organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[(E)-2-Hy­dr­oxy­benzyl­­idene]-2-(6-meth­­oxy­naphthalen-2-yl)propano­hydrazide: a redetermination

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eNational Organization for Drug Control and Research NODCAR, Giza, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 15 April 2016; accepted 19 April 2016; online 26 April 2016)

The structure of the title compound, C21H20N2O3, was originally determined at ambient temperature [Wu et al. (2007[Wu, L., Qiu, G., Teng, H., Zhu, Q., Liang, S. & Hu, X. (2007). Inorg. Chim. Acta, 360, 3069-3074.]). Inorg. Chim. Acta, 360, 3069–3074]. In this determination, with data collected at 150 K, the asymmetric unit comprises two independent mol­ecules (1 and 2) that differ considerably in their conformations. In particular, the methyl group at the mid-point of mol­ecule 2 is disordered over two sites. This was modelled with restraints so that the geometries of the two components are comparable and the disorder components refined to an occupancy ratio of 0.750 (6):0.250 (6). Intra­molecular O—H⋯N and inter­molecular N—H⋯O hydrogen bonds stabilize the structure with significant additional input from C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used therapeutic agents. They are very effective in the alleviation of pain, fever and inflammation (Meek et al., 2010[Meek, I. L., van de Laar, M. A. F. J., Harald, E. & Vonkeman, H. E. (2010). Pharmaceuticals, 3, 2146-2162.]; Batlouni, 2010[Batlouni, M. (2010). Arq. Bras. Cardiol. 94, 556-563.]). Naproxen, (+)-(S)-2-(6-meth­oxy­naphthalen-2-yl)propanoic acid, is often used for the treatment of acute and chronic inflammation conditions, musculoskeletal disorders, primary dysmenorrhoea, fever and also in the management of mild pain (Capone et al., 2007[Capone, M. L., Tacconelli, S., Sciulli, M. G., Anzellotti, P., Di Francesco, L., Merciaro, G., Di Gregorio, P. & Patrignani, P. (2007). J. Pharmacol. Exp. Ther. 322, 453-460.]; Assali et al., 2014[Assali, M., Zaid, A.-E., Abualhasan, M., Jaradat, N., Tarayra, R., Hamdan, A. & Ardah, R. (2014). J. Chem. Pharm. Res. 6, 1-4.]). The structure of the title compound, in which the 6-meth­oxy­naphthalene moiety is closely related to the naproxen mol­ecule, has been determined previously at ambient temperature (Wu et al., 2007[Wu, L., Qiu, G., Teng, H., Zhu, Q., Liang, S. & Hu, X. (2007). Inorg. Chim. Acta, 360, 3069-3074.]) but this article did not address the possibility of pseudo-symmetry in the structure, the disorder in one of the unique mol­ecules or the presence of significant C—H⋯π inter­actions in the crystal structure.

Although complicated by pseudosymmetry, it is felt that the correct crystal system is monoclinic with a β angle very close to 90° rather than ortho­rhom­bic on the basis of lower merging R values for equivalent reflections and a more satisfactory refinement. Moreover, with two mol­ecules in the asymmetric unit, refinement shows that the C10 methyl group in mol­ecule 1 is disordered over two sites with a 0.750 (6):0.250 (6) occupancy ratio while mol­ecule 2 is completely ordered so that the two mol­ecules are not identical. In mol­ecule 1, the dihedral angle between the phenyl and naphthyl groups is 79.90 (8)° while in mol­ecule 2 it is 82.66 (8)°. The two naphthyl groups are inclined at an angle of 38.51 (8)°. The conformations of both mol­ecules are partially determined by intra­molecular O—H⋯N hydrogen bonds while the two mol­ecules in the asymmetric unit are associated through an N4—H4N⋯O2 hydrogen bond (Table 1[link] and Fig. 1[link]). The crystal structure is further stabilized by three C—H⋯π hydrogen bonds (Table 1[link]). C21—H21ACg1 inter­actions link type 1 mol­ecules into chains along c, while C42—H42ACg4 contacts form parallel chains in an obverse fashion, Fig. 2[link] (Cg1 and Cg4 are the centroids of the hy­droxy­phenyl rings of mol­ecules 1 and 2, respectively). The chains are linked by the N4—H4N⋯O2 hydrogen bonds and these pairs of chains are further inter­connected by N2—H2N⋯O5 hydrogen bonds, supported by C6—H6⋯Cg6 contacts, forming sheets of mol­ecules in the ac plane (Cg6 is the centroid of the C35–C39 ring in mol­ecule 2).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the hy­droxy­phenyl ring (C1–C6) of mol­ecule 1; Cg4 and Cg6 are the centroids of the hy­droxy­phenyl ring (C22–C27) and the benzene ring (C34–C39) of the naphthalene group of mol­ecule 2, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.87 1.81 2.606 (3) 151
N2—H2N⋯O5i 0.91 1.99 2.776 (3) 143
O4—H4O⋯N3 0.87 1.83 2.630 (3) 152
N4—H4N⋯O2 0.91 1.87 2.724 (3) 154
C6—H6⋯Cg6i 0.95 2.97 3.734 (4) 139
C21—H21ACg1ii 0.98 2.66 3.476 (4) 141
C42—H42ACg4iii 0.98 2.62 3.403 (5) 137
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z-1.
[Figure 1]
Figure 1
The asymmetric unit with the atom-labeling scheme and 50% probability ellipsoids. Only the major component of the disorder in the C10 methyl group is shown. O—H⋯N and N—H⋯O hydrogen bonds are shown, respectively, as red and blue dashed lines.
[Figure 2]
Figure 2
Sheets of mol­ecules in the ac plane formed by N—H⋯O hydrogen bonds (blue dashed lines)and C—H⋯π contacts (green dotted lines). Ring centroids are shown as coloured spheres.

Synthesis and crystallization

A mixture of 1 mmol (244 mg) of 2-(6-meth­oxy­naphthalen-2-yl)propane­hydrazide and 1 mmol (122 mg) of salicaldehyde with a few drops of glacial acetic acid was refluxed in 20 ml of absolute ethanol for 6 h. The mixture was cooled and the excess solvent evaporated. The solid was filtered off, dried and recrystallized from ethanol to afford yellow crystals of quality suitable for X-ray diffraction with m.p 442–445 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the final stages of the refinement, it became evident that C10 was disordered over two sets of sites. This was modelled with restraints to ensure that the geometries of the two components were comparable and the occupancy factors refined to a ratio of 0.750 (6):0.250 (6).

Table 2
Experimental details

Crystal data
Chemical formula C21H20N2O3
Mr 348.39
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 9.5461 (5), 11.8724 (6), 15.9962 (8)
β (°) 90.104 (2)
V3) 1812.93 (16)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.70
Crystal size (mm) 0.25 × 0.18 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 14005, 6487, 5685
Rint 0.035
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.03
No. of reflections 6487
No. of parameters 479
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.22
Absolute structure Flack x determined using 2150 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.21 (19)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), , SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Synthesis and crystallization top

A mixture of 1 mmol (244mg) of 2-(6-meth­oxy­naphthalen-2-yl)propane­hydrazide and 1 mmol (122 mg) of salicaldehyde with few drops of glacial acetic acid was refluxed in 20 mL of absolute ethanol for 6 hr . The mixture was cooled and the excess solvent evaporated. The solid was filtered off, dried and recrystallized from ethanol to afford yellow crystals of quality suitable for X-ray diffraction with m.p 442-445 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. In the final stages of the refinement, it became evident that C10 was disordered over two sites. This was modelled with restraints to ensure that the geometries of the two components were comparable and the occupancy factors refined to a ratio of 0.750 (6):0.250 (6).

Experimental top

A mixture of 1 mmol (244 mg) of 2-(6-methoxynaphthalen-2-yl)propanehydrazide and 1 mmol (122 mg) of salicaldehyde with a few drops of glacial acetic acid was refluxed in 20 ml of absolute ethanol for 6 h. The mixture was cooled and the excess solvent evaporated. The solid was filtered off, dried and recrystallized from ethanol to afford yellow crystals of quality suitable for X-ray diffraction with m.p 442–445 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. In the final stages of the refinement, it became evident that C10 was disordered over two sets of sites. This was modelled with restraints to ensure that the geometries of the two components were comparable and the occupancy factors refined to a ratio of 0.750 (6):0.250 (6).

Structure description top

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used therapeutic agents. They are very effective in the alleviation of pain, fever and inflammation (Meek et al., 2010; Batlouni, 2010). Naproxen, (+)-(S)-2-(6-methoxynaphthalen-2-yl)propanoic acid, is often used for the treatment of acute and chronic inflammation conditions, musculoskeletal disorders, primary dysmenorrhoea, fever and also in the management of mild pain (Capone et al., 2007; Assali et al., 2014). The structure of the title compound, in which the 6-methoxynaphthalene moiety is closely related to the naproxen molecule, has been determined previously at ambient temperature (Wu et al., 2007) but this article did not address the possibility of pseudo-symmetry in the structure, the disorder in one of the unique molecules or the presence of significant C—H···π interactions in the crystal structure.

Although complicated by pseudosymmetry, it is felt that the correct crystal system is monoclinic with a β angle very close to 90° rather than orthorhombic on the basis of lower merging R values for equivalent reflections and a more satisfactory refinement. Moreover, with two molecules in the asymmetric unit, refinement shows that the C10 methyl group in molecule 1 is disordered over two sites with a 0.750 (6):0.250 (6) occupancy ratio while molecule 2 is completely ordered so that the two molecules are not identical. In molecule 1, the dihedral angle between the phenyl and naphthyl groups is 79.90 (8)° while in molecule 2 it is 82.66 (8)°. The two naphthyl groups are inclined at an angle of 38.51 (8)°. The conformations of both molecules are partially determined by intramolecular O—H···N hydrogen bonds while the two molecules in the asymmetric unit are associated through an N4—H4N···O2 hydrogen bond (Table 1 and Fig. 1). The crystal structure is further stabilized by three C—H···π hydrogen bonds (Table 1). C21—H21A···Cg1 interactions link type 1 molecules into chains along c, while C42—H42A···Cg4 contacts form parallel chains in an obverse fashion, Fig. 2 (Cg1 and Cg4 are the centroids of the hydroxyphenyl rings of molecules 1 and 2, respectively). The chains are linked by the N4—H4N···O2 hydrogen bonds and these pairs of chains are further interconnected by N2—H2N···O5 hydrogen bonds, supported by C6—H6···Cg6 contacts, forming sheets of molecules in the ac plane (Cg6 is the centroid of the C35–C39 ring in molecule 2).

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with the atom-labeling scheme and 50% probability ellipsoids. Only the major component of the disorder in the C10 methyl group is shown. O—H···N and N—H···O hydrogen bonds are shown, respectively, as red and blue dashed lines.
[Figure 2] Fig. 2. Sheets of molecules in the ac plane formed by N—H···O hydrogen bonds (blue dashed lines)and C—H···π contacts (green dotted lines). Ring centroids are shown as coloured spheres.
N'-[(E)-2-Hydroxybenzylidene]-2-(6-methoxynaphthalen-2-yl)propanohydrazide top
Crystal data top
C21H20N2O3F(000) = 736
Mr = 348.39Dx = 1.276 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 9.5461 (5) ÅCell parameters from 9655 reflections
b = 11.8724 (6) Åθ = 4.6–72.4°
c = 15.9962 (8) ŵ = 0.70 mm1
β = 90.104 (2)°T = 150 K
V = 1812.93 (16) Å3Plate, yellow
Z = 40.25 × 0.18 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
6487 independent reflections
Radiation source: INCOATEC IµS micro–focus source5685 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 4.6°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1414
Tmin = 0.86, Tmax = 0.97l = 1918
14005 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2712P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.31 e Å3
6487 reflectionsΔρmin = 0.22 e Å3
479 parametersExtinction correction: SHELXL 2014/7 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0036 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 2150 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.21 (19)
Crystal data top
C21H20N2O3V = 1812.93 (16) Å3
Mr = 348.39Z = 4
Monoclinic, P21Cu Kα radiation
a = 9.5461 (5) ŵ = 0.70 mm1
b = 11.8724 (6) ÅT = 150 K
c = 15.9962 (8) Å0.25 × 0.18 × 0.04 mm
β = 90.104 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
6487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
5685 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.97Rint = 0.035
14005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.31 e Å3
S = 1.03Δρmin = 0.22 e Å3
6487 reflectionsAbsolute structure: Flack x determined using 2150 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
479 parametersAbsolute structure parameter: 0.21 (19)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 and O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the final stges of the refinement, it became evident that C10 was disordered over two sites. This was modeled with restraints that the geometries of the two components be comparable and refined to a 3:1 ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6485 (2)0.6624 (2)0.34737 (14)0.0461 (6)
H1O0.67210.60190.37470.069*
O20.5976 (2)0.4145 (2)0.49980 (14)0.0457 (6)
O30.6524 (3)0.5185 (2)1.03109 (14)0.0501 (6)
N10.7942 (2)0.4900 (2)0.39852 (15)0.0355 (6)
N20.8194 (2)0.4042 (2)0.45369 (16)0.0384 (6)
H2N0.90730.37510.45790.046*
C10.8776 (3)0.6135 (3)0.29323 (19)0.0367 (7)
C20.7594 (3)0.6842 (3)0.29667 (19)0.0382 (7)
C30.7558 (4)0.7815 (3)0.2483 (2)0.0463 (8)
H30.67850.83150.25280.056*
C40.8636 (4)0.8061 (3)0.1937 (2)0.0505 (9)
H40.85910.87210.16030.061*
C50.9788 (4)0.7345 (3)0.1876 (2)0.0501 (9)
H51.05210.75060.14930.060*
C60.9854 (3)0.6404 (3)0.2372 (2)0.0440 (8)
H61.06480.59240.23360.053*
C70.8931 (3)0.5174 (3)0.34828 (19)0.0369 (7)
H70.97700.47440.34720.044*
C80.7144 (3)0.3729 (3)0.50537 (18)0.0378 (7)
C90.7485 (5)0.2842 (3)0.5710 (2)0.0533 (10)0.750 (6)
H90.66300.23560.57240.064*0.750 (6)
C100.8613 (5)0.2058 (4)0.5588 (3)0.0446 (10)0.750 (6)
H10A0.84900.16720.50520.067*0.750 (6)
H10B0.86120.15030.60420.067*0.750 (6)
H10C0.95060.24650.55890.067*0.750 (6)
C9A0.7485 (5)0.2842 (3)0.5710 (2)0.0533 (10)0.250 (6)
H9A0.85080.27200.56110.064*0.250 (6)
C10A0.6945 (14)0.1744 (7)0.5570 (8)0.0446 (10)0.250 (6)
H10D0.59360.17390.56810.067*0.250 (6)
H10E0.74140.12090.59430.067*0.250 (6)
H10F0.71120.15260.49880.067*0.250 (6)
C110.7502 (3)0.3408 (3)0.65668 (18)0.0384 (7)
C120.8507 (3)0.4254 (3)0.6747 (2)0.0407 (7)
H120.91660.44600.63290.049*
C130.8551 (3)0.4779 (3)0.75069 (18)0.0371 (7)
H130.92270.53510.76060.045*
C140.7602 (3)0.4481 (3)0.81483 (18)0.0329 (6)
C150.7607 (3)0.5016 (3)0.89421 (18)0.0363 (7)
H150.82750.55870.90610.044*
C160.6650 (3)0.4711 (3)0.95362 (19)0.0386 (7)
C170.5681 (3)0.3831 (3)0.9375 (2)0.0425 (7)
H170.50370.36100.97960.051*
C180.5668 (3)0.3303 (3)0.86249 (19)0.0403 (7)
H180.50150.27140.85280.048*
C190.6611 (3)0.3614 (3)0.79797 (18)0.0341 (6)
C200.6579 (3)0.3106 (3)0.71823 (19)0.0385 (7)
H200.59010.25410.70690.046*
C210.7521 (5)0.6018 (4)1.0534 (2)0.0591 (10)
H21A0.73460.62701.11080.089*
H21B0.74400.66601.01520.089*
H21C0.84660.57001.04960.089*
O40.1372 (2)0.6691 (2)0.66597 (14)0.0467 (6)
H4O0.16150.60970.63760.070*
O50.1009 (2)0.4092 (2)0.49733 (14)0.0434 (5)
O60.1563 (3)0.5107 (2)0.03381 (15)0.0565 (7)
N30.2906 (2)0.5061 (2)0.60278 (14)0.0346 (5)
N40.3235 (2)0.4228 (2)0.54634 (16)0.0367 (6)
H4N0.41570.40410.54320.044*
C220.3748 (3)0.6290 (3)0.70936 (18)0.0325 (6)
C230.2518 (3)0.6945 (3)0.71272 (19)0.0362 (7)
C240.2460 (4)0.7886 (3)0.7648 (2)0.0443 (8)
H240.16520.83550.76450.053*
C250.3570 (4)0.8139 (3)0.8167 (2)0.0474 (8)
H250.35180.87770.85250.057*
C260.4768 (4)0.7467 (3)0.8173 (2)0.0460 (8)
H260.55180.76290.85450.055*
C270.4853 (3)0.6567 (3)0.76323 (19)0.0385 (7)
H270.56810.61230.76250.046*
C280.3916 (3)0.5368 (3)0.65108 (18)0.0347 (6)
H280.47870.49830.64840.042*
C290.2252 (3)0.3820 (3)0.49370 (18)0.0347 (7)
C300.2816 (3)0.2981 (3)0.42970 (19)0.0371 (7)
H300.38250.28400.44300.044*
C310.2038 (4)0.1867 (3)0.4377 (2)0.0518 (9)
H31A0.24110.13270.39710.078*
H31B0.10380.19870.42690.078*
H31C0.21630.15680.49440.078*
C320.2738 (3)0.3507 (3)0.34317 (19)0.0334 (6)
C330.1834 (3)0.3126 (3)0.28257 (18)0.0333 (6)
H330.12160.25210.29500.040*
C340.1805 (3)0.3619 (3)0.20190 (18)0.0323 (6)
C350.0885 (3)0.3238 (3)0.13800 (19)0.0370 (7)
H350.02850.26160.14880.044*
C360.0841 (3)0.3740 (3)0.06201 (19)0.0418 (7)
H360.02160.34690.02040.050*
C370.1726 (4)0.4669 (3)0.0444 (2)0.0422 (7)
C380.2655 (3)0.5054 (3)0.10334 (19)0.0389 (7)
H380.32650.56620.09060.047*
C390.2705 (3)0.4542 (2)0.18322 (19)0.0334 (6)
C400.3638 (3)0.4918 (3)0.2469 (2)0.0397 (7)
H400.42590.55250.23590.048*
C410.3649 (3)0.4413 (3)0.3238 (2)0.0398 (7)
H410.42830.46760.36530.048*
C420.2464 (5)0.6007 (4)0.0567 (3)0.0649 (11)
H42A0.22950.62110.11520.097*
H42B0.34410.57720.04980.097*
H42C0.22780.66590.02090.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0351 (11)0.0595 (15)0.0438 (13)0.0128 (11)0.0022 (9)0.0024 (12)
O20.0295 (10)0.0650 (16)0.0425 (12)0.0093 (11)0.0011 (8)0.0095 (11)
O30.0633 (15)0.0544 (14)0.0327 (11)0.0122 (13)0.0029 (10)0.0091 (11)
N10.0301 (11)0.0451 (14)0.0311 (12)0.0039 (11)0.0035 (9)0.0094 (11)
N20.0315 (12)0.0493 (15)0.0343 (13)0.0133 (12)0.0042 (10)0.0042 (12)
C10.0293 (14)0.0461 (18)0.0347 (16)0.0018 (13)0.0016 (11)0.0108 (13)
C20.0329 (15)0.0471 (18)0.0346 (16)0.0024 (14)0.0037 (12)0.0097 (14)
C30.0465 (18)0.0475 (19)0.0447 (19)0.0064 (16)0.0087 (14)0.0106 (16)
C40.057 (2)0.0446 (19)0.050 (2)0.0071 (17)0.0119 (16)0.0052 (17)
C50.0445 (18)0.055 (2)0.050 (2)0.0134 (17)0.0008 (15)0.0055 (18)
C60.0346 (16)0.052 (2)0.0448 (18)0.0006 (15)0.0018 (13)0.0091 (16)
C70.0284 (13)0.0462 (18)0.0361 (15)0.0048 (13)0.0010 (11)0.0102 (14)
C80.0395 (16)0.0458 (18)0.0281 (14)0.0067 (14)0.0044 (11)0.0067 (13)
C90.079 (3)0.047 (2)0.0339 (18)0.0216 (19)0.0079 (16)0.0057 (15)
C100.051 (2)0.046 (2)0.037 (2)0.002 (2)0.0006 (17)0.0022 (18)
C9A0.079 (3)0.047 (2)0.0339 (18)0.0216 (19)0.0079 (16)0.0057 (15)
C10A0.051 (2)0.046 (2)0.037 (2)0.002 (2)0.0006 (17)0.0022 (18)
C110.0490 (17)0.0365 (16)0.0298 (15)0.0121 (14)0.0055 (12)0.0014 (13)
C120.0442 (16)0.0463 (18)0.0318 (15)0.0101 (15)0.0023 (12)0.0063 (14)
C130.0383 (15)0.0389 (16)0.0341 (16)0.0006 (13)0.0021 (12)0.0023 (13)
C140.0333 (14)0.0342 (15)0.0313 (15)0.0034 (12)0.0049 (11)0.0022 (12)
C150.0391 (15)0.0364 (16)0.0333 (15)0.0017 (13)0.0052 (12)0.0011 (13)
C160.0468 (17)0.0391 (17)0.0299 (15)0.0009 (14)0.0044 (12)0.0015 (13)
C170.0428 (16)0.0486 (19)0.0361 (16)0.0081 (15)0.0005 (12)0.0009 (15)
C180.0412 (16)0.0415 (17)0.0383 (16)0.0072 (14)0.0040 (12)0.0003 (14)
C190.0367 (14)0.0342 (15)0.0313 (14)0.0039 (12)0.0063 (11)0.0015 (13)
C200.0438 (16)0.0361 (16)0.0357 (16)0.0046 (14)0.0084 (12)0.0002 (14)
C210.074 (3)0.059 (2)0.044 (2)0.015 (2)0.0021 (18)0.0171 (19)
O40.0355 (11)0.0608 (15)0.0438 (13)0.0142 (11)0.0031 (9)0.0045 (12)
O50.0269 (10)0.0599 (15)0.0435 (12)0.0003 (10)0.0034 (8)0.0008 (11)
O60.0744 (17)0.0602 (16)0.0350 (12)0.0096 (14)0.0013 (11)0.0130 (12)
N30.0322 (12)0.0441 (14)0.0274 (12)0.0001 (11)0.0007 (9)0.0000 (11)
N40.0293 (11)0.0452 (15)0.0355 (13)0.0012 (11)0.0020 (9)0.0049 (12)
C220.0299 (14)0.0357 (15)0.0320 (15)0.0001 (12)0.0012 (11)0.0040 (12)
C230.0341 (15)0.0418 (17)0.0326 (16)0.0050 (13)0.0042 (11)0.0108 (13)
C240.0498 (18)0.0384 (17)0.0447 (19)0.0088 (15)0.0134 (14)0.0079 (15)
C250.059 (2)0.0383 (18)0.0445 (18)0.0058 (16)0.0128 (15)0.0007 (15)
C260.0453 (18)0.0480 (19)0.0447 (19)0.0107 (16)0.0022 (14)0.0035 (16)
C270.0314 (14)0.0425 (17)0.0417 (17)0.0012 (13)0.0007 (12)0.0008 (14)
C280.0287 (13)0.0421 (17)0.0333 (15)0.0028 (13)0.0009 (11)0.0004 (13)
C290.0327 (14)0.0422 (17)0.0293 (14)0.0040 (13)0.0038 (11)0.0052 (13)
C300.0354 (15)0.0381 (16)0.0376 (16)0.0006 (13)0.0058 (12)0.0002 (13)
C310.073 (2)0.0419 (19)0.0410 (19)0.0109 (18)0.0129 (16)0.0098 (15)
C320.0312 (14)0.0331 (15)0.0358 (15)0.0004 (12)0.0015 (11)0.0005 (13)
C330.0305 (13)0.0355 (16)0.0339 (15)0.0021 (12)0.0017 (11)0.0011 (13)
C340.0306 (13)0.0348 (15)0.0316 (14)0.0006 (12)0.0043 (11)0.0008 (12)
C350.0363 (15)0.0400 (17)0.0347 (15)0.0052 (14)0.0014 (11)0.0001 (14)
C360.0442 (16)0.0484 (19)0.0329 (15)0.0044 (15)0.0009 (12)0.0004 (14)
C370.0493 (18)0.0444 (18)0.0328 (16)0.0028 (15)0.0082 (13)0.0058 (14)
C380.0408 (16)0.0368 (16)0.0390 (16)0.0021 (14)0.0081 (12)0.0028 (14)
C390.0330 (14)0.0284 (14)0.0387 (16)0.0007 (12)0.0072 (12)0.0002 (12)
C400.0387 (15)0.0359 (16)0.0444 (18)0.0073 (14)0.0051 (13)0.0010 (14)
C410.0385 (16)0.0412 (17)0.0399 (16)0.0070 (14)0.0010 (13)0.0063 (14)
C420.084 (3)0.060 (3)0.050 (2)0.012 (2)0.008 (2)0.025 (2)
Geometric parameters (Å, º) top
O1—C21.360 (4)C21—H21A0.9800
O1—H1O0.8700C21—H21B0.9800
O2—C81.223 (4)C21—H21C0.9800
O3—C161.367 (4)O4—C231.358 (4)
O3—C211.417 (5)O4—H4O0.8701
N1—C71.283 (4)O5—C291.231 (4)
N1—N21.369 (4)O6—C371.363 (4)
N2—C81.352 (4)O6—C421.420 (5)
N2—H2N0.9100N3—C281.287 (4)
C1—C61.402 (5)N3—N41.375 (4)
C1—C21.407 (4)N4—C291.349 (4)
C1—C71.449 (5)N4—H4N0.9100
C2—C31.390 (5)C22—C271.400 (4)
C3—C41.382 (6)C22—C231.410 (4)
C3—H30.9500C22—C281.447 (4)
C4—C51.394 (6)C23—C241.396 (5)
C4—H40.9500C24—C251.378 (5)
C5—C61.372 (5)C24—H240.9500
C5—H50.9500C25—C261.395 (5)
C6—H60.9500C25—H250.9500
C7—H70.9500C26—C271.377 (5)
C8—C9A1.523 (5)C26—H260.9500
C8—C91.523 (5)C27—H270.9500
C9—C101.436 (6)C28—H280.9500
C9—C111.526 (4)C29—C301.528 (5)
C9—H91.0000C30—C321.520 (4)
C10—H10A0.9800C30—C311.523 (5)
C10—H10B0.9800C30—H301.0000
C10—H10C0.9800C31—H31A0.9800
C9A—C10A1.419 (7)C31—H31B0.9800
C9A—C111.526 (4)C31—H31C0.9800
C9A—H9A1.0000C32—C331.374 (4)
C10A—H10D0.9800C32—C411.418 (4)
C10A—H10E0.9800C33—C341.417 (4)
C10A—H10F0.9800C33—H330.9500
C11—C201.370 (5)C34—C351.421 (4)
C11—C121.418 (5)C34—C391.425 (4)
C12—C131.367 (4)C35—C361.354 (4)
C12—H120.9500C35—H350.9500
C13—C141.415 (4)C36—C371.418 (5)
C13—H130.9500C36—H360.9500
C14—C151.420 (4)C37—C381.372 (5)
C14—C191.424 (4)C38—C391.415 (4)
C15—C161.368 (5)C38—H380.9500
C15—H150.9500C39—C401.423 (4)
C16—C171.419 (5)C40—C411.368 (5)
C17—C181.353 (5)C40—H400.9500
C17—H170.9500C41—H410.9500
C18—C191.419 (4)C42—H42A0.9800
C18—H180.9500C42—H42B0.9800
C19—C201.411 (4)C42—H42C0.9800
C20—H200.9500
C2—O1—H1O104.9C11—C20—H20119.2
C16—O3—C21117.1 (3)C19—C20—H20119.2
C7—N1—N2117.7 (2)O3—C21—H21A109.5
C8—N2—N1118.0 (2)O3—C21—H21B109.5
C8—N2—H2N122.3H21A—C21—H21B109.5
N1—N2—H2N119.4O3—C21—H21C109.5
C6—C1—C2118.6 (3)H21A—C21—H21C109.5
C6—C1—C7119.5 (3)H21B—C21—H21C109.5
C2—C1—C7121.8 (3)C23—O4—H4O104.6
O1—C2—C3118.1 (3)C37—O6—C42117.1 (3)
O1—C2—C1122.3 (3)C28—N3—N4115.2 (2)
C3—C2—C1119.6 (3)C29—N4—N3120.6 (2)
C4—C3—C2120.6 (3)C29—N4—H4N123.4
C4—C3—H3119.7N3—N4—H4N115.7
C2—C3—H3119.7C27—C22—C23118.3 (3)
C3—C4—C5120.3 (4)C27—C22—C28119.4 (3)
C3—C4—H4119.8C23—C22—C28122.4 (3)
C5—C4—H4119.8O4—C23—C24118.3 (3)
C6—C5—C4119.4 (3)O4—C23—C22121.8 (3)
C6—C5—H5120.3C24—C23—C22119.9 (3)
C4—C5—H5120.3C25—C24—C23120.2 (3)
C5—C6—C1121.5 (3)C25—C24—H24119.9
C5—C6—H6119.3C23—C24—H24119.9
C1—C6—H6119.3C24—C25—C26120.6 (3)
N1—C7—C1120.4 (3)C24—C25—H25119.7
N1—C7—H7119.8C26—C25—H25119.7
C1—C7—H7119.8C27—C26—C25119.3 (3)
O2—C8—N2121.4 (3)C27—C26—H26120.4
O2—C8—C9A121.5 (3)C25—C26—H26120.4
N2—C8—C9A117.0 (3)C26—C27—C22121.6 (3)
O2—C8—C9121.5 (3)C26—C27—H27119.2
N2—C8—C9117.0 (3)C22—C27—H27119.2
C10—C9—C8120.9 (3)N3—C28—C22121.2 (3)
C10—C9—C11113.6 (3)N3—C28—H28119.4
C8—C9—C11108.4 (3)C22—C28—H28119.4
C10—C9—H9104.0O5—C29—N4123.0 (3)
C8—C9—H9104.0O5—C29—C30122.9 (3)
C11—C9—H9104.0N4—C29—C30114.0 (2)
C9—C10—H10A109.5C32—C30—C31114.2 (3)
C9—C10—H10B109.5C32—C30—C29109.0 (3)
H10A—C10—H10B109.5C31—C30—C29109.7 (3)
C9—C10—H10C109.5C32—C30—H30107.9
H10A—C10—H10C109.5C31—C30—H30107.9
H10B—C10—H10C109.5C29—C30—H30107.9
C10A—C9A—C8116.7 (6)C30—C31—H31A109.5
C10A—C9A—C11123.4 (6)C30—C31—H31B109.5
C8—C9A—C11108.4 (3)H31A—C31—H31B109.5
C10A—C9A—H9A101.4C30—C31—H31C109.5
C8—C9A—H9A101.4H31A—C31—H31C109.5
C11—C9A—H9A101.4H31B—C31—H31C109.5
C9A—C10A—H10D109.5C33—C32—C41118.7 (3)
C9A—C10A—H10E109.5C33—C32—C30122.5 (3)
H10D—C10A—H10E109.5C41—C32—C30118.8 (3)
C9A—C10A—H10F109.5C32—C33—C34121.2 (3)
H10D—C10A—H10F109.5C32—C33—H33119.4
H10E—C10A—H10F109.5C34—C33—H33119.4
C20—C11—C12118.4 (3)C33—C34—C35122.3 (3)
C20—C11—C9121.6 (3)C33—C34—C39119.9 (3)
C12—C11—C9120.0 (3)C35—C34—C39117.8 (3)
C20—C11—C9A121.6 (3)C36—C35—C34121.6 (3)
C12—C11—C9A120.0 (3)C36—C35—H35119.2
C13—C12—C11121.5 (3)C34—C35—H35119.2
C13—C12—H12119.2C35—C36—C37120.2 (3)
C11—C12—H12119.2C35—C36—H36119.9
C12—C13—C14120.8 (3)C37—C36—H36119.9
C12—C13—H13119.6O6—C37—C38125.2 (3)
C14—C13—H13119.6O6—C37—C36114.3 (3)
C13—C14—C15122.4 (3)C38—C37—C36120.5 (3)
C13—C14—C19118.0 (3)C37—C38—C39119.9 (3)
C15—C14—C19119.6 (3)C37—C38—H38120.0
C16—C15—C14120.1 (3)C39—C38—H38120.0
C16—C15—H15119.9C38—C39—C40122.1 (3)
C14—C15—H15119.9C38—C39—C34120.0 (3)
O3—C16—C15125.5 (3)C40—C39—C34117.9 (3)
O3—C16—C17114.2 (3)C41—C40—C39120.7 (3)
C15—C16—C17120.3 (3)C41—C40—H40119.7
C18—C17—C16120.5 (3)C39—C40—H40119.7
C18—C17—H17119.8C40—C41—C32121.7 (3)
C16—C17—H17119.8C40—C41—H41119.2
C17—C18—C19121.3 (3)C32—C41—H41119.2
C17—C18—H18119.3O6—C42—H42A109.5
C19—C18—H18119.3O6—C42—H42B109.5
C20—C19—C18122.3 (3)H42A—C42—H42B109.5
C20—C19—C14119.5 (3)O6—C42—H42C109.5
C18—C19—C14118.2 (3)H42A—C42—H42C109.5
C11—C20—C19121.7 (3)H42B—C42—H42C109.5
C7—N1—N2—C8178.3 (3)C12—C11—C20—C190.0 (4)
C6—C1—C2—O1178.0 (3)C9—C11—C20—C19178.7 (3)
C7—C1—C2—O14.8 (4)C9A—C11—C20—C19178.7 (3)
C6—C1—C2—C33.5 (4)C18—C19—C20—C11179.6 (3)
C7—C1—C2—C3173.7 (3)C14—C19—C20—C111.5 (4)
O1—C2—C3—C4178.0 (3)C28—N3—N4—C29178.5 (3)
C1—C2—C3—C43.5 (5)C27—C22—C23—O4176.2 (3)
C2—C3—C4—C51.1 (5)C28—C22—C23—O45.4 (5)
C3—C4—C5—C61.2 (5)C27—C22—C23—C244.1 (4)
C4—C5—C6—C11.1 (5)C28—C22—C23—C24174.2 (3)
C2—C1—C6—C51.2 (5)O4—C23—C24—C25176.4 (3)
C7—C1—C6—C5176.0 (3)C22—C23—C24—C253.9 (5)
N2—N1—C7—C1174.8 (3)C23—C24—C25—C260.7 (5)
C6—C1—C7—N1178.4 (3)C24—C25—C26—C272.2 (5)
C2—C1—C7—N14.5 (4)C25—C26—C27—C221.9 (5)
N1—N2—C8—O24.7 (4)C23—C22—C27—C261.3 (5)
N1—N2—C8—C9A175.0 (3)C28—C22—C27—C26177.1 (3)
N1—N2—C8—C9175.0 (3)N4—N3—C28—C22175.6 (3)
O2—C8—C9—C10155.7 (4)C27—C22—C28—N3177.4 (3)
N2—C8—C9—C1024.6 (5)C23—C22—C28—N34.3 (5)
O2—C8—C9—C1170.5 (4)N3—N4—C29—O56.0 (5)
N2—C8—C9—C11109.2 (3)N3—N4—C29—C30174.6 (3)
O2—C8—C9A—C10A74.2 (8)O5—C29—C30—C3268.8 (4)
N2—C8—C9A—C10A106.1 (7)N4—C29—C30—C32111.8 (3)
O2—C8—C9A—C1170.5 (4)O5—C29—C30—C3157.0 (4)
N2—C8—C9A—C11109.2 (3)N4—C29—C30—C31122.4 (3)
C10—C9—C11—C20104.9 (4)C31—C30—C32—C3311.7 (5)
C8—C9—C11—C20117.6 (4)C29—C30—C32—C33111.4 (3)
C10—C9—C11—C1273.8 (4)C31—C30—C32—C41167.2 (3)
C8—C9—C11—C1263.7 (4)C29—C30—C32—C4169.6 (3)
C10A—C9A—C11—C2024.2 (8)C41—C32—C33—C340.3 (5)
C8—C9A—C11—C20117.6 (4)C30—C32—C33—C34178.7 (3)
C10A—C9A—C11—C12154.5 (7)C32—C33—C34—C35179.7 (3)
C8—C9A—C11—C1263.7 (4)C32—C33—C34—C391.4 (4)
C20—C11—C12—C131.3 (5)C33—C34—C35—C36178.0 (3)
C9—C11—C12—C13180.0 (3)C39—C34—C35—C360.9 (5)
C9A—C11—C12—C13180.0 (3)C34—C35—C36—C370.0 (5)
C11—C12—C13—C141.0 (5)C42—O6—C37—C382.4 (5)
C12—C13—C14—C15179.3 (3)C42—O6—C37—C36177.2 (3)
C12—C13—C14—C190.5 (4)C35—C36—C37—O6179.0 (3)
C13—C14—C15—C16178.8 (3)C35—C36—C37—C381.4 (5)
C19—C14—C15—C161.0 (4)O6—C37—C38—C39178.6 (3)
C21—O3—C16—C153.9 (5)C36—C37—C38—C391.8 (5)
C21—O3—C16—C17175.9 (3)C37—C38—C39—C40179.3 (3)
C14—C15—C16—O3178.0 (3)C37—C38—C39—C340.9 (5)
C14—C15—C16—C172.3 (5)C33—C34—C39—C38178.5 (3)
O3—C16—C17—C18178.5 (3)C35—C34—C39—C380.4 (4)
C15—C16—C17—C181.7 (5)C33—C34—C39—C401.7 (4)
C16—C17—C18—C190.3 (5)C35—C34—C39—C40179.4 (3)
C17—C18—C19—C20177.4 (3)C38—C39—C40—C41179.3 (3)
C17—C18—C19—C141.5 (5)C34—C39—C40—C410.9 (5)
C13—C14—C19—C201.7 (4)C39—C40—C41—C320.2 (5)
C15—C14—C19—C20178.1 (3)C33—C32—C41—C400.5 (5)
C13—C14—C19—C18179.3 (3)C30—C32—C41—C40179.6 (3)
C15—C14—C19—C180.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the hydroxyphenyl ring (C1–C6) of molecule 1; Cg4 and Cg6 are the centroids of the hydroxyphenyl ring (C22–C27) and the benzene ring (C34–C39) of the naphthalene group of molecule 2, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.871.812.606 (3)151
N2—H2N···O5i0.911.992.776 (3)143
O4—H4O···N30.871.832.630 (3)152
N4—H4N···O20.911.872.724 (3)154
C6—H6···Cg6i0.952.973.734 (4)139
C21—H21A···Cg1ii0.982.663.476 (4)141
C42—H42A···Cg4iii0.982.623.403 (5)137
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the hydroxyphenyl ring (C1–C6) of molecule 1; Cg4 and Cg6 are the centroids of the hydroxyphenyl ring (C22–C27) and the benzene ring (C34–C39) of the naphthalene group of molecule 2, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.871.812.606 (3)151
N2—H2N···O5i0.911.992.776 (3)143
O4—H4O···N30.871.832.630 (3)152
N4—H4N···O20.911.872.724 (3)154
C6—H6···Cg6i0.952.973.734 (4)139
C21—H21A···Cg1ii0.982.663.476 (4)141
C42—H42A···Cg4iii0.982.623.403 (5)137
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC21H20N2O3
Mr348.39
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)9.5461 (5), 11.8724 (6), 15.9962 (8)
β (°) 90.104 (2)
V3)1812.93 (16)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.25 × 0.18 × 0.04
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.86, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
14005, 6487, 5685
Rint0.035
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.03
No. of reflections6487
No. of parameters479
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22
Absolute structureFlack x determined using 2150 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.21 (19)

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAssali, M., Zaid, A.-E., Abualhasan, M., Jaradat, N., Tarayra, R., Hamdan, A. & Ardah, R. (2014). J. Chem. Pharm. Res. 6, 1–4.  CAS Google Scholar
First citationBatlouni, M. (2010). Arq. Bras. Cardiol. 94, 556–563.  CrossRef PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapone, M. L., Tacconelli, S., Sciulli, M. G., Anzellotti, P., Di Francesco, L., Merciaro, G., Di Gregorio, P. & Patrignani, P. (2007). J. Pharmacol. Exp. Ther. 322, 453–460.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeek, I. L., van de Laar, M. A. F. J., Harald, E. & Vonkeman, H. E. (2010). Pharmaceuticals, 3, 2146–2162.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, L., Qiu, G., Teng, H., Zhu, Q., Liang, S. & Hu, X. (2007). Inorg. Chim. Acta, 360, 3069–3074.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds