organic compounds
1,3,6-Tribromo-9-ethyl-9H-carbazole
aDepartment of Chemistry, National Taras Shevchenko University, 62a Volodymirska st., Kyiv, Ukraine, and bDepartment of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Road 19, LT-50254, Kaunas, Lithuania
*Correspondence e-mail: nikolay_bezugliy@ukr.net
In the title compound, C14H10Br3N, the carbazole ring system is almost planar, with an r.m.s. deviation of 0.023 Å from the best fit mean plane of the 13 non-H atoms of the three rings. The methyl C atom lies 1.232 (3) Å out of this plane. No hydrogen bonds are found in the but weak C—Br⋯π contacts at approximately 3.721 Å may stabilize the structure.
Keywords: crystal structure; carbazole; halogen–carbon interaction.
CCDC reference: 1476710
Structure description
N-substituted carbazole derivatives are important in cancer research (Caulfield et al., 2002) and as materials for opto-electronic devices (Niu et al., 2011; Miyazaki et al., 2014; Grigalevicius et al., 2003). The crystal structures of 3-bromo- and 1,3,6,8-tetrabromo-9-ethyl-9H-carbazole have been described previously (Bezuglyi et al., 2015a,b). We report here the structure of the title tri-bromocarbazole derivative (Fig. 1).
The tricyclic carbazole ring system is almost planar with an r.m.s. deviation of 0.023 Å from the best-fit plane through its 13 non-hydrogen atoms. C13 and C14 deviate from the carbazole ring plane by 0.111 (2) and 1.232 (3) Å, respectively, while the best fit plane through N1/C13/C14 is inclined to the carbazole ring plane by 86.97 (7)°.
In the crystal there are no significant hydrogen bonds but Br⋯π contacts between Br3 and the mid-point of the C5—C6 bond of the C1–C6 ring are found. These are close to the Br⋯C van der Waals contact distance of 3.70 Å. The packing is illustrated in Fig. 2.
Synthesis and crystallization
Ethylcarbazole was brominated with N-bromosuccinimide in dichloromethane in the presence of silica by a procedure described by Smith et al. (1992). The crude product was purified by (silica, hexane) to isolate the product as white needle-like crystals. Yield 90%, m.p. 146–148°C.
1H NMR (700 MHz, CDCl3) δ 8.01 (d, J = 1.8 Hz, 1H) 7.97 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 8.7, 1.9 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 4.65 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1476710
10.1107/S2414314616007082/sj4018sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616007082/sj4018Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616007082/sj4018Isup3.cml
Ethylcarbazole was brominated with N-bromosuccinimide in dichloromethane in the presence of silica by a procedure described by Smith et al. (1992). The crude product was purified by δ 8.01 (d, J = 1.8 Hz, 1H) 7.97 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 8.7, 1.9 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 4.65 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H).
(silica, - hexane) to isolate the product as white needle-like crystals. Yield 90%, m.p. 146-148oC. 1H NMR (700 MHz, CDCl3)Ethylcarbazole was brominated with N-bromosuccinimide in dichloromethane in the presence of silica by a procedure described by Smith et al. (1992). The crude product was purified by δ 8.01 (d, J = 1.8 Hz, 1H) 7.97 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 8.7, 1.9 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 4.65 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H).
(silica, hexane) to isolate the product as white needle-like crystals. Yield 90%, m.p. 146–148°C. 1H NMR (700 MHz, CDCl3)N-substituted carbazole derivatives are important in cancer research (Caulfield et al., 2002) and as materials for opto-electronic devices (Niu et al., 2011; Miyazaki et al., 2014; Grigalevicius et al., 2003). The crystal structures of 3-bromo- and 1,3,6,8-tetrabromo-9-ethyl-9H-carbazole have been described previously (Bezuglyi et al., 2015a,b). We report here the structure of the title tri-bromocarbazole derivative (Fig. 1).
The tricyclic carbazole ring system is almost planar with an r.m.s. deviation of 0.023 Å from the best-fit plane through its 13 non-hydrogen atoms. C13 and C14 deviate from the carbazole ring plane by 0.111 (2) and 1.232 (3) Å, respectively, while the best fit plane through N1/C13/C14 is inclined to the carbazole ring plane by 87.01 (3)°.
In the crystal there are no significant hydrogen bonds but Br···π contacts between Br3 and the mid-point of the C5—C6 bond of the C1–C6 ring are found. These are close to the Br···C van der Waals contact distance of 3.70 Å. The packing is illustrated in Fig. 2.
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell
CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).Fig. 1. The molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. The crystal packing of the title compound viewed along the b-axis direction. |
C14H10Br3N | F(000) = 824.00 |
Mr = 431.95 | Dx = 2.042 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ybc | Cell parameters from 2508 reflections |
a = 17.17 (6) Å | θ = 3.0–27.5° |
b = 4.267 (13) Å | µ = 8.62 mm−1 |
c = 20.22 (6) Å | T = 273 K |
β = 108.45 (4)° | Prism, colorless |
V = 1405 (7) Å3 | 0.19 × 0.12 × 0.06 mm |
Z = 4 |
Rigaku XtaLAB mini diffractometer | 1894 reflections with F2 > 2.0σ(F2) |
Detector resolution: 13.653 pixels mm-1 | Rint = 0.075 |
ω scans | θmax = 27.6° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −22→22 |
Tmin = 0.258, Tmax = 0.596 | k = −5→5 |
11828 measured reflections | l = −26→26 |
3226 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.084 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.249 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.125P)2] where P = (Fo2 + 2Fc2)/3 |
3226 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 1.65 e Å−3 |
0 restraints | Δρmin = −1.14 e Å−3 |
Primary atom site location: structure-invariant direct methods |
C14H10Br3N | V = 1405 (7) Å3 |
Mr = 431.95 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.17 (6) Å | µ = 8.62 mm−1 |
b = 4.267 (13) Å | T = 273 K |
c = 20.22 (6) Å | 0.19 × 0.12 × 0.06 mm |
β = 108.45 (4)° |
Rigaku XtaLAB mini diffractometer | 3226 independent reflections |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | 1894 reflections with F2 > 2.0σ(F2) |
Tmin = 0.258, Tmax = 0.596 | Rint = 0.075 |
11828 measured reflections |
R[F2 > 2σ(F2)] = 0.084 | 0 restraints |
wR(F2) = 0.249 | H-atom parameters constrained |
S = 1.09 | Δρmax = 1.65 e Å−3 |
3226 reflections | Δρmin = −1.14 e Å−3 |
163 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.46805 (6) | 0.1221 (3) | 0.39247 (5) | 0.0742 (4) | |
Br2 | 0.28015 (8) | 0.7910 (3) | 0.52805 (5) | 0.0877 (5) | |
Br3 | −0.04827 (6) | 0.7559 (3) | 0.10482 (6) | 0.0872 (5) | |
N1 | 0.2882 (4) | 0.2353 (15) | 0.2548 (4) | 0.0548 (16) | |
C1 | 0.3000 (5) | 0.3408 (18) | 0.3221 (4) | 0.0531 (18) | |
C2 | 0.3653 (5) | 0.3157 (19) | 0.3841 (4) | 0.0548 (18) | |
C3 | 0.3591 (6) | 0.448 (2) | 0.4461 (4) | 0.063 (2) | |
C4 | 0.2875 (6) | 0.6122 (19) | 0.4423 (4) | 0.061 (2) | |
C5 | 0.2229 (6) | 0.655 (2) | 0.3825 (5) | 0.061 (2) | |
C6 | 0.2314 (5) | 0.5147 (18) | 0.3219 (4) | 0.0548 (18) | |
C7 | 0.1732 (5) | 0.5137 (19) | 0.2516 (4) | 0.0577 (19) | |
C8 | 0.0957 (5) | 0.641 (2) | 0.2208 (5) | 0.061 (2) | |
C9 | 0.0579 (5) | 0.589 (2) | 0.1500 (5) | 0.063 (2) | |
C10 | 0.0965 (6) | 0.416 (2) | 0.1098 (5) | 0.066 (3) | |
C11 | 0.1739 (6) | 0.287 (2) | 0.1401 (5) | 0.065 (2) | |
C12 | 0.2124 (5) | 0.3377 (18) | 0.2128 (4) | 0.0522 (17) | |
C13 | 0.3414 (6) | 0.0232 (19) | 0.2280 (5) | 0.062 (2) | |
C14 | 0.3969 (6) | 0.204 (2) | 0.1982 (5) | 0.065 (3) | |
H8 | 0.0698 | 0.3881 | 0.0624 | 0.0790* | |
H9A | 0.3743 | −0.1074 | 0.2658 | 0.0742* | |
H9B | 0.3068 | −0.1133 | 0.1923 | 0.0742* | |
H13 | 0.1766 | 0.7696 | 0.3819 | 0.0737* | |
H14 | 0.4013 | 0.4273 | 0.4881 | 0.0761* | |
H15 | 0.0699 | 0.7573 | 0.2468 | 0.0728* | |
H20 | 0.1996 | 0.1720 | 0.1139 | 0.0774* | |
H21A | 0.4300 | 0.0607 | 0.1819 | 0.0782* | |
H21B | 0.4318 | 0.3369 | 0.2335 | 0.0782* | |
H21C | 0.3646 | 0.3294 | 0.1600 | 0.0782* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0664 (7) | 0.0917 (9) | 0.0627 (7) | 0.0080 (5) | 0.0178 (5) | 0.0103 (4) |
Br2 | 0.1242 (10) | 0.0949 (9) | 0.0498 (6) | −0.0041 (6) | 0.0361 (6) | −0.0109 (5) |
Br3 | 0.0636 (7) | 0.1003 (10) | 0.0863 (9) | 0.0060 (5) | 0.0075 (6) | 0.0070 (6) |
N1 | 0.058 (4) | 0.067 (5) | 0.042 (4) | −0.003 (3) | 0.019 (3) | −0.004 (3) |
C1 | 0.065 (5) | 0.055 (5) | 0.043 (4) | −0.010 (4) | 0.023 (4) | 0.001 (3) |
C2 | 0.057 (5) | 0.060 (5) | 0.050 (5) | −0.003 (4) | 0.019 (4) | 0.002 (4) |
C3 | 0.074 (6) | 0.072 (6) | 0.043 (5) | −0.014 (4) | 0.016 (4) | −0.001 (4) |
C4 | 0.080 (6) | 0.066 (6) | 0.043 (5) | −0.008 (4) | 0.029 (4) | −0.001 (4) |
C5 | 0.065 (6) | 0.070 (6) | 0.052 (5) | −0.006 (4) | 0.023 (4) | −0.003 (4) |
C6 | 0.071 (5) | 0.055 (5) | 0.040 (4) | −0.003 (4) | 0.019 (4) | −0.004 (3) |
C7 | 0.064 (5) | 0.064 (5) | 0.046 (5) | −0.005 (4) | 0.019 (4) | −0.007 (4) |
C8 | 0.052 (5) | 0.069 (6) | 0.063 (6) | 0.000 (4) | 0.022 (4) | −0.008 (4) |
C9 | 0.051 (5) | 0.072 (6) | 0.065 (6) | −0.007 (4) | 0.018 (4) | −0.001 (4) |
C10 | 0.071 (6) | 0.073 (6) | 0.041 (5) | −0.005 (4) | 0.002 (4) | −0.003 (4) |
C11 | 0.062 (6) | 0.078 (6) | 0.054 (5) | −0.007 (4) | 0.021 (4) | −0.002 (4) |
C12 | 0.051 (5) | 0.058 (5) | 0.051 (5) | −0.005 (4) | 0.021 (4) | 0.006 (4) |
C13 | 0.068 (6) | 0.054 (5) | 0.067 (6) | 0.006 (4) | 0.026 (4) | −0.011 (4) |
C14 | 0.061 (6) | 0.081 (7) | 0.057 (6) | 0.000 (4) | 0.024 (4) | 0.003 (4) |
Br1—C2 | 1.907 (10) | C8—C9 | 1.389 (13) |
Br2—C4 | 1.934 (10) | C9—C10 | 1.411 (15) |
Br3—C9 | 1.900 (9) | C10—C11 | 1.389 (13) |
N1—C1 | 1.386 (11) | C11—C12 | 1.424 (12) |
N1—C12 | 1.381 (10) | C13—C14 | 1.492 (15) |
N1—C13 | 1.504 (13) | C3—H14 | 0.930 |
C1—C2 | 1.396 (10) | C5—H13 | 0.930 |
C1—C6 | 1.392 (13) | C8—H15 | 0.930 |
C2—C3 | 1.410 (13) | C10—H8 | 0.930 |
C3—C4 | 1.394 (14) | C11—H20 | 0.930 |
C4—C5 | 1.370 (11) | C13—H9A | 0.970 |
C5—C6 | 1.413 (13) | C13—H9B | 0.970 |
C6—C7 | 1.456 (10) | C14—H21A | 0.960 |
C7—C8 | 1.388 (12) | C14—H21B | 0.960 |
C7—C12 | 1.403 (13) | C14—H21C | 0.960 |
C1—N1—C12 | 108.6 (7) | N1—C12—C7 | 110.5 (7) |
C1—N1—C13 | 129.2 (6) | N1—C12—C11 | 128.8 (9) |
C12—N1—C13 | 122.1 (7) | C7—C12—C11 | 120.7 (7) |
N1—C1—C2 | 133.2 (8) | N1—C13—C14 | 111.9 (7) |
N1—C1—C6 | 108.0 (6) | C2—C3—H14 | 121.129 |
C2—C1—C6 | 118.7 (8) | C4—C3—H14 | 121.141 |
Br1—C2—C1 | 124.7 (7) | C4—C5—H13 | 122.194 |
Br1—C2—C3 | 115.0 (6) | C6—C5—H13 | 122.203 |
C1—C2—C3 | 120.2 (8) | C7—C8—H15 | 121.002 |
C2—C3—C4 | 117.7 (7) | C9—C8—H15 | 121.015 |
Br2—C4—C3 | 117.0 (6) | C9—C10—H8 | 119.650 |
Br2—C4—C5 | 118.3 (8) | C11—C10—H8 | 119.639 |
C3—C4—C5 | 124.7 (9) | C10—C11—H20 | 121.210 |
C4—C5—C6 | 115.6 (9) | C12—C11—H20 | 121.204 |
C1—C6—C5 | 122.9 (7) | N1—C13—H9A | 109.227 |
C1—C6—C7 | 108.7 (8) | N1—C13—H9B | 109.224 |
C5—C6—C7 | 128.4 (8) | C14—C13—H9A | 109.235 |
C6—C7—C8 | 134.5 (9) | C14—C13—H9B | 109.231 |
C6—C7—C12 | 104.2 (7) | H9A—C13—H9B | 107.915 |
C8—C7—C12 | 121.3 (7) | C13—C14—H21A | 109.471 |
C7—C8—C9 | 118.0 (9) | C13—C14—H21B | 109.468 |
Br3—C9—C8 | 120.1 (8) | C13—C14—H21C | 109.476 |
Br3—C9—C10 | 118.2 (6) | H21A—C14—H21B | 109.470 |
C8—C9—C10 | 121.7 (8) | H21A—C14—H21C | 109.474 |
C9—C10—C11 | 120.7 (8) | H21B—C14—H21C | 109.469 |
C10—C11—C12 | 117.6 (9) | ||
C1—N1—C12—C7 | 0.3 (9) | Br2—C4—C5—C6 | −179.0 (5) |
C1—N1—C12—C11 | 180.0 (7) | C3—C4—C5—C6 | 1.2 (13) |
C12—N1—C1—C2 | −177.7 (8) | C4—C5—C6—C1 | 0.6 (12) |
C12—N1—C1—C6 | −0.8 (9) | C4—C5—C6—C7 | 178.6 (8) |
C1—N1—C13—C14 | −96.3 (9) | C1—C6—C7—C8 | 179.2 (8) |
C13—N1—C1—C2 | 7.1 (14) | C1—C6—C7—C12 | −0.9 (9) |
C13—N1—C1—C6 | −176.0 (7) | C5—C6—C7—C8 | 0.9 (16) |
C12—N1—C13—C14 | 89.1 (8) | C5—C6—C7—C12 | −179.2 (8) |
C13—N1—C12—C7 | 175.9 (7) | C6—C7—C8—C9 | 179.9 (9) |
C13—N1—C12—C11 | −4.4 (13) | C6—C7—C12—N1 | 0.4 (9) |
N1—C1—C2—Br1 | 2.9 (14) | C6—C7—C12—C11 | −179.4 (7) |
N1—C1—C2—C3 | −179.5 (8) | C8—C7—C12—N1 | −179.7 (8) |
N1—C1—C6—C5 | 179.5 (7) | C8—C7—C12—C11 | 0.6 (13) |
N1—C1—C6—C7 | 1.1 (9) | C12—C7—C8—C9 | 0.0 (13) |
C2—C1—C6—C5 | −3.1 (12) | C7—C8—C9—Br3 | 179.7 (7) |
C2—C1—C6—C7 | 178.5 (7) | C7—C8—C9—C10 | −0.6 (13) |
C6—C1—C2—Br1 | −173.8 (7) | Br3—C9—C10—C11 | −179.6 (6) |
C6—C1—C2—C3 | 3.9 (12) | C8—C9—C10—C11 | 0.8 (14) |
Br1—C2—C3—C4 | 175.7 (6) | C9—C10—C11—C12 | −0.3 (13) |
C1—C2—C3—C4 | −2.2 (12) | C10—C11—C12—N1 | 179.9 (8) |
C2—C3—C4—Br2 | 179.8 (7) | C10—C11—C12—C7 | −0.4 (12) |
C2—C3—C4—C5 | −0.4 (13) |
Experimental details
Crystal data | |
Chemical formula | C14H10Br3N |
Mr | 431.95 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 273 |
a, b, c (Å) | 17.17 (6), 4.267 (13), 20.22 (6) |
β (°) | 108.45 (4) |
V (Å3) | 1405 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 8.62 |
Crystal size (mm) | 0.19 × 0.12 × 0.06 |
Data collection | |
Diffractometer | Rigaku XtaLAB mini |
Absorption correction | Multi-scan (REQAB; Rigaku, 1998) |
Tmin, Tmax | 0.258, 0.596 |
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections | 11828, 3226, 1894 |
Rint | 0.075 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.084, 0.249, 1.09 |
No. of reflections | 3226 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.65, −1.14 |
Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), CrystalStructure (Rigaku, 2010).
Acknowledgements
This research was supported by the FP7 REGPOT-2012–2013-1 ICT project CEOSeR under grant agreement No. 316010.
References
Bezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015a). Acta Cryst. E71, o373. CrossRef IUCr Journals Google Scholar
Bezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015b). Acta Cryst. E71, o1067–o1068. CrossRef IUCr Journals Google Scholar
Caulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1 253 141. Google Scholar
Grigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2003). Mater. Chem. Phys. 77, 281–284. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440–11453. Web of Science CrossRef CAS PubMed Google Scholar
Niu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415–423. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, K., James, D. M., Mistry, A. G., Bye, M. R. & Faulkner, D. G. (1992). Tetrahedron, 48, 7479–7488. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.