organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Propyl-1H-indole-2,3-dione

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181., Ecole Nationale Supérieure de Chimie de Lille, France, and dLaboratoire d'Ingénierie des Matériaux et d'Environnement, Modélisation et Application (LIMEMA), Ibn Tofail University, Kénitra, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 11 April 2016; accepted 12 April 2016; online 15 April 2016)

In the title compound, C11H11NO2, the 1H-indole-2,3-dione unit is essentially planar, with an r.m.s. deviation of 0.0387 (13) Å. This plane makes a dihedral angle of 72.19 (17)° with the plane of the propyl substituent. In the crystal, chains propagating along the b axis are formed through C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Formerly, the study of isatin (1H-indole-2,3-dione) derivatives was connected with dye synthesis, but more recently these heterocycles have been shown to possess biological and pharmacological properties. They are also used as key inter­mediates in organic synthesis (da Silva et al., 2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]). Isatin is a core constituent of many alkaloids (Batanero & Barba, 2006[Batanero, B. & Barba, F. (2006). Tetrahedron Lett. 47, 8201-8203.]) and drugs (Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]) as well as dyes (Doménech et al., 2009[Doménech, A., Doménech-Carbó, M. T., del Río, M. S., de Agredos Pascual, M. L. V. & Lima, E. (2009). New J. Chem. 33, 2371-2379.]), pesticides and analytical reagents. Various derivatives of isatin show diverse biological activities including anti­bacterial (Kassab et al., 2010[Kassab, S. E., Hegazy, G. H., Eid, N. M., Amin, K. M. & El-Gendy, A. A. (2010). Nucleosides Nucleotides Nucleic Acids, 29, 72-80.]), anti­fungal (Amal Raj et al., 2003[Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]), anti­viral (Jarrahpour et al., 2007[Jarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.]), anti-HIV (Bal et al., 2005[Bal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451-4455.]), anti-mycobacterial (Karalı et al., 2007[Karalı, N., Gürsoy, A., Kandemirli, F., Shvets, N., Kaynak, F. B., Özbey, S., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 5888-5904.]), anti­cancer (Gürsoy & Karalı 2003[Gürsoy, A. & Karalı, N. (2003). Eur. J. Med. Chem. 38, 633-643.]), and anti-inflammatory activities (Sridhar & Ramesh 2001[Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149-1152.]) and are also effective anti­convulsants (Verma et al. 2004[Verma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]). Furthermore, isatin derivatives with their multifunctionality and diversity of transformations are synthetically versatile substrates and many efforts have been made toward the synthesis of these compounds.

In this work we report the synthesis and structure of a new derivative of isatin (Fig. 1[link]) prepared by the action of 1-bromo­propane alkyl on 1H-indole-2,3-dione in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The near planarity of the isatin ring system is illustrated by a maximum deviation of 0.0387 (13) Å for the O2 atom from the best-fit plane through the 11 atoms of the ring system (Fig. 1[link]). All bond lengths and angles compare well with those reported in the structure of 5-bromo-1-(prop-2-en-1-yl)-2, 3-di­hydro-1H-indole-2, 3-dione (Maamri et al., 2012[Maamri, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o240.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Two C—H⋯O inter­molecular hydrogen bonds are observed in the crystal structure, Table 1[link]; they link mol­ecules, forming parallel chains along the b axis (Figs. 2[link] and 3[link]). ππ inter­actions are observed between the five- and six-membered rings of neighbouring mol­ecules, with a Cg1⋯Cg2i distance of 3.6218 (10) Å [Cg1 and Cg2 are the centroids of the (N1/C1/C6–C8) and (C1–C6) rings, respectively; symmetry code: (i): 1 + x, y, z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.96 (2) 2.52 (2) 3.339 (2) 143.6 (16)
C10—H10B⋯O1ii 0.96 (2) 2.57 (2) 3.439 (2) 149.4 (17)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View along the a axis of the packing structure of the title compound. The dashed lines indicate inter­molecular C—H⋯O inter­actions.
[Figure 3]
Figure 3
The crystal structure of the title compound, viewed along the b axis, showing chains parallel to the b axis of the unit cell.

Synthesis and crystallization

To a solution of isatin (0.2 g, 1.4 mmol) dissolved in DMF(10 ml) was added potassium carbonate (0.33 g, 2.38 mmol), a catalytic qu­antity of tetra-n-butyl­ammonium bromide (0.04 g, 0.11 mmol) and 1-bromo­propane (0.13 ml, 1.4 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The resulting solid was recrystallized from ethanol to afford the title compound as red crystals in 82% yield (m.p. 357 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H11NO2
Mr 189.21
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 4.4666 (2), 12.9169 (6), 16.3857 (8)
V3) 945.37 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.28 × 0.24 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.681, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8372, 2720, 2474
Rint 0.026
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.26
No. of reflections 2720
No. of parameters 171
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.21
Absolute structure Flack x determined using 912 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.5 (5)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

To a solution of isatin (0.2g, 1.4mmol) dissolved in DMF(10ml) was added potassium carbonate (0.33g, 2.38 mmol), a catalytic qu­antity of tetra-n-butyl­ammonium bromide (0.04g, 0.11mmol) and 1-bromo­propane (0.13 ml, 1.4 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The resulting solid was recrystallized from ethanol to afford the title compound as red crystals in 82% yield (mp: 357°K)

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Experimental top

To a solution of isatin (0.2 g, 1.4 mmol) dissolved in DMF(10 ml) was added potassium carbonate (0.33 g, 2.38 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.04 g, 0.11 mmol) and 1-bromopropane (0.13 ml, 1.4 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The resulting solid was recrystallized from ethanol to afford the title compound as red crystals in 82% yield (m.p. 357 K)

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Formerly, the study of isatin (1H-indole-2,3-dione) derivatives was connected with dye synthesis, but more recently these heterocycles have been shown to possess biological and pharmacological properties. They are also used as key intermediates in organic synthesis (da Silva et al., 2001). Isatin is a core constituent of many alkaloids (Batanero & Barba, 2006) and drugs (Aboul-Fadl et al., 2010) as well as dyes (Doménech et al., 2009), pesticides and analytical reagents. Various derivatives of isatin show diverse biological activities including antibacterial (Kassab et al., 2010), antifungal (Amal Raj et al., 2003), antiviral (Jarrahpour et al., 2007), anti-HIV (Bal et al., 2005), anti-mycobacterial (Karalı et al., 2007), anticancer (Gürsoy & Karalı 2003), and anti-inflammatory activities (Sridhar & Ramesh 2001) and are also effective anticonvulsants (Verma et al. 2004). Furthermore, isatin derivatives with their multifunctionality and diversity of transformations are synthetically versatile substrates and many efforts have been made toward the synthesis of these compounds.

In this work we report the synthesis and structure of a new derivative of isatin (Fig. 1) prepared by the action of 1-bromopropane alkyl on 1H-indole-2,3-dione in the presence of a catalytic quantity of tetra-n-butylammonium bromide. The near planarity of the isatin ring system is illustrated by a maximum deviation of 0.0387 (13) Å for the O2 atom from the best-fit plane through the 11 atoms of the ring system (Fig. 1). All bond lengths and angles compare well with those reported in the structure of 5-bromo-1-(prop-2-en-1-yl)-2, 3-dihydro-1H-indole-2, 3-dione (Maamri et al., 2012).

Three C—H···O intermolecular hydrogen bonds are observed in the crystal structure, Table 1; they link molecules, forming parallel chains along the b axis (Figs. 2 and 3). ππ interactions are observed between the five- and six-membered rings of neighbouring molecules, with a Cg1···Cg2i distance of 3.6218 (10) Å [Cg1 and Cg2 are the centroids of the (C1, C6, N1, C8,C7) and (C1–C6) rings, respectively; symmetry code: (i): 1 + x, y, z].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View along the a axis of the packing structure of the title compound. The dashed lines indicate intermolecular C—H···O interactions.
[Figure 3] Fig. 3. The crystal structure of the title compound, viewed along the b axis, showing chains parallel to the b axis of the unit cell.
1-Propyl-1H-indole-2,3-dione top
Crystal data top
C11H11NO2Dx = 1.329 Mg m3
Mr = 189.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3897 reflections
a = 4.4666 (2) Åθ = 2.5–30.5°
b = 12.9169 (6) ŵ = 0.09 mm1
c = 16.3857 (8) ÅT = 100 K
V = 945.37 (8) Å3Parallelepiped, orange
Z = 40.28 × 0.24 × 0.10 mm
F(000) = 400
Data collection top
Bruker APEXII CCD
diffractometer
2720 independent reflections
Radiation source: microfocus source2474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 65
Tmin = 0.681, Tmax = 0.746k = 1712
8372 measured reflectionsl = 2322
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.006
S = 1.25Δρmax = 0.23 e Å3
2720 reflectionsΔρmin = 0.21 e Å3
171 parametersAbsolute structure: Flack x determined using 912 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.5 (5)
Crystal data top
C11H11NO2V = 945.37 (8) Å3
Mr = 189.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.4666 (2) ŵ = 0.09 mm1
b = 12.9169 (6) ÅT = 100 K
c = 16.3857 (8) Å0.28 × 0.24 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2720 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2474 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.746Rint = 0.026
8372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.089Δρmax = 0.23 e Å3
S = 1.25Δρmin = 0.21 e Å3
2720 reflectionsAbsolute structure: Flack x determined using 912 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
171 parametersAbsolute structure parameter: 0.5 (5)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.2074 (4)0.23633 (14)0.34207 (9)0.0167 (3)
C50.0195 (4)0.50779 (14)0.32062 (10)0.0161 (3)
C30.2671 (4)0.44800 (15)0.43838 (10)0.0200 (4)
C80.3971 (4)0.26930 (14)0.26673 (10)0.0167 (3)
C10.0449 (3)0.32977 (13)0.36607 (9)0.0145 (3)
C90.4709 (4)0.43360 (15)0.18883 (10)0.0173 (3)
C100.2755 (4)0.44538 (14)0.11315 (10)0.0179 (3)
C60.1282 (3)0.40851 (13)0.31200 (9)0.0131 (3)
C40.1806 (4)0.52562 (14)0.38456 (10)0.0194 (4)
C20.1525 (4)0.34886 (14)0.42971 (10)0.0166 (3)
C110.2039 (5)0.34352 (16)0.07157 (12)0.0270 (4)
N10.3325 (3)0.37085 (11)0.25297 (8)0.0150 (3)
O10.2111 (3)0.15078 (9)0.37136 (7)0.0235 (3)
O20.5712 (3)0.21478 (10)0.22898 (8)0.0247 (3)
H20.211 (5)0.2930 (18)0.4661 (14)0.030 (6)*
H30.405 (5)0.4602 (16)0.4792 (14)0.029 (5)*
H40.266 (5)0.5948 (17)0.3915 (12)0.022 (5)*
H50.075 (4)0.5642 (16)0.2856 (13)0.024 (5)*
H9A0.666 (4)0.3964 (15)0.1758 (12)0.016 (5)*
H9B0.517 (4)0.5007 (15)0.2124 (11)0.011 (4)*
H10B0.093 (5)0.4815 (16)0.1264 (12)0.023 (5)*
H10A0.391 (4)0.4923 (16)0.0746 (12)0.021 (5)*
H11A0.084 (6)0.3542 (16)0.0226 (15)0.034 (6)*
H11B0.387 (6)0.3080 (19)0.0530 (15)0.044 (7)*
H11C0.084 (5)0.2976 (17)0.1088 (15)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0205 (8)0.0129 (9)0.0166 (7)0.0014 (6)0.0032 (6)0.0009 (6)
C50.0188 (7)0.0114 (9)0.0180 (7)0.0000 (6)0.0027 (6)0.0006 (6)
C30.0184 (8)0.0257 (10)0.0158 (7)0.0029 (7)0.0011 (6)0.0029 (7)
C80.0177 (7)0.0160 (9)0.0164 (7)0.0015 (6)0.0020 (6)0.0023 (6)
C10.0160 (7)0.0123 (9)0.0151 (7)0.0012 (6)0.0030 (6)0.0007 (6)
C90.0160 (7)0.0181 (10)0.0176 (7)0.0030 (7)0.0020 (6)0.0024 (6)
C100.0189 (7)0.0180 (9)0.0170 (7)0.0001 (7)0.0004 (6)0.0017 (7)
C60.0121 (6)0.0130 (9)0.0143 (6)0.0018 (6)0.0028 (6)0.0007 (6)
C40.0208 (8)0.0159 (10)0.0217 (8)0.0042 (7)0.0034 (7)0.0033 (7)
C20.0172 (7)0.0167 (9)0.0159 (7)0.0023 (6)0.0016 (6)0.0026 (6)
C110.0354 (10)0.0226 (11)0.0231 (9)0.0029 (9)0.0061 (8)0.0039 (8)
N10.0179 (7)0.0122 (8)0.0148 (6)0.0001 (5)0.0016 (5)0.0012 (5)
O10.0353 (7)0.0104 (7)0.0247 (6)0.0001 (5)0.0025 (5)0.0032 (5)
O20.0291 (7)0.0197 (8)0.0253 (6)0.0081 (6)0.0024 (6)0.0027 (5)
Geometric parameters (Å, º) top
C7—O11.205 (2)C9—N11.464 (2)
C7—C11.462 (2)C9—C101.524 (2)
C7—C81.557 (2)C9—H9A1.02 (2)
C5—C61.379 (2)C9—H9B0.971 (19)
C5—C41.396 (2)C10—C111.516 (3)
C5—H50.96 (2)C10—H10B0.96 (2)
C3—C21.386 (3)C10—H10A1.02 (2)
C3—C41.390 (3)C6—N11.416 (2)
C3—H30.92 (2)C4—H40.98 (2)
C8—O21.218 (2)C2—H20.97 (2)
C8—N11.362 (2)C11—H11A0.97 (2)
C1—C21.388 (2)C11—H11B0.98 (3)
C1—C61.399 (2)C11—H11C1.01 (2)
O1—C7—C1131.04 (16)C9—C10—H10B110.4 (12)
O1—C7—C8124.02 (16)C11—C10—H10A110.2 (12)
C1—C7—C8104.93 (14)C9—C10—H10A106.0 (11)
C6—C5—C4117.12 (16)H10B—C10—H10A106.2 (17)
C6—C5—H5123.6 (12)C5—C6—C1121.17 (15)
C4—C5—H5119.3 (12)C5—C6—N1128.07 (14)
C2—C3—C4119.91 (16)C1—C6—N1110.75 (14)
C2—C3—H3118.6 (13)C3—C4—C5122.35 (17)
C4—C3—H3121.5 (13)C3—C4—H4118.5 (12)
O2—C8—N1127.46 (16)C5—C4—H4119.2 (12)
O2—C8—C7126.30 (16)C1—C2—C3118.41 (16)
N1—C8—C7106.23 (13)C1—C2—H2119.9 (13)
C2—C1—C6121.04 (16)C3—C2—H2121.7 (13)
C2—C1—C7131.62 (16)C10—C11—H11A111.3 (12)
C6—C1—C7107.31 (14)C10—C11—H11B111.7 (14)
N1—C9—C10113.42 (13)H11A—C11—H11B105 (2)
N1—C9—H9A104.5 (11)C10—C11—H11C110.6 (13)
C10—C9—H9A111.5 (11)H11A—C11—H11C106.9 (19)
N1—C9—H9B107.3 (11)H11B—C11—H11C110.7 (19)
C10—C9—H9B110.8 (11)C8—N1—C6110.75 (13)
H9A—C9—H9B108.9 (15)C8—N1—C9124.24 (14)
C11—C10—C9113.57 (15)C6—N1—C9124.91 (14)
C11—C10—H10B110.1 (12)
O1—C7—C8—O20.7 (3)C2—C3—C4—C50.3 (3)
C1—C7—C8—O2178.18 (16)C6—C5—C4—C30.6 (2)
O1—C7—C8—N1179.65 (16)C6—C1—C2—C30.3 (2)
C1—C7—C8—N10.79 (17)C7—C1—C2—C3178.24 (17)
O1—C7—C1—C20.4 (3)C4—C3—C2—C10.8 (2)
C8—C7—C1—C2178.34 (16)O2—C8—N1—C6177.48 (16)
O1—C7—C1—C6178.56 (17)C7—C8—N1—C61.48 (16)
C8—C7—C1—C60.18 (17)O2—C8—N1—C91.0 (3)
N1—C9—C10—C1161.1 (2)C7—C8—N1—C9177.95 (13)
C4—C5—C6—C11.1 (2)C5—C6—N1—C8177.01 (16)
C4—C5—C6—N1179.70 (15)C1—C6—N1—C81.69 (17)
C2—C1—C6—C50.7 (2)C5—C6—N1—C90.6 (2)
C7—C1—C6—C5177.72 (14)C1—C6—N1—C9178.13 (14)
C2—C1—C6—N1179.48 (14)C10—C9—N1—C899.75 (18)
C7—C1—C6—N11.09 (18)C10—C9—N1—C684.27 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.96 (2)2.52 (2)3.339 (2)143.6 (16)
C9—H9A···O21.018 (18)2.538 (19)2.936 (2)102.8 (12)
C10—H10B···O1ii0.96 (2)2.57 (2)3.439 (2)149.4 (17)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.96 (2)2.52 (2)3.339 (2)143.6 (16)
C9—H9A···O21.018 (18)2.538 (19)2.936 (2)102.8 (12)
C10—H10B···O1ii0.96 (2)2.57 (2)3.439 (2)149.4 (17)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H11NO2
Mr189.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.4666 (2), 12.9169 (6), 16.3857 (8)
V3)945.37 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.24 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.681, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
8372, 2720, 2474
Rint0.026
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.25
No. of reflections2720
No. of parameters171
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.21
Absolute structureFlack x determined using 912 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.5 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationBal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBatanero, B. & Barba, F. (2006). Tetrahedron Lett. 47, 8201–8203.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoménech, A., Doménech-Carbó, M. T., del Río, M. S., de Agredos Pascual, M. L. V. & Lima, E. (2009). New J. Chem. 33, 2371–2379.  Google Scholar
First citationGürsoy, A. & Karalı, N. (2003). Eur. J. Med. Chem. 38, 633–643.  Web of Science PubMed Google Scholar
First citationJarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaralı, N., Gürsoy, A., Kandemirli, F., Shvets, N., Kaynak, F. B., Özbey, S., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 5888–5904.  Web of Science PubMed Google Scholar
First citationKassab, S. E., Hegazy, G. H., Eid, N. M., Amin, K. M. & El-Gendy, A. A. (2010). Nucleosides Nucleotides Nucleic Acids, 29, 72–80.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaamri, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVerma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds