organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Chloro-1H-indole-2,3-dione

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 16 April 2016; accepted 23 April 2016; online 29 April 2016)

The title compound, C8H4ClNO2, has two planar mol­ecules in the asymmetric unit, with the non-H atoms showing a mean deviation from planarity of 0.015 and 0.022 Å, respectively. In the crystal, the mol­ecules are linked through N—H⋯O hydrogen bonds to form infinite chains along [010]. They are further connected through C—H⋯Cl close contacts with a donor–acceptor distance of 3.682 (5) Å. No ππ inter­actions are observed in the structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of a continuing study of halogenated isatins, we report the crystal structure of 4-chloro­isatin (4-chloro-1H-indole-2,3-dione), Fig. 1[link]. The asymmetric unit of the structure contains two mol­ecules that are nearly planar, with the non-H atoms possessing a mean deviation from planarity of 0.015 and 0.022 Å, respectively. The bond lengths and angles observed in the mol­ecule are similar to those observed in the parent isatin (Goldschmidt & Llewellyn, 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

In the crystal, mol­ecules form infinite chains along [010] through N1—H1⋯O3 and N2—H2⋯O1 hydrogen bonds (Table 1[link]). These chains are further linked through C5—H5⋯Cl2 close contacts (Fig. 2[link]). Similar C—H⋯Cl close contacts were not observed in the other 4-chloro­isatin structures that have been reported (Hughes & Fenical, 2010[Hughes, C. C. & Fenical, W. (2010). J. Am. Chem. Soc. 132, 2528-2529.]; Wang et al., 2012[Wang, D. C., Leng, B. R., Wang, G. B., Wei, P. & Ou-yang, P. K. (2012). Acta Cryst. E68, o37.]; Yu et al., 2012[Yu, J. G., Tang, W., Wang, D. C. & Xu, H. (2012). Acta Cryst. E68, o219.]). Halogen–oxygen rather than C—H⋯halogen inter­actions are observed in the structures of 4-bromo­isatin (Huang et al., 2016[Huang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007.]) and 4-iodo­isatin (Golen & Manke, 2016[Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160215.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.87 (1) 1.97 (2) 2.768 (5) 152 (4)
N2—H2⋯O1ii 0.87 (1) 2.11 (2) 2.905 (4) 152 (5)
C5—H5⋯Cl2iii 0.95 2.91 3.682 (5) 139
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [-x+2, y-{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
The mol­ecular packing of the title compound viewed along the b axis, with hydrogen bonding shown as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 4-chloro-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown by slow evaporation from an acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4ClNO2
Mr 181.57
Crystal system, space group Monoclinic, P21
Temperature (K) 120
a, b, c (Å) 8.2745 (8), 6.0367 (6), 14.8609 (14)
β (°) 104.746 (5)
V3) 717.86 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.31
Crystal size (mm) 0.25 × 0.04 × 0.04
 
Data collection
Diffractometer Bruker CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.205, 0.311
No. of measured, independent and observed [I > 2σ(I)] reflections 9961, 2579, 2388
Rint 0.058
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.04
No. of reflections 2579
No. of parameters 224
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.27
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.11 (3)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

A commercial sample (Matrix Scientific) of 4-chloro-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown by slow evaporation from an acetone solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

A commercial sample (Matrix Scientific) of 4-chloro-1H-indole-2,3-dione was used for crystallization. A sample suitable for single-crystal X-ray analysis was grown by slow evaporation from an acetone solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

As part of a continuing study of halogenated isatins, we report the crystal structure of 4-chloroisatin (4-chloro-1H-indole-2,3-dione), Fig.1. The asymmetric unit of the structure contains two molecules that are nearly planar, with the non-H atoms possessing a mean deviation from planarity of 0.015 and 0.022 Å, respectively. The bond lengths and angles observed in the molecule are similar to those observed in the parent isatin (Goldschmidt & Llewellyn, 1950).

In the crystal, molecules form infinite chains along [010] through N1—H1···O3 and N2—H2···O1 hydrogen bonds (Table 1). These chains are further linked through C5—H5···Cl2 close contacts (Fig. 2). Similar C—H···Cl close contacts were not observed in the other 4-chloroisatin structures that have been reported (Hughes & Fenical, 2010; Wang et al., 2012; Yu et al., 2012). Halogen–oxygen rather than C—H···halogen interactions are observed in the structures of 4-bromoisatin (Huang et al., 2016) and 4-iodoisatin (Golen & Manke, 2016).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed along the b axis, with hydrogen bonding shown as dashed lines.
4-Chloro-1H-indole-2,3-dione top
Crystal data top
C8H4ClNO2F(000) = 368
Mr = 181.57Dx = 1.680 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 6743 reflections
a = 8.2745 (8) Åθ = 3.1–68.5°
b = 6.0367 (6) ŵ = 4.31 mm1
c = 14.8609 (14) ÅT = 120 K
β = 104.746 (5)°Block, orange
V = 717.86 (12) Å30.25 × 0.04 × 0.04 mm
Z = 4
Data collection top
Bruker CMOS
diffractometer
2579 independent reflections
Radiation source: Cu2388 reflections with I > 2σ(I)
HELIOS MX monochromatorRint = 0.058
φ and ω scansθmax = 68.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 99
Tmin = 0.205, Tmax = 0.311k = 77
9961 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.171P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.58 e Å3
2579 reflectionsΔρmin = 0.27 e Å3
224 parametersAbsolute structure: Refined as an inversion twin.
3 restraintsAbsolute structure parameter: 0.11 (3)
Crystal data top
C8H4ClNO2V = 717.86 (12) Å3
Mr = 181.57Z = 4
Monoclinic, P21Cu Kα radiation
a = 8.2745 (8) ŵ = 4.31 mm1
b = 6.0367 (6) ÅT = 120 K
c = 14.8609 (14) Å0.25 × 0.04 × 0.04 mm
β = 104.746 (5)°
Data collection top
Bruker CMOS
diffractometer
2579 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2388 reflections with I > 2σ(I)
Tmin = 0.205, Tmax = 0.311Rint = 0.058
9961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.58 e Å3
S = 1.04Δρmin = 0.27 e Å3
2579 reflectionsAbsolute structure: Refined as an inversion twin.
224 parametersAbsolute structure parameter: 0.11 (3)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.82671 (11)0.28031 (19)0.40490 (7)0.0329 (3)
Cl21.05021 (12)1.19333 (19)0.35368 (6)0.0317 (3)
O10.2975 (4)0.0106 (5)0.09037 (18)0.0293 (7)
O20.5638 (3)0.2926 (6)0.19884 (19)0.0332 (7)
O31.1154 (3)0.4626 (5)0.11689 (18)0.0279 (7)
O41.1901 (3)0.7341 (6)0.28454 (17)0.0289 (7)
N10.3652 (4)0.2002 (7)0.2246 (2)0.0246 (7)
H10.295 (5)0.309 (6)0.208 (3)0.029*
N20.9124 (4)0.7291 (7)0.0657 (2)0.0248 (8)
H20.868 (5)0.688 (9)0.0088 (14)0.030*
C10.3785 (5)0.0273 (7)0.1694 (3)0.0240 (9)
C20.5204 (5)0.1236 (7)0.2281 (3)0.0251 (9)
C30.5750 (5)0.0089 (7)0.3177 (3)0.0235 (9)
C40.6994 (5)0.0499 (8)0.3987 (3)0.0267 (9)
C50.7209 (5)0.0939 (8)0.4734 (3)0.0285 (10)
H50.80500.06600.52900.034*
C60.6195 (5)0.2785 (8)0.4667 (3)0.0285 (10)
H60.63400.37410.51890.034*
C70.4963 (5)0.3293 (8)0.3859 (3)0.0281 (9)
H70.42890.45820.38150.034*
C80.4775 (4)0.1828 (8)0.3127 (2)0.0226 (8)
C91.0412 (5)0.6310 (7)0.1266 (3)0.0229 (9)
C101.0799 (5)0.7769 (7)0.2159 (3)0.0221 (9)
C110.9586 (5)0.9583 (7)0.1941 (3)0.0229 (9)
C120.9285 (5)1.1431 (7)0.2424 (3)0.0252 (9)
C130.8008 (5)1.2893 (8)0.2018 (3)0.0290 (10)
H130.77661.41300.23570.035*
C140.7089 (5)1.2512 (8)0.1105 (3)0.0297 (10)
H140.62321.35270.08230.036*
C150.7387 (5)1.0694 (8)0.0594 (3)0.0273 (10)
H150.67581.04670.00290.033*
C160.8623 (5)0.9235 (7)0.1022 (3)0.0237 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0260 (5)0.0331 (6)0.0362 (5)0.0057 (5)0.0014 (4)0.0081 (5)
Cl20.0317 (5)0.0347 (6)0.0287 (5)0.0035 (5)0.0076 (4)0.0071 (5)
O10.0320 (15)0.0288 (18)0.0237 (14)0.0041 (13)0.0010 (12)0.0016 (12)
O20.0370 (15)0.0285 (18)0.0328 (14)0.0111 (17)0.0064 (12)0.0021 (16)
O30.0281 (14)0.0259 (17)0.0290 (14)0.0051 (14)0.0061 (12)0.0007 (13)
O40.0260 (13)0.035 (2)0.0231 (13)0.0010 (15)0.0006 (11)0.0019 (14)
N10.0230 (16)0.0250 (19)0.0253 (15)0.0065 (17)0.0054 (12)0.0030 (17)
N20.0238 (16)0.026 (2)0.0228 (15)0.0023 (16)0.0026 (12)0.0016 (15)
C10.023 (2)0.023 (2)0.027 (2)0.0023 (17)0.0082 (17)0.0029 (17)
C20.022 (2)0.025 (2)0.029 (2)0.0027 (17)0.0095 (17)0.0053 (18)
C30.0212 (19)0.024 (2)0.0264 (19)0.0024 (17)0.0081 (15)0.0050 (17)
C40.0191 (19)0.031 (3)0.030 (2)0.0020 (18)0.0067 (16)0.0081 (18)
C50.021 (2)0.039 (3)0.024 (2)0.0023 (19)0.0034 (16)0.0054 (18)
C60.030 (2)0.035 (3)0.0202 (19)0.0077 (19)0.0056 (17)0.0027 (17)
C70.025 (2)0.028 (3)0.033 (2)0.0001 (18)0.0099 (18)0.0007 (18)
C80.0179 (17)0.028 (2)0.0219 (17)0.0005 (18)0.0051 (14)0.0031 (17)
C90.0207 (19)0.025 (2)0.0237 (19)0.0012 (17)0.0078 (15)0.0035 (16)
C100.0199 (19)0.025 (2)0.0226 (19)0.0002 (16)0.0069 (16)0.0037 (15)
C110.0214 (19)0.025 (2)0.0245 (18)0.0005 (17)0.0098 (15)0.0043 (17)
C120.0214 (19)0.028 (3)0.028 (2)0.0020 (17)0.0099 (16)0.0025 (17)
C130.029 (2)0.024 (2)0.039 (2)0.0022 (17)0.0165 (19)0.0006 (18)
C140.0245 (19)0.028 (3)0.039 (2)0.0070 (18)0.0126 (17)0.0083 (19)
C150.021 (2)0.032 (3)0.029 (2)0.0031 (17)0.0052 (17)0.0057 (18)
C160.0213 (19)0.027 (2)0.0241 (19)0.0003 (17)0.0076 (15)0.0037 (17)
Geometric parameters (Å, º) top
Cl1—C41.733 (5)C5—H50.9500
Cl2—C121.730 (4)C5—C61.383 (7)
O1—C11.217 (5)C6—H60.9500
O2—C21.200 (6)C6—C71.398 (6)
O3—C91.215 (5)C7—H70.9500
O4—C101.210 (5)C7—C81.379 (6)
N1—H10.869 (7)C9—C101.557 (6)
N1—C11.349 (6)C10—C111.465 (6)
N1—C81.404 (4)C11—C121.383 (6)
N2—H20.869 (7)C11—C161.410 (6)
N2—C91.347 (5)C12—C131.391 (6)
N2—C161.399 (6)C13—H130.9500
C1—C21.564 (6)C13—C141.395 (6)
C2—C31.467 (6)C14—H140.9500
C3—C41.393 (6)C14—C151.392 (6)
C3—C81.402 (6)C15—H150.9500
C4—C51.385 (6)C15—C161.376 (6)
C1—N1—H1124 (3)C3—C8—N1110.3 (4)
C1—N1—C8111.9 (4)C7—C8—N1127.1 (4)
C8—N1—H1124 (3)C7—C8—C3122.7 (4)
C9—N2—H2127 (4)O3—C9—N2128.7 (4)
C9—N2—C16111.7 (3)O3—C9—C10125.0 (4)
C16—N2—H2122 (4)N2—C9—C10106.3 (3)
O1—C1—N1128.5 (4)O4—C10—C9123.0 (4)
O1—C1—C2125.4 (4)O4—C10—C11132.3 (4)
N1—C1—C2106.1 (3)C11—C10—C9104.7 (3)
O2—C2—C1123.0 (4)C12—C11—C10133.8 (4)
O2—C2—C3132.8 (4)C12—C11—C16119.4 (4)
C3—C2—C1104.2 (3)C16—C11—C10106.9 (3)
C4—C3—C2133.7 (4)C11—C12—Cl2120.0 (3)
C4—C3—C8118.8 (4)C11—C12—C13120.3 (4)
C8—C3—C2107.5 (3)C13—C12—Cl2119.7 (3)
C3—C4—Cl1119.6 (3)C12—C13—H13120.6
C5—C4—Cl1120.6 (3)C12—C13—C14118.9 (4)
C5—C4—C3119.8 (4)C14—C13—H13120.6
C4—C5—H5120.2C13—C14—H14118.9
C6—C5—C4119.7 (4)C15—C14—C13122.1 (4)
C6—C5—H5120.2C15—C14—H14118.9
C5—C6—H6118.8C14—C15—H15121.1
C5—C6—C7122.4 (4)C16—C15—C14117.8 (4)
C7—C6—H6118.8C16—C15—H15121.1
C6—C7—H7121.7N2—C16—C11110.5 (3)
C8—C7—C6116.6 (4)C15—C16—N2128.0 (4)
C8—C7—H7121.7C15—C16—C11121.5 (4)
Cl1—C4—C5—C6179.2 (3)C5—C6—C7—C81.4 (6)
Cl2—C12—C13—C14177.2 (3)C6—C7—C8—N1178.8 (4)
O1—C1—C2—O21.0 (7)C6—C7—C8—C30.3 (6)
O1—C1—C2—C3178.8 (4)C8—N1—C1—O1178.1 (4)
O2—C2—C3—C42.8 (8)C8—N1—C1—C21.0 (4)
O2—C2—C3—C8179.3 (4)C8—C3—C4—Cl1177.6 (3)
O3—C9—C10—O40.3 (6)C8—C3—C4—C52.1 (6)
O3—C9—C10—C11179.9 (4)C9—N2—C16—C111.7 (4)
O4—C10—C11—C121.0 (8)C9—N2—C16—C15178.1 (4)
O4—C10—C11—C16179.0 (4)C9—C10—C11—C12178.7 (4)
N1—C1—C2—O2179.9 (4)C9—C10—C11—C160.8 (4)
N1—C1—C2—C30.3 (4)C10—C11—C12—Cl20.0 (6)
N2—C9—C10—O4180.0 (4)C10—C11—C12—C13179.9 (4)
N2—C9—C10—C110.2 (4)C10—C11—C16—N21.5 (4)
C1—N1—C8—C31.3 (5)C10—C11—C16—C15178.4 (4)
C1—N1—C8—C7179.6 (4)C11—C12—C13—C142.7 (6)
C1—C2—C3—C4177.4 (4)C12—C11—C16—N2179.8 (3)
C1—C2—C3—C80.4 (4)C12—C11—C16—C150.0 (6)
C2—C3—C4—Cl10.0 (6)C12—C13—C14—C151.3 (6)
C2—C3—C4—C5179.7 (4)C13—C14—C15—C160.7 (6)
C2—C3—C8—N11.0 (4)C14—C15—C16—N2178.9 (4)
C2—C3—C8—C7179.8 (4)C14—C15—C16—C111.3 (6)
C3—C4—C5—C60.5 (6)C16—N2—C9—O3179.2 (4)
C4—C3—C8—N1177.2 (3)C16—N2—C9—C101.1 (4)
C4—C3—C8—C72.0 (6)C16—C11—C12—Cl2177.8 (3)
C4—C5—C6—C71.3 (6)C16—C11—C12—C132.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.87 (1)1.97 (2)2.768 (5)152 (4)
N2—H2···O1ii0.87 (1)2.11 (2)2.905 (4)152 (5)
C5—H5···Cl2iii0.952.913.682 (5)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z; (iii) x+2, y3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.869 (7)1.97 (2)2.768 (5)152 (4)
N2—H2···O1ii0.869 (7)2.11 (2)2.905 (4)152 (5)
C5—H5···Cl2iii0.952.913.682 (5)139.2
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z; (iii) x+2, y3/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H4ClNO2
Mr181.57
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)8.2745 (8), 6.0367 (6), 14.8609 (14)
β (°) 104.746 (5)
V3)717.86 (12)
Z4
Radiation typeCu Kα
µ (mm1)4.31
Crystal size (mm)0.25 × 0.04 × 0.04
Data collection
DiffractometerBruker CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.205, 0.311
No. of measured, independent and
observed [I > 2σ(I)] reflections
9961, 2579, 2388
Rint0.058
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.04
No. of reflections2579
No. of parameters224
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.27
Absolute structureRefined as an inversion twin.
Absolute structure parameter0.11 (3)

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160215.  Google Scholar
First citationHuang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007.  Google Scholar
First citationHughes, C. C. & Fenical, W. (2010). J. Am. Chem. Soc. 132, 2528–2529.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, D. C., Leng, B. R., Wang, G. B., Wei, P. & Ou-yang, P. K. (2012). Acta Cryst. E68, o37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J. G., Tang, W., Wang, D. C. & Xu, H. (2012). Acta Cryst. E68, o219.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds