organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(4-Chloro­phen­yl)-5-[4-(methyl­sulfan­yl)phen­yl]-1H-pyrazole

aDepartment of Chemistry, Ramakrishna Mission Vivekananda College, Chennai 600 004, India
*Correspondence e-mail: muniraj_sl@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 25 March 2016; accepted 22 April 2016; online 29 April 2016)

In the title compound, C16H13ClN2S, the pyrazole ring is almost planar with an r.m.s. deviation of 0.0457 Å which forms dihedral angles of 2.875 (4) and 84.83 (7)° with the chloro-substituted benzene ring and the methyl­sulfanyl-substituted ring, respectively. In the crystal, N—H⋯N and C—H⋯Cl hydrogen bonds contribute to the formation of a three-dimensional network. In addition, several offset ππ stacking inter­actions are also present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazoles (Kamatchi et al., 2012[Kamatchi, P., Jagadeesan, G., Pramesh, M., Perumal, P. T. & Aravindhan, S. (2012). Acta Cryst. E68, o552.]) exhibit a variety of pharmacological properties including anti­bacterial and anti-inflammatory activities (Sullivan et al., 2006[Sullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). Chem. Biol. 1, 43-53.]; Patel et al., 2010[Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73-78.]). A pyrazole derivative also shows nucleosidase inhibitory activity against Staphylo­coccus aureus (Siu et al. 2008[Siu, K. K. W., Lee, J. E., Smith, G. D., Horvatin-Mrakovcic, C. & Howell, P. L. (2008). Acta Cryst. F64, 343-350.]). In view of their importance, we have synthesized the title pyrazole derivative and its crystal structure is reported here.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The pyrazole ring (N1/N2/C7–C9) is almost planar with an r.m.s deviation of 0.0457 Å. This ring subtends a dihedral angle of 2.875 (4)° with the chloro-substituted benzene ring (C12–C17) while the C1–C6 benzene ring is almost perpendicular to the pyrazole ring with a dihedral angle 84.83 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 30% probability displacement ellipsoids.

In the crystal, centrosymmetrically related N1—H1⋯N2 hydrogen bonds (Table 1[link]) form inversion dimers with R22(6) ring motifs. Furthermore, as shown in Fig. 2[link], mol­ecules are linked in a head-to-tail fashion by ππ stacking inter­actions with centroid–centroid distances Cg1⋯Cg1iii = 3.538 (2) and Cg2⋯Cg3iii = 3.8610 (18) Å [Cg1, Cg2 and Cg3 are the centroids of the N1/N2/C7–C9, C1–C6 and C12–C17 rings, respectively; symmetry code: (iii) −x + 2, −y + 1, −z + 1]. In addition to the N1—H1⋯N1 hydrogen bonds, there are also weak but effective C14—H14⋯Cl1 hydrogen bonds that also contribute to the formation of a three-dimensional network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cl1i 0.93 2.94 3.771 (3) 149
N1—H1⋯N2ii 0.89 (1) 2.05 (3) 2.875 (4) 153 (5)
N1—H1⋯N1ii 0.89 (1) 2.61 (5) 3.170 (5) 122 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y, -z+1.
[Figure 2]
Figure 2
ππ stacking inter­actions shown as dotted green lines with ring centroids displayed as coloured spheres. For centroid labels and symmetry operations see text.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the a axis.

Synthesis and crystallization

A mixture of substituted chalcone (0.01 mol) and isoniazid (0.01 mol) kept in 25 ml round bottom flask then heated for 160°C for 1 h. The reaction mixture was cooled and purified by column chromatography. The purified compound was recrystallized from hexa­ne/ethyl­acetate (3:6) by the slow evaporation method.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H13ClN2S
Mr 300.79
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 15.0422 (12), 5.6323 (5), 17.1019 (15)
β (°) 102.480 (2)
V3) 1414.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.25 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.905, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 20565, 2921, 2210
Rint 0.033
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.130, 1.12
No. of reflections 2921
No. of parameters 186
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.28
Computer programs: APEX2, SAINT and XPREP (Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Synthesis and crystallization top

A mixture of substituted chalcone (0.01 mol) and isoniazid (0.01 mol) kept in 25 ml round bottom flask then heated for 160°C 1h. The reaction mixture was cooled and purified by column chromatography. The purified compound was recrystallized from hexane/ethyl­acetate (3:6) by the slow evaporation method.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1

Experimental top

A mixture of substituted chalcone (0.01 mol) and isoniazid (0.01 mol) kept in 25 ml round bottom flask then heated for 160°C for 1 h. The reaction mixture was cooled and purified by column chromatography. The purified compound was recrystallized from hexane/ethylacetate (3:6) by the slow evaporation method.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Pyrazoles (Kamatchi et al., 2012) exhibit a variety of pharmacological properties including antibacterial and anti-inflammatory activities (Sullivan et al., 2006; Patel et al., 2010). A pyrazole derivative also shows nucleosidase inhibitory activity against Staphylococcus aureus (Siu et al. 2008). In view of their importance, we have synthesized the title pyrazole derivative and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The pyrazole ring (N1/N2/C7–C9) is almost planar with an r.m.s deviation of 0.0457 Å. This ring subtends a dihedral angle of 2.875 (4)° with the chloro-substituted benzene ring (C12–C17) while the C1–C6 benzene ring is almost perpendicular to the pyrazole ring with a dihedral angle 84.83 (7)°.

In the crystal, centrosymmetrically related N1—H1···N2 hydrogen bonds (Table 1) form inversion dimers with R22(6) ring motifs. Furthermore, as shown in Fig. 2, molecules are linked in a head-to-tail fashion by ππ stacking interactions with centroid–centroid distances Cg1···Cg1iii = 3.538 (2) and Cg2···Cg3iii = 3.8610 (18) Å [Cg1, Cg2 and Cg3 are the centroids of the N1/N2/C7–C9, C1–C6 and C12–C17 rings, respectively; symmetry code: (iii) -x + 2, -y + 1, -z + 1]. In addition to the N1—H1···N1 hydrogen bonds, there are also weak but effective C14—H14···Cl1 hydrogen bonds that also contribute to the formation of a three-dimensional network (Fig. 3).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 and SAINT (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. ππ stacking interactions shown as dotted green lines with ring centroids displayed as coloured spheres. For centroid labels and symmetry operations see text.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the a axis.
3-(4-Chlorophenyl)-5-[4-(methylsulfanyl)phenyl]-1H-pyrazole top
Crystal data top
C16H13ClN2SF(000) = 624
Mr = 300.79Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.0422 (12) ÅCell parameters from 8419 reflections
b = 5.6323 (5) Åθ = 2.8–30.1°
c = 17.1019 (15) ŵ = 0.41 mm1
β = 102.480 (2)°T = 296 K
V = 1414.7 (2) Å3Block, pale-yellow
Z = 40.25 × 0.25 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2921 independent reflections
Radiation source: fine-focus sealed tube2210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scanθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1818
Tmin = 0.905, Tmax = 0.941k = 77
20565 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0259P)2 + 2.3699P]
where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C16H13ClN2SV = 1414.7 (2) Å3
Mr = 300.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0422 (12) ŵ = 0.41 mm1
b = 5.6323 (5) ÅT = 296 K
c = 17.1019 (15) Å0.25 × 0.25 × 0.15 mm
β = 102.480 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2210 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.941Rint = 0.033
20565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.40 e Å3
2921 reflectionsΔρmin = 0.28 e Å3
186 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.86308 (19)0.4265 (5)0.14839 (17)0.0358 (7)
C20.8308 (2)0.6014 (6)0.19216 (18)0.0391 (7)
H20.80350.73640.16620.047*
C30.83852 (19)0.5781 (5)0.27367 (18)0.0367 (7)
H30.81650.69740.30190.044*
C40.87890 (18)0.3781 (5)0.31398 (16)0.0311 (6)
C50.9089 (2)0.2024 (5)0.26987 (18)0.0389 (7)
H50.93450.06520.29560.047*
C60.9017 (2)0.2257 (6)0.18792 (18)0.0417 (7)
H60.92300.10540.15950.050*
C70.88814 (18)0.3566 (5)0.40110 (17)0.0332 (6)
C80.85749 (19)0.5015 (5)0.45494 (17)0.0352 (6)
H80.82320.63950.44330.042*
C90.88822 (18)0.3997 (5)0.53004 (17)0.0327 (6)
C120.87854 (18)0.4797 (5)0.60968 (16)0.0321 (6)
C130.8377 (2)0.6961 (5)0.61894 (18)0.0388 (7)
H130.81590.79040.57430.047*
C140.8292 (2)0.7730 (6)0.69368 (19)0.0438 (8)
H140.80080.91700.69900.053*
C150.8623 (2)0.6378 (6)0.75962 (18)0.0404 (7)
C160.9032 (2)0.4230 (6)0.75310 (19)0.0450 (8)
H160.92550.33130.79830.054*
C170.9107 (2)0.3454 (6)0.67792 (18)0.0417 (7)
H170.93790.19950.67310.050*
C200.8972 (3)0.2228 (8)0.0090 (2)0.0764 (13)
H20A0.95980.20520.03600.115*
H20B0.89340.23830.04750.115*
H20C0.86340.08570.01900.115*
N10.93368 (18)0.1756 (5)0.44264 (16)0.0426 (6)
N20.93436 (17)0.2002 (5)0.52172 (15)0.0422 (6)
S10.85099 (7)0.48113 (18)0.04526 (5)0.0577 (3)
Cl10.85408 (7)0.74040 (19)0.85373 (5)0.0638 (3)
H10.974 (3)0.066 (8)0.437 (3)0.17 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (15)0.0373 (17)0.0360 (16)0.0041 (13)0.0079 (12)0.0013 (13)
C20.0395 (17)0.0340 (16)0.0435 (17)0.0051 (14)0.0081 (13)0.0062 (14)
C30.0380 (16)0.0308 (15)0.0421 (17)0.0060 (13)0.0104 (13)0.0015 (13)
C40.0261 (13)0.0312 (15)0.0358 (15)0.0011 (12)0.0065 (11)0.0002 (12)
C50.0428 (17)0.0288 (15)0.0441 (17)0.0051 (13)0.0077 (13)0.0006 (13)
C60.0477 (18)0.0334 (16)0.0453 (18)0.0039 (14)0.0130 (14)0.0058 (14)
C70.0279 (14)0.0312 (15)0.0400 (16)0.0002 (12)0.0062 (12)0.0033 (13)
C80.0346 (15)0.0316 (15)0.0392 (15)0.0053 (13)0.0079 (12)0.0020 (13)
C90.0298 (14)0.0305 (15)0.0388 (16)0.0009 (12)0.0094 (12)0.0005 (12)
C120.0280 (14)0.0321 (15)0.0371 (15)0.0008 (12)0.0090 (12)0.0023 (12)
C130.0415 (17)0.0351 (16)0.0405 (16)0.0090 (14)0.0101 (13)0.0057 (13)
C140.0461 (18)0.0363 (17)0.0514 (19)0.0069 (15)0.0162 (15)0.0022 (15)
C150.0390 (17)0.0445 (18)0.0396 (16)0.0067 (15)0.0130 (13)0.0031 (14)
C160.0510 (19)0.0459 (19)0.0379 (17)0.0032 (16)0.0092 (14)0.0088 (14)
C170.0460 (18)0.0335 (17)0.0472 (18)0.0081 (14)0.0138 (14)0.0062 (14)
C200.099 (3)0.087 (3)0.045 (2)0.019 (3)0.021 (2)0.013 (2)
N10.0458 (16)0.0394 (15)0.0428 (15)0.0111 (13)0.0097 (12)0.0059 (12)
N20.0468 (15)0.0370 (14)0.0452 (15)0.0090 (12)0.0154 (12)0.0016 (12)
S10.0807 (7)0.0554 (6)0.0372 (5)0.0033 (5)0.0128 (4)0.0001 (4)
Cl10.0752 (6)0.0743 (7)0.0446 (5)0.0040 (5)0.0188 (4)0.0161 (5)
Geometric parameters (Å, º) top
C1—C61.380 (4)C12—C171.387 (4)
C1—C21.387 (4)C12—C131.389 (4)
C1—S11.761 (3)C13—C141.382 (4)
C2—C31.380 (4)C13—H130.9300
C2—H20.9300C14—C151.363 (4)
C3—C41.390 (4)C14—H140.9300
C3—H30.9300C15—C161.372 (5)
C4—C51.378 (4)C15—Cl11.740 (3)
C4—C71.471 (4)C16—C171.385 (4)
C5—C61.388 (4)C16—H160.9300
C5—H50.9300C17—H170.9300
C6—H60.9300C20—S11.781 (4)
C7—N11.343 (4)C20—H20A0.9600
C7—C81.382 (4)C20—H20B0.9600
C8—C91.391 (4)C20—H20C0.9600
C8—H80.9300N1—N21.357 (4)
C9—N21.344 (4)N1—H10.891 (10)
C9—C121.471 (4)
C6—C1—C2118.5 (3)C17—C12—C9121.7 (3)
C6—C1—S1125.1 (2)C13—C12—C9120.6 (3)
C2—C1—S1116.4 (2)C14—C13—C12120.8 (3)
C3—C2—C1121.0 (3)C14—C13—H13119.6
C3—C2—H2119.5C12—C13—H13119.6
C1—C2—H2119.5C15—C14—C13120.0 (3)
C2—C3—C4120.7 (3)C15—C14—H14120.0
C2—C3—H3119.6C13—C14—H14120.0
C4—C3—H3119.6C14—C15—C16121.1 (3)
C5—C4—C3118.0 (3)C14—C15—Cl1119.5 (3)
C5—C4—C7121.6 (3)C16—C15—Cl1119.4 (2)
C3—C4—C7120.3 (3)C15—C16—C17118.8 (3)
C4—C5—C6121.4 (3)C15—C16—H16120.6
C4—C5—H5119.3C17—C16—H16120.6
C6—C5—H5119.3C16—C17—C12121.7 (3)
C1—C6—C5120.3 (3)C16—C17—H17119.2
C1—C6—H6119.8C12—C17—H17119.2
C5—C6—H6119.8S1—C20—H20A109.5
N1—C7—C8107.5 (3)S1—C20—H20B109.5
N1—C7—C4121.6 (3)H20A—C20—H20B109.5
C8—C7—C4130.8 (3)S1—C20—H20C109.5
C7—C8—C9106.2 (3)H20A—C20—H20C109.5
C7—C8—H8126.9H20B—C20—H20C109.5
C9—C8—H8126.9C7—N1—N2110.0 (3)
N2—C9—C8108.8 (3)C7—N1—H1139 (4)
N2—C9—C12120.7 (3)N2—N1—H1109 (4)
C8—C9—C12130.4 (3)C9—N2—N1107.3 (2)
C17—C12—C13117.7 (3)C1—S1—C20104.04 (17)
C6—C1—C2—C31.2 (4)N2—C9—C12—C13174.4 (3)
S1—C1—C2—C3178.8 (2)C8—C9—C12—C134.2 (5)
C1—C2—C3—C40.1 (5)C17—C12—C13—C140.4 (4)
C2—C3—C4—C51.5 (4)C9—C12—C13—C14179.4 (3)
C2—C3—C4—C7179.0 (3)C12—C13—C14—C151.1 (5)
C3—C4—C5—C61.8 (4)C13—C14—C15—C161.0 (5)
C7—C4—C5—C6178.7 (3)C13—C14—C15—Cl1178.2 (2)
C2—C1—C6—C50.9 (4)C14—C15—C16—C170.3 (5)
S1—C1—C6—C5179.1 (2)Cl1—C15—C16—C17178.9 (2)
C4—C5—C6—C10.7 (5)C15—C16—C17—C120.4 (5)
C5—C4—C7—N16.3 (4)C13—C12—C17—C160.4 (4)
C3—C4—C7—N1174.2 (3)C9—C12—C17—C16178.7 (3)
C5—C4—C7—C8174.9 (3)C8—C7—N1—N20.7 (3)
C3—C4—C7—C84.6 (5)C4—C7—N1—N2178.4 (2)
N1—C7—C8—C90.9 (3)C8—C9—N2—N10.4 (3)
C4—C7—C8—C9178.0 (3)C12—C9—N2—N1178.5 (2)
C7—C8—C9—N20.8 (3)C7—N1—N2—C90.2 (3)
C7—C8—C9—C12178.0 (3)C6—C1—S1—C200.9 (3)
N2—C9—C12—C174.6 (4)C2—C1—S1—C20179.1 (3)
C8—C9—C12—C17176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1i0.932.943.771 (3)149
N1—H1···N2ii0.89 (1)2.05 (3)2.875 (4)153 (5)
N1—H1···N1ii0.89 (1)2.61 (5)3.170 (5)122 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1i0.932.943.771 (3)149.3
N1—H1···N2ii0.891 (10)2.05 (3)2.875 (4)153 (5)
N1—H1···N1ii0.891 (10)2.61 (5)3.170 (5)122 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13ClN2S
Mr300.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.0422 (12), 5.6323 (5), 17.1019 (15)
β (°) 102.480 (2)
V3)1414.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.25 × 0.25 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.905, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
20565, 2921, 2210
Rint0.033
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.130, 1.12
No. of reflections2921
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: APEX2 (Bruker, 2012), APEX2 and SAINT (Bruker, 2012), SAINT and XPREP (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

The authors are very grateful to staff members of the Department of Chemistry, Ramakrishna Mission Vivekananda College, Mylapore, and Chennai. They also thank the Sophisticated Analytical Instrumentation Facility (SAIF), IIT Madras, for analytical support. GS thanks the CSIR for an SRF grant [No. 08/508 (0001)/2013-EMR-I].

References

First citationBruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKamatchi, P., Jagadeesan, G., Pramesh, M., Perumal, P. T. & Aravindhan, S. (2012). Acta Cryst. E68, o552.  CrossRef IUCr Journals Google Scholar
First citationPatel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiu, K. K. W., Lee, J. E., Smith, G. D., Horvatin-Mrakovcic, C. & Howell, P. L. (2008). Acta Cryst. F64, 343–350.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). Chem. Biol. 1, 43–53.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds