 (9)0.0386 (9)0.0036 (7)0.0047 (7)0.0233 (7)
C60.0350 (10)0.0348 (10)0.0377 (10)0.0054 (8)0.0028 (8)0.0185 (8)
C160.0392 (10)0.0321 (10)0.0327 (10)0.0004 (8)0.0024 (8)0.0150 (8)
O10.0489 (8)0.0579 (9)0.0435 (8)0.0119 (7)0.0089 (7)0.0317 (7)
C150.0354 (10)0.0391 (10)0.0365 (10)0.0043 (8)0.0038 (8)0.0189 (9)
C30.0341 (10)0.0356 (10)0.0354 (10)0.0033 (8)0.0013 (8)0.0164 (8)
C40.0376 (10)0.0339 (10)0.0330 (10)0.0030 (8)0.0012 (8)0.0164 (8)
C170.0352 (10)0.0365 (10)0.0388 (11)0.0021 (8)0.0003 (8)0.0174 (8)
C140.0317 (10)0.0359 (10)0.0496 (12)0.0060 (8)0.0061 (8)0.0177 (9)
C50.0380 (10)0.0332 (10)0.0319 (10)0.0038 (8)0.0008 (8)0.0143 (8)
C240.0360 (10)0.0366 (10)0.0374 (10)0.0008 (8)0.0046 (8)0.0167 (8)
C70.0588 (13)0.0416 (11)0.0358 (11)0.0025 (10)0.0037 (9)0.0174 (9)
C20.0386 (10)0.0357 (10)0.0368 (10)0.0033 (8)0.0032 (8)0.0180 (8)
C250.0346 (10)0.0365 (10)0.0291 (9)0.0001 (8)0.0005 (8)0.0123 (8)
N30.0321 (9)0.0598 (12)0.0661 (12)0.0051 (8)0.0136 (8)0.0327 (10)
C10.0444 (11)0.0356 (11)0.0456 (12)0.0014 (9)0.0068 (9)0.0193 (9)
C260.0372 (10)0.0402 (11)0.0412 (11)0.0040 (8)0.0034 (8)0.0163 (9)
C90.0405 (11)0.0425 (11)0.0578 (13)0.0087 (9)0.0132 (10)0.0286 (10)
C180.0432 (11)0.0498 (12)0.0406 (11)0.0073 (9)0.0041 (9)0.0193 (10)
N10.0602 (12)0.0602 (12)0.0643 (13)0.0040 (10)0.0216 (10)0.0367 (11)
C270.0523 (13)0.0419 (12)0.0541 (13)0.0113 (10)0.0090 (10)0.0227 (10)
C80.0635 (14)0.0553 (14)0.0441 (12)0.0081 (11)0.0148 (10)0.0300 (11)
C290.0466 (12)0.0480 (12)0.0432 (12)0.0134 (10)0.0038 (9)0.0148 (10)
C100.0570 (14)0.0509 (14)0.0846 (18)0.0086 (11)0.0245 (13)0.0420 (14)
C280.0644 (15)0.0377 (11)0.0506 (13)0.0038 (10)0.0070 (11)0.0169 (10)
C300.0367 (10)0.0457 (11)0.0343 (10)0.0027 (9)0.0044 (8)0.0150 (9)
C130.0484 (13)0.0434 (12)0.0594 (14)0.0002 (10)0.0088 (11)0.0131 (11)
C230.0427 (12)0.0496 (13)0.0610 (14)0.0005 (10)0.0097 (10)0.0309 (11)
C220.0424 (12)0.0665 (15)0.0430 (12)0.0084 (10)0.0010 (9)0.0225 (11)
C120.0572 (15)0.0372 (13)0.093 (2)0.0017 (10)0.0140 (14)0.0127 (13)
C110.0607 (16)0.0431 (14)0.111 (2)0.0036 (11)0.0278 (15)0.0360 (15)
C200.0465 (14)0.101 (2)0.081 (2)0.0155 (14)0.0082 (13)0.0447 (17)
C210.0483 (14)0.090 (2)0.0606 (16)0.0231 (13)0.0077 (12)0.0264 (14)
C190.0531 (14)0.0819 (18)0.0583 (15)0.0076 (13)0.0189 (12)0.0376 (14)
Geometric parameters (Å, º) top
N2—C31.348 (2)C1—N11.141 (3)
N2—C41.378 (2)C26—C271.370 (3)
N2—H20.8600C26—H260.9300
C6—C151.367 (3)C9—C81.402 (3)
C6—C71.413 (3)C9—C101.417 (3)
C6—C51.472 (3)C18—C191.381 (3)
C16—O11.227 (2)C18—H180.9300
C16—C41.458 (3)C27—C281.391 (3)
C16—C171.483 (3)C27—H270.9300
C15—C141.412 (3)C8—H80.9300
C15—H150.9300C29—C281.370 (3)
C3—C21.397 (3)C29—C301.389 (3)
C3—C241.443 (3)C29—H290.9300
C4—C51.386 (3)C10—C111.349 (4)
C17—C221.383 (3)C10—H100.9300
C17—C181.388 (3)C28—H280.9300
C14—C131.409 (3)C13—C121.368 (3)
C14—C91.418 (3)C13—H130.9300
C5—C21.421 (3)C23—H230.9300
C24—C231.368 (3)C22—C211.372 (3)
C24—C251.437 (3)C22—H220.9300
C7—C81.360 (3)C12—C111.398 (4)
C7—H70.9300C12—H120.9300
C2—C11.421 (3)C11—H110.9300
C25—C261.400 (3)C20—C211.369 (4)
C25—C301.408 (3)C20—C191.371 (4)
N3—C231.351 (3)C20—H200.9300
N3—C301.372 (3)C21—H210.9300
N3—H30.8600C19—H190.9300
C3—N2—C4111.47 (15)C8—C9—C10122.5 (2)
C3—N2—H2124.3C14—C9—C10118.9 (2)
C4—N2—H2124.3C19—C18—C17119.6 (2)
C15—C6—C7118.99 (18)C19—C18—H18120.2
C15—C6—C5120.71 (17)C17—C18—H18120.2
C7—C6—C5120.28 (17)C26—C27—C28121.7 (2)
O1—C16—C4118.79 (17)C26—C27—H27119.2
O1—C16—C17120.14 (16)C28—C27—H27119.2
C4—C16—C17121.03 (16)C7—C8—C9121.70 (19)
C6—C15—C14121.82 (18)C7—C8—H8119.2
C6—C15—H15119.1C9—C8—H8119.2
C14—C15—H15119.1C28—C29—C30117.08 (19)
N2—C3—C2105.95 (16)C28—C29—H29121.5
N2—C3—C24123.18 (17)C30—C29—H29121.5
C2—C3—C24130.88 (17)C11—C10—C9120.9 (2)
N2—C4—C5107.75 (16)C11—C10—H10119.6
N2—C4—C16117.92 (16)C9—C10—H10119.6
C5—C4—C16134.31 (17)C29—C28—C27121.4 (2)
C22—C17—C18119.26 (19)C29—C28—H28119.3
C22—C17—C16118.33 (18)C27—C28—H28119.3
C18—C17—C16122.40 (17)N3—C30—C29129.86 (19)
C13—C14—C15122.87 (19)N3—C30—C25107.47 (17)
C13—C14—C9118.61 (19)C29—C30—C25122.67 (19)
C15—C14—C9118.52 (18)C12—C13—C14120.7 (2)
C4—C5—C2105.71 (16)C12—C13—H13119.7
C4—C5—C6128.48 (17)C14—C13—H13119.7
C2—C5—C6125.52 (16)N3—C23—C24110.37 (18)
C23—C24—C25106.17 (17)N3—C23—H23124.8
C23—C24—C3125.53 (18)C24—C23—H23124.8
C25—C24—C3128.29 (17)C21—C22—C17120.4 (2)
C8—C7—C6120.37 (19)C21—C22—H22119.8
C8—C7—H7119.8C17—C22—H22119.8
C6—C7—H7119.8C13—C12—C11120.4 (2)
C3—C2—C1124.81 (17)C13—C12—H12119.8
C3—C2—C5109.08 (16)C11—C12—H12119.8
C1—C2—C5126.10 (17)C10—C11—C12120.5 (2)
C26—C25—C30118.37 (18)C10—C11—H11119.7
C26—C25—C24134.94 (18)C12—C11—H11119.7
C30—C25—C24106.66 (16)C21—C20—C19120.1 (2)
C23—N3—C30109.33 (17)C21—C20—H20119.9
C23—N3—H3125.3C19—C20—H20119.9
C30—N3—H3125.3C20—C21—C22120.2 (2)
N1—C1—C2179.9 (3)C20—C21—H21119.9
C27—C26—C25118.76 (19)C22—C21—H21119.9
C27—C26—H26120.6C20—C19—C18120.4 (2)
C25—C26—H26120.6C20—C19—H19119.8
C8—C9—C14118.60 (18)C18—C19—H19119.8
C7—C6—C15—C140.4 (3)C3—C24—C25—C30179.78 (19)
C5—C6—C15—C14177.95 (17)C3—C2—C1—N138 (100)
C4—N2—C3—C20.8 (2)C5—C2—C1—N1141 (100)
C4—N2—C3—C24179.00 (17)C30—C25—C26—C270.4 (3)
C3—N2—C4—C51.7 (2)C24—C25—C26—C27176.9 (2)
C3—N2—C4—C16179.21 (17)C13—C14—C9—C8178.97 (19)
O1—C16—C4—N223.7 (3)C15—C14—C9—C80.1 (3)
C17—C16—C4—N2153.80 (17)C13—C14—C9—C100.1 (3)
O1—C16—C4—C5155.0 (2)C15—C14—C9—C10178.97 (18)
C17—C16—C4—C527.5 (3)C22—C17—C18—C191.3 (3)
O1—C16—C17—C2228.7 (3)C16—C17—C18—C19179.9 (2)
C4—C16—C17—C22153.85 (19)C25—C26—C27—C281.4 (3)
O1—C16—C17—C18150.2 (2)C6—C7—C8—C90.4 (3)
C4—C16—C17—C1827.3 (3)C14—C9—C8—C70.3 (3)
C6—C15—C14—C13178.58 (19)C10—C9—C8—C7178.5 (2)
C6—C15—C14—C90.4 (3)C8—C9—C10—C11178.9 (2)
N2—C4—C5—C21.9 (2)C14—C9—C10—C110.0 (3)
C16—C4—C5—C2179.3 (2)C30—C29—C28—C271.3 (3)
N2—C4—C5—C6172.21 (18)C26—C27—C28—C290.5 (3)
C16—C4—C5—C66.6 (4)C23—N3—C30—C29178.8 (2)
C15—C6—C5—C446.2 (3)C23—N3—C30—C250.2 (2)
C7—C6—C5—C4135.5 (2)C28—C29—C30—N3176.7 (2)
C15—C6—C5—C2126.8 (2)C28—C29—C30—C252.2 (3)
C7—C6—C5—C251.5 (3)C26—C25—C30—N3177.73 (18)
N2—C3—C24—C23152.6 (2)C24—C25—C30—N30.3 (2)
C2—C3—C24—C2327.7 (3)C26—C25—C30—C291.4 (3)
N2—C3—C24—C2528.5 (3)C24—C25—C30—C29179.39 (19)
C2—C3—C24—C25151.3 (2)C15—C14—C13—C12178.8 (2)
C15—C6—C7—C80.0 (3)C9—C14—C13—C120.3 (3)
C5—C6—C7—C8178.36 (19)C30—N3—C23—C240.7 (3)
N2—C3—C2—C1179.65 (19)C25—C24—C23—N30.8 (2)
C24—C3—C2—C10.5 (3)C3—C24—C23—N3179.97 (19)
N2—C3—C2—C50.4 (2)C18—C17—C22—C212.0 (4)
C24—C3—C2—C5179.81 (19)C16—C17—C22—C21179.1 (2)
C4—C5—C2—C31.4 (2)C14—C13—C12—C110.4 (4)
C6—C5—C2—C3172.89 (18)C9—C10—C11—C120.1 (4)
C4—C5—C2—C1179.3 (2)C13—C12—C11—C100.3 (4)
C6—C5—C2—C16.4 (3)C19—C20—C21—C220.0 (5)
C23—C24—C25—C26176.9 (2)C17—C22—C21—C201.4 (4)
C3—C24—C25—C262.3 (4)C21—C20—C19—C180.7 (4)
C23—C24—C25—C300.7 (2)C17—C18—C19—C200.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg6 are the centroids of rings C6–C9/C14/C15, C9–C14 and C25–C30, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.152.875 (2)141
N3—H3···N1ii0.862.273.023 (3)147
C22—H22···Cg6i0.932.583.456 (2)158
C26—H26···Cg4iii0.932.983.784 (2)146
C27—H27···Cg3iii0.932.743.555 (2)147
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg6 are the centroids of rings C6–C9/C14/C15, C9–C14 and C25–C30, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.152.875 (2)141
N3—H3···N1ii0.862.273.023 (3)147
C22—H22···Cg6i0.932.583.456 (2)158
C26—H26···Cg4iii0.932.983.784 (2)146
C27—H27···Cg3iii0.932.743.555 (2)147
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H19N3O
Mr437.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.2688 (4), 10.5322 (4), 11.2934 (4)
α, β, γ (°)111.720 (2), 93.883 (2), 91.653 (3)
V3)1130.18 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
25456, 3992, 2997
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.129, 0.74
No. of reflections3950
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAmal Raj, A., Raghunathan, R., Sridevikumar, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationInglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1585.  CSD CrossRef IUCr Journals Google Scholar
First citationQuetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192.  CAS PubMed Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationRodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2699.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVimala, G., Raja, J. K., Naaz, Y. A., Preumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o335–o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds