organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3,6-Tri­bromo-9-ethyl-9H-carbazole

aDepartment of Chemistry, National Taras Shevchenko University, 62a Volodymirska st., Kyiv, Ukraine, and bDepartment of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Road 19, LT-50254, Kaunas, Lithuania
*Correspondence e-mail: nikolay_bezugliy@ukr.net

Edited by J. Simpson, University of Otago, New Zealand (Received 23 March 2016; accepted 26 April 2016; online 29 April 2016)

In the title compound, C14H10Br3N, the carbazole ring system is almost planar, with an r.m.s. deviation of 0.023 Å from the best fit mean plane of the 13 non-H atoms of the three rings. The methyl C atom lies 1.232 (3) Å out of this plane. No hydrogen bonds are found in the crystal structure but weak C—Br⋯π contacts at approximately 3.721 Å may stabilize the structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-substituted carbazole derivatives are important in cancer research (Caulfield et al., 2002[Caulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1 253 141.]) and as materials for opto-electronic devices (Niu et al., 2011[Niu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415-423.]; Miyazaki et al., 2014[Miyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440-11453.]; Grigalevicius et al., 2003[Grigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2003). Mater. Chem. Phys. 77, 281-284.]). The crystal structures of 3-bromo- and 1,3,6,8-tetra­bromo-9-ethyl-9H-carbazole have been described previously (Bezuglyi et al., 2015a[Bezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015a). Acta Cryst. E71, o373.],b[Bezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015b). Acta Cryst. E71, o1067-o1068.]). We report here the structure of the title tri-bromo­carbazole derivative (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with displacement ellipsoids drawn at the 50% probability level.

The tricyclic carbazole ring system is almost planar with an r.m.s. deviation of 0.023 Å from the best-fit plane through its 13 non-hydrogen atoms. C13 and C14 deviate from the carbazole ring plane by 0.111 (2) and 1.232 (3) Å, respectively, while the best fit plane through N1/C13/C14 is inclined to the carbazole ring plane by 86.97 (7)°.

In the crystal there are no significant hydrogen bonds but Br⋯π contacts between Br3 and the mid-point of the C5—C6 bond of the C1–C6 ring are found. These are close to the Br⋯C van der Waals contact distance of 3.70 Å. The packing is illustrated in Fig. 2[link].

[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b-axis direction.

Synthesis and crystallization

Ethyl­carbazole was brominated with N-bromo­succinimide in di­chloro­methane in the presence of silica by a procedure described by Smith et al. (1992[Smith, K., James, D. M., Mistry, A. G., Bye, M. R. & Faulkner, D. G. (1992). Tetrahedron, 48, 7479-7488.]). The crude product was purified by column chromatography (silica, eluent hexa­ne) to isolate the product as white needle-like crystals. Yield 90%, m.p. 146–148°C.

1H NMR (700 MHz, CDCl3) δ 8.01 (d, J = 1.8 Hz, 1H) 7.97 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 8.7, 1.9 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 4.65 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C14H10Br3N
Mr 431.95
Crystal system, space group Monoclinic, P21/c
Temperature (K) 273
a, b, c (Å) 17.17 (6), 4.267 (13), 20.22 (6)
β (°) 108.45 (4)
V3) 1405 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.62
Crystal size (mm) 0.19 × 0.12 × 0.06
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.258, 0.596
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 11828, 3226, 1894
Rint 0.075
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.249, 1.09
No. of reflections 3226
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.65, −1.14
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Synthesis and crystallization top

Ethyl­carbazole was brominated with N-bromo­succinimide in di­chloro­methane in the presence of silica by a procedure described by Smith et al. (1992). The crude product was purified by column chromatography (silica, eluent - hexane) to isolate the product as white needle-like crystals. Yield 90%, m.p. 146-148oC. 1H NMR (700 MHz, CDCl3) δ 8.01 (d, J = 1.8 Hz, 1H) 7.97 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 8.7, 1.9 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 4.65 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

Ethylcarbazole was brominated with N-bromosuccinimide in dichloromethane in the presence of silica by a procedure described by Smith et al. (1992). The crude product was purified by column chromatography (silica, eluent hexane) to isolate the product as white needle-like crystals. Yield 90%, m.p. 146–148°C. 1H NMR (700 MHz, CDCl3) δ 8.01 (d, J = 1.8 Hz, 1H) 7.97 (d, J = 1.8 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 8.7, 1.9 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 4.65 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

N-substituted carbazole derivatives are important in cancer research (Caulfield et al., 2002) and as materials for opto-electronic devices (Niu et al., 2011; Miyazaki et al., 2014; Grigalevicius et al., 2003). The crystal structures of 3-bromo- and 1,3,6,8-tetrabromo-9-ethyl-9H-carbazole have been described previously (Bezuglyi et al., 2015a,b). We report here the structure of the title tri-bromocarbazole derivative (Fig. 1).

The tricyclic carbazole ring system is almost planar with an r.m.s. deviation of 0.023 Å from the best-fit plane through its 13 non-hydrogen atoms. C13 and C14 deviate from the carbazole ring plane by 0.111 (2) and 1.232 (3) Å, respectively, while the best fit plane through N1/C13/C14 is inclined to the carbazole ring plane by 87.01 (3)°.

In the crystal there are no significant hydrogen bonds but Br···π contacts between Br3 and the mid-point of the C5—C6 bond of the C1–C6 ring are found. These are close to the Br···C van der Waals contact distance of 3.70 Å. The packing is illustrated in Fig. 2.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b-axis direction.
1,3,6-Tribromo-9-ethyl-9H-carbazole top
Crystal data top
C14H10Br3NF(000) = 824.00
Mr = 431.95Dx = 2.042 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 2508 reflections
a = 17.17 (6) Åθ = 3.0–27.5°
b = 4.267 (13) ŵ = 8.62 mm1
c = 20.22 (6) ÅT = 273 K
β = 108.45 (4)°Prism, colorless
V = 1405 (7) Å30.19 × 0.12 × 0.06 mm
Z = 4
Data collection top
Rigaku XtaLAB mini
diffractometer
1894 reflections with F2 > 2.0σ(F2)
Detector resolution: 13.653 pixels mm-1Rint = 0.075
ω scansθmax = 27.6°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 2222
Tmin = 0.258, Tmax = 0.596k = 55
11828 measured reflectionsl = 2626
3226 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.125P)2]
where P = (Fo2 + 2Fc2)/3
3226 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 1.14 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H10Br3NV = 1405 (7) Å3
Mr = 431.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.17 (6) ŵ = 8.62 mm1
b = 4.267 (13) ÅT = 273 K
c = 20.22 (6) Å0.19 × 0.12 × 0.06 mm
β = 108.45 (4)°
Data collection top
Rigaku XtaLAB mini
diffractometer
3226 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
1894 reflections with F2 > 2.0σ(F2)
Tmin = 0.258, Tmax = 0.596Rint = 0.075
11828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.249H-atom parameters constrained
S = 1.09Δρmax = 1.65 e Å3
3226 reflectionsΔρmin = 1.14 e Å3
163 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.46805 (6)0.1221 (3)0.39247 (5)0.0742 (4)
Br20.28015 (8)0.7910 (3)0.52805 (5)0.0877 (5)
Br30.04827 (6)0.7559 (3)0.10482 (6)0.0872 (5)
N10.2882 (4)0.2353 (15)0.2548 (4)0.0548 (16)
C10.3000 (5)0.3408 (18)0.3221 (4)0.0531 (18)
C20.3653 (5)0.3157 (19)0.3841 (4)0.0548 (18)
C30.3591 (6)0.448 (2)0.4461 (4)0.063 (2)
C40.2875 (6)0.6122 (19)0.4423 (4)0.061 (2)
C50.2229 (6)0.655 (2)0.3825 (5)0.061 (2)
C60.2314 (5)0.5147 (18)0.3219 (4)0.0548 (18)
C70.1732 (5)0.5137 (19)0.2516 (4)0.0577 (19)
C80.0957 (5)0.641 (2)0.2208 (5)0.061 (2)
C90.0579 (5)0.589 (2)0.1500 (5)0.063 (2)
C100.0965 (6)0.416 (2)0.1098 (5)0.066 (3)
C110.1739 (6)0.287 (2)0.1401 (5)0.065 (2)
C120.2124 (5)0.3377 (18)0.2128 (4)0.0522 (17)
C130.3414 (6)0.0232 (19)0.2280 (5)0.062 (2)
C140.3969 (6)0.204 (2)0.1982 (5)0.065 (3)
H80.06980.38810.06240.0790*
H9A0.37430.10740.26580.0742*
H9B0.30680.11330.19230.0742*
H130.17660.76960.38190.0737*
H140.40130.42730.48810.0761*
H150.06990.75730.24680.0728*
H200.19960.17200.11390.0774*
H21A0.43000.06070.18190.0782*
H21B0.43180.33690.23350.0782*
H21C0.36460.32940.16000.0782*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0664 (7)0.0917 (9)0.0627 (7)0.0080 (5)0.0178 (5)0.0103 (4)
Br20.1242 (10)0.0949 (9)0.0498 (6)0.0041 (6)0.0361 (6)0.0109 (5)
Br30.0636 (7)0.1003 (10)0.0863 (9)0.0060 (5)0.0075 (6)0.0070 (6)
N10.058 (4)0.067 (5)0.042 (4)0.003 (3)0.019 (3)0.004 (3)
C10.065 (5)0.055 (5)0.043 (4)0.010 (4)0.023 (4)0.001 (3)
C20.057 (5)0.060 (5)0.050 (5)0.003 (4)0.019 (4)0.002 (4)
C30.074 (6)0.072 (6)0.043 (5)0.014 (4)0.016 (4)0.001 (4)
C40.080 (6)0.066 (6)0.043 (5)0.008 (4)0.029 (4)0.001 (4)
C50.065 (6)0.070 (6)0.052 (5)0.006 (4)0.023 (4)0.003 (4)
C60.071 (5)0.055 (5)0.040 (4)0.003 (4)0.019 (4)0.004 (3)
C70.064 (5)0.064 (5)0.046 (5)0.005 (4)0.019 (4)0.007 (4)
C80.052 (5)0.069 (6)0.063 (6)0.000 (4)0.022 (4)0.008 (4)
C90.051 (5)0.072 (6)0.065 (6)0.007 (4)0.018 (4)0.001 (4)
C100.071 (6)0.073 (6)0.041 (5)0.005 (4)0.002 (4)0.003 (4)
C110.062 (6)0.078 (6)0.054 (5)0.007 (4)0.021 (4)0.002 (4)
C120.051 (5)0.058 (5)0.051 (5)0.005 (4)0.021 (4)0.006 (4)
C130.068 (6)0.054 (5)0.067 (6)0.006 (4)0.026 (4)0.011 (4)
C140.061 (6)0.081 (7)0.057 (6)0.000 (4)0.024 (4)0.003 (4)
Geometric parameters (Å, º) top
Br1—C21.907 (10)C8—C91.389 (13)
Br2—C41.934 (10)C9—C101.411 (15)
Br3—C91.900 (9)C10—C111.389 (13)
N1—C11.386 (11)C11—C121.424 (12)
N1—C121.381 (10)C13—C141.492 (15)
N1—C131.504 (13)C3—H140.930
C1—C21.396 (10)C5—H130.930
C1—C61.392 (13)C8—H150.930
C2—C31.410 (13)C10—H80.930
C3—C41.394 (14)C11—H200.930
C4—C51.370 (11)C13—H9A0.970
C5—C61.413 (13)C13—H9B0.970
C6—C71.456 (10)C14—H21A0.960
C7—C81.388 (12)C14—H21B0.960
C7—C121.403 (13)C14—H21C0.960
C1—N1—C12108.6 (7)N1—C12—C7110.5 (7)
C1—N1—C13129.2 (6)N1—C12—C11128.8 (9)
C12—N1—C13122.1 (7)C7—C12—C11120.7 (7)
N1—C1—C2133.2 (8)N1—C13—C14111.9 (7)
N1—C1—C6108.0 (6)C2—C3—H14121.129
C2—C1—C6118.7 (8)C4—C3—H14121.141
Br1—C2—C1124.7 (7)C4—C5—H13122.194
Br1—C2—C3115.0 (6)C6—C5—H13122.203
C1—C2—C3120.2 (8)C7—C8—H15121.002
C2—C3—C4117.7 (7)C9—C8—H15121.015
Br2—C4—C3117.0 (6)C9—C10—H8119.650
Br2—C4—C5118.3 (8)C11—C10—H8119.639
C3—C4—C5124.7 (9)C10—C11—H20121.210
C4—C5—C6115.6 (9)C12—C11—H20121.204
C1—C6—C5122.9 (7)N1—C13—H9A109.227
C1—C6—C7108.7 (8)N1—C13—H9B109.224
C5—C6—C7128.4 (8)C14—C13—H9A109.235
C6—C7—C8134.5 (9)C14—C13—H9B109.231
C6—C7—C12104.2 (7)H9A—C13—H9B107.915
C8—C7—C12121.3 (7)C13—C14—H21A109.471
C7—C8—C9118.0 (9)C13—C14—H21B109.468
Br3—C9—C8120.1 (8)C13—C14—H21C109.476
Br3—C9—C10118.2 (6)H21A—C14—H21B109.470
C8—C9—C10121.7 (8)H21A—C14—H21C109.474
C9—C10—C11120.7 (8)H21B—C14—H21C109.469
C10—C11—C12117.6 (9)
C1—N1—C12—C70.3 (9)Br2—C4—C5—C6179.0 (5)
C1—N1—C12—C11180.0 (7)C3—C4—C5—C61.2 (13)
C12—N1—C1—C2177.7 (8)C4—C5—C6—C10.6 (12)
C12—N1—C1—C60.8 (9)C4—C5—C6—C7178.6 (8)
C1—N1—C13—C1496.3 (9)C1—C6—C7—C8179.2 (8)
C13—N1—C1—C27.1 (14)C1—C6—C7—C120.9 (9)
C13—N1—C1—C6176.0 (7)C5—C6—C7—C80.9 (16)
C12—N1—C13—C1489.1 (8)C5—C6—C7—C12179.2 (8)
C13—N1—C12—C7175.9 (7)C6—C7—C8—C9179.9 (9)
C13—N1—C12—C114.4 (13)C6—C7—C12—N10.4 (9)
N1—C1—C2—Br12.9 (14)C6—C7—C12—C11179.4 (7)
N1—C1—C2—C3179.5 (8)C8—C7—C12—N1179.7 (8)
N1—C1—C6—C5179.5 (7)C8—C7—C12—C110.6 (13)
N1—C1—C6—C71.1 (9)C12—C7—C8—C90.0 (13)
C2—C1—C6—C53.1 (12)C7—C8—C9—Br3179.7 (7)
C2—C1—C6—C7178.5 (7)C7—C8—C9—C100.6 (13)
C6—C1—C2—Br1173.8 (7)Br3—C9—C10—C11179.6 (6)
C6—C1—C2—C33.9 (12)C8—C9—C10—C110.8 (14)
Br1—C2—C3—C4175.7 (6)C9—C10—C11—C120.3 (13)
C1—C2—C3—C42.2 (12)C10—C11—C12—N1179.9 (8)
C2—C3—C4—Br2179.8 (7)C10—C11—C12—C70.4 (12)
C2—C3—C4—C50.4 (13)

Experimental details

Crystal data
Chemical formulaC14H10Br3N
Mr431.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)17.17 (6), 4.267 (13), 20.22 (6)
β (°) 108.45 (4)
V3)1405 (7)
Z4
Radiation typeMo Kα
µ (mm1)8.62
Crystal size (mm)0.19 × 0.12 × 0.06
Data collection
DiffractometerRigaku XtaLAB mini
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.258, 0.596
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
11828, 3226, 1894
Rint0.075
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.249, 1.09
No. of reflections3226
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.14

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

This research was supported by the FP7 REGPOT-2012–2013-1 ICT project CEOSeR under grant agreement No. 316010.

References

First citationBezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015a). Acta Cryst. E71, o373.  CrossRef IUCr Journals Google Scholar
First citationBezuglyi, M., Grybauskaite, G., Bagdziunas, G. & Grazulevicius, J. V. (2015b). Acta Cryst. E71, o1067–o1068.  CrossRef IUCr Journals Google Scholar
First citationCaulfield, T., Cherrier, M. P., Combeau, C. & Mailliet, P. (2002). Eur. Patent No. 1 253 141.  Google Scholar
First citationGrigalevicius, S., Ostrauskaite, J., Grazulevicius, J. V., Gaidelis, V., Jankauskas, V. & Sidaravicius, J. (2003). Mater. Chem. Phys. 77, 281–284.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiyazaki, T., Shibahara, M., Fujishige, J., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). J. Org. Chem. 79, 11440–11453.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNiu, F., Niu, H., Liu, Y., Lian, J. & Zeng, P. (2011). RSC Adv. 1, 415–423.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., James, D. M., Mistry, A. G., Bye, M. R. & Faulkner, D. G. (1992). Tetrahedron, 48, 7479–7488.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds