organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Acetyl-2-{[(1H-benzimidazol-2-yl)meth­yl]sulfan­yl}-4-(4-meth­­oxy­phen­yl)-6-methyl­pyridine-3-carbo­nitrile

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 20 March 2016; accepted 23 March 2016; online 5 April 2016)

In the title compound, C24H20N4O2S, the benzimi­diazole moiety is essentially planar within 0.020 (1) Å (r.m.s. deviation = 0.012 Å). Its mean plane makes a dihedral angle of 85.80 (3)° with the plane of the central pyridine ring while the meth­oxy­phenyl ring makes a dihedral angle of 57.28 (4)° with this plane. In the crystal, N—H⋯N hydrogen bonds form sheets parallel to (010).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The pharmacological activities exhibited by 3-cyano­pyridine-2(1H)-thio­nes (Litvinov, 2003[Litvinov, V. P. (2003). Russ. Chem. Rev. 72, 69-85.]) and benzimidazoles (Ingle & Magar, 2011[Ingle, R. G. & Magar, D. D. (2011). Int. J. Drug Res. Technol. 1, 26-32.]; Alamgir et al., 2007[Alamgir, M., Black, D. St C. & Kumar, N. (2007). Top. Heterocycl. Chem. 9, 87-118.]) have been reviewed. The benzimidazole scaffold is a useful structural modification for the development of mol­ecules of pharmaceutical or biological inter­est. Appropriately substituted benzimidazole derivatives have found diverse therapeutic applications such as in anti-ulcer, anti­hypertensive, anti­viral, anti­fungal, anti­cancer and anti­histaminic agents (Ingle & Magar, 2011[Ingle, R. G. & Magar, D. D. (2011). Int. J. Drug Res. Technol. 1, 26-32.]). The optimization of benzimidazole-based structures has resulted in various drugs that are currently on the market, such as omeprazole (proton pump inhibitor), pimobendan (ionodilator), and mebendazole (anthelmintic) (Ingle & Magar, 2011[Ingle, R. G. & Magar, D. D. (2011). Int. J. Drug Res. Technol. 1, 26-32.]). In view of the above observations, we undertook the synthesis of the title compound, which is structurally related to omeprazole, and determine its crystal structure.

In the title compound (Fig. 1[link]), the benzimi­diazolyl ring system (N3/N4/C18–C24) is essentially planar (r.m.s. deviation = 0.012 Å) and its mean plane makes a dihedral angle of 85.80 (3)° with that of the central pyridine ring (N1/C1–C5) while the C10—C15 ring makes a dihedral angle of 57.28 (4)° with the pyridine ring plane. The packing consists of layers parallel to (010) which are formed by N3—H3A⋯N4 hydrogen bonds (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4i 0.92 (2) 1.98 (2) 2.8441 (16) 157.1 (17)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with the atom-labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
A portion of one layer projected onto (010), showing the N—H⋯N hydrogen bonds as dotted lines.

Synthesis and crystallization

To a suspension of 5-acetyl-3-cyano-4-(4-meth­oxy­phen­yl)-6-methyl­pyridine-2(1H)-thione (3.0 g, 10 mmol) and 2-chloro­methyl-1H-benzimidazole (1.66 g, 10 mmol) in ethanol (30 ml), sodium acetate trihydrate (1.5 g, 11 mmol) was added. The resulting mixture was heated under reflux for 3 h and then allowed to cool. The solid that formed was collected by filtration and recrystallized from ethanol to give the title compound in the form of colourless plates. Yield: (3.6 g) 84%, m.p. 501–503 K. IR: 3200 (NH), 2200 (C N), 1690 (C=O) cm.-1 1H NMR (CDCl3): δ = 6.9–7.7 (m, 9H, Ar—H and NH), 4.8 (2H, SCH2) 3.8 (s, 3H, OCH2), 2.6 (s, 3H, CH3 at C-6), 1.8 (s, 3H, COCH3).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H20N4O2S
Mr 428.50
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 9.8513 (2), 15.0619 (2), 28.9310 (4)
V3) 4292.76 (12)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.57
Crystal size (mm) 0.24 × 0.15 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.79, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 31421, 4292, 3787
Rint 0.037
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.02
No. of reflections 4292
No. of parameters 288
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Comment top

In the title compound the benzodiazolyl moiety is planar within 0.02 Å

(rms deviation 0.012) and its mean plane makes a dihedral angle of

85.80 (3)° with the central pyridine ring while the C10-C15 ring makes a

dihedral angle of 57.28 (4)° with the latter. The packing consists of

layers parallel to (010) which are formed by N3—H3A···N4i (i:

x+1/2, y, -z+1/2) hydrogen bonds (Table 1 and

Fig. 2).

Experimental top

To a suspension of 5-acetyl-3-cyano-4-(4-methoxyphenyl)-6-methylpyridine-2(1H)-thione (3.0 g, 10 mmol) and 2-chloromethyl-1H-benzimidazole (1.66 g, 10 mmol) in ethanol (30 ml), sodium acetate trihydrate (1.5 g, 11 mmol) was added. The resulting mixture was heated under reflux for 3 h and then allowed to cool. The solid that formed was collected by filtration and recrystallized from ethanol to give the title compound in the form of colourless plates. Yield: (3.6 g) 84%, m.p. 501–503 K. IR: 3200 (NH), 2200 (CN), 1690 (C=O) cm.-1 1H NMR (CDCl3): δ = 6.9–7.7 (m, 9H, Ar—H and NH), 4.8 (2H, SCH2) 3.8 (s, 3H, OCH2), 2.6 (s, 3H, CH3 at C-6), 1.8 (s, 3H, COCH3).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The pharmacological activities exhibited by 3-cyanopyridine-2(1H)-thiones (Litvinov, 2003) and benzimidazoles (Ingle & Magar, 2011; Alamgir et al., 2007) have been reviewed. The benzimidazole scaffold is a useful structural modification for the development of molecules of pharmaceutical or biological interest. Appropriately substituted benzimidazole derivatives have found diverse therapeutic applications such as in anti-ulcer, antihypertensive, antiviral, antifungal, anticancer and antihistaminic agents (Ingle & Magar, 2011). The optimization of benzimidazole-based structures has resulted in various drugs that are currently on the market, such as omeprazole (proton pump inhibitor), pimobendan (ionodilator), and mebendazole (anthelmintic) (Ingle & Magar, 2011). In view of the above observations, we undertook the synthesis of the title compound, which is structurally related to omeprazole, and determine its crystal structure.

In the title compound (Fig.1), the benzimidiazolyl ring system (N3/N4/C18–C24) is essentially planar (r.m.s. deviation = 0.012 Å) and its mean plane makes a dihedral angle of 85.80 (3)° with that of the central pyridine ring (N1/C1–C5) while the C10—C15 ring makes a dihedral angle of 57.28 (4)° with the pyridine ring plane. The packing consists of layers parallel to (010) which are formed by N3—H3A···N4 hydrogen bonds (Table 1 and Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. A portion of one layer projected onto (010), showing the N—H···N hydrogen bonds as dotted lines.
5-Acetyl-2-{[(1H-benzimidazol-2-yl)methyl]sulfanyl}-4-(4-methoxyphenyl)-6-methylpyridine-3-carbonitrile top
Crystal data top
C24H20N4O2SDx = 1.326 Mg m3
Mr = 428.50Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9822 reflections
a = 9.8513 (2) Åθ = 4.2–74.4°
b = 15.0619 (2) ŵ = 1.57 mm1
c = 28.9310 (4) ÅT = 150 K
V = 4292.76 (12) Å3Plate, colourless
Z = 80.24 × 0.15 × 0.06 mm
F(000) = 1792
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4292 independent reflections
Radiation source: INCOATEC IµS micro–focus source3787 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1715
Tmin = 0.79, Tmax = 0.92l = 3636
31421 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0459P)2 + 1.5046P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4292 reflectionsΔρmax = 0.22 e Å3
288 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00051 (6)
Crystal data top
C24H20N4O2SV = 4292.76 (12) Å3
Mr = 428.50Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 9.8513 (2) ŵ = 1.57 mm1
b = 15.0619 (2) ÅT = 150 K
c = 28.9310 (4) Å0.24 × 0.15 × 0.06 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4292 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
3787 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.92Rint = 0.037
31421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
4292 reflectionsΔρmin = 0.40 e Å3
288 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger. H-atoms were placed in

calculated positions (C—H = 0.95 - 0.99 Å) and included as riding

contributions with isotropic displacement parameters 1.2 - 1.5 times those

of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00897 (3)0.77846 (3)0.34587 (2)0.03530 (11)
O10.66262 (11)0.84216 (8)0.36572 (5)0.0513 (3)
O20.59674 (11)0.57979 (7)0.55315 (3)0.0394 (3)
N10.23056 (12)0.85965 (8)0.33336 (4)0.0321 (3)
N20.08106 (13)0.62965 (9)0.43416 (5)0.0455 (3)
N30.12589 (12)0.71895 (8)0.24456 (4)0.0309 (3)
H3A0.208 (2)0.7306 (12)0.2581 (6)0.051 (5)*
N40.09632 (11)0.71505 (8)0.22875 (4)0.0293 (2)
C10.16353 (14)0.79895 (9)0.35781 (4)0.0296 (3)
C20.22340 (13)0.75185 (9)0.39439 (5)0.0287 (3)
C30.35819 (13)0.76988 (8)0.40657 (5)0.0283 (3)
C40.42723 (13)0.83401 (9)0.38087 (5)0.0298 (3)
C50.36018 (14)0.87725 (9)0.34441 (5)0.0316 (3)
C60.42829 (16)0.94884 (11)0.31656 (6)0.0425 (4)
H6A0.36700.96880.29200.064*
H6B0.51180.92530.30280.064*
H6C0.45050.99900.33680.064*
C70.57174 (14)0.85996 (9)0.39216 (5)0.0355 (3)
C80.59363 (16)0.91238 (11)0.43550 (6)0.0453 (4)
H8A0.69090.92360.43960.068*
H8B0.55910.87880.46200.068*
H8C0.54520.96910.43320.068*
C90.14601 (14)0.68374 (9)0.41719 (5)0.0332 (3)
C100.42457 (13)0.72017 (8)0.44466 (5)0.0284 (3)
C110.54249 (14)0.67169 (9)0.43662 (5)0.0300 (3)
H110.58260.67220.40680.036*
C120.60228 (13)0.62245 (9)0.47188 (5)0.0314 (3)
H120.68120.58810.46590.038*
C130.54578 (14)0.62381 (9)0.51590 (5)0.0308 (3)
C140.42925 (14)0.67349 (9)0.52454 (5)0.0324 (3)
H140.39170.67520.55480.039*
C150.36845 (14)0.72015 (9)0.48920 (5)0.0312 (3)
H150.28760.75270.49510.037*
C160.71090 (17)0.52355 (10)0.54614 (6)0.0424 (4)
H16A0.68680.47630.52440.064*
H16B0.73820.49730.57570.064*
H16C0.78630.55840.53350.064*
C170.02451 (15)0.82366 (10)0.28796 (5)0.0354 (3)
H17A0.11680.84830.28360.042*
H17B0.04160.87260.28390.042*
C180.00095 (13)0.75384 (9)0.25283 (5)0.0289 (3)
C190.10824 (13)0.65117 (9)0.21295 (5)0.0297 (3)
C200.19937 (15)0.59179 (10)0.19302 (5)0.0382 (3)
H200.29380.59390.19960.046*
C210.14543 (17)0.52975 (10)0.16320 (5)0.0416 (4)
H210.20430.48790.14890.050*
C220.00667 (17)0.52663 (10)0.15334 (5)0.0393 (3)
H220.02650.48270.13270.047*
C230.08347 (15)0.58610 (10)0.17298 (5)0.0345 (3)
H230.17770.58400.16610.041*
C240.03096 (13)0.64929 (9)0.20332 (4)0.0277 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02532 (18)0.0480 (2)0.03263 (19)0.00303 (13)0.00383 (13)0.00463 (14)
O10.0310 (6)0.0510 (7)0.0721 (8)0.0016 (5)0.0109 (5)0.0021 (6)
O20.0453 (6)0.0365 (6)0.0364 (5)0.0089 (4)0.0109 (4)0.0001 (4)
N10.0295 (6)0.0365 (6)0.0303 (5)0.0066 (5)0.0001 (5)0.0021 (5)
N20.0356 (7)0.0373 (7)0.0637 (9)0.0027 (6)0.0052 (6)0.0071 (6)
N30.0204 (6)0.0363 (6)0.0359 (6)0.0033 (4)0.0025 (4)0.0043 (5)
N40.0225 (5)0.0344 (6)0.0310 (5)0.0030 (4)0.0022 (4)0.0015 (5)
C10.0272 (7)0.0320 (7)0.0296 (6)0.0052 (5)0.0016 (5)0.0067 (5)
C20.0271 (7)0.0265 (6)0.0326 (6)0.0032 (5)0.0016 (5)0.0042 (5)
C30.0270 (7)0.0255 (7)0.0324 (6)0.0041 (5)0.0021 (5)0.0047 (5)
C40.0266 (7)0.0287 (7)0.0341 (7)0.0030 (5)0.0011 (5)0.0029 (5)
C50.0302 (7)0.0316 (7)0.0330 (7)0.0052 (5)0.0012 (5)0.0020 (5)
C60.0398 (8)0.0447 (9)0.0430 (8)0.0019 (7)0.0034 (7)0.0088 (7)
C70.0279 (7)0.0285 (7)0.0500 (8)0.0018 (5)0.0028 (6)0.0055 (6)
C80.0347 (8)0.0413 (9)0.0600 (10)0.0014 (6)0.0149 (7)0.0053 (7)
C90.0271 (7)0.0307 (7)0.0419 (7)0.0036 (5)0.0049 (6)0.0029 (6)
C100.0259 (7)0.0244 (7)0.0349 (7)0.0001 (5)0.0052 (5)0.0030 (5)
C110.0283 (7)0.0277 (7)0.0340 (6)0.0006 (5)0.0026 (5)0.0041 (5)
C120.0267 (6)0.0277 (7)0.0397 (7)0.0030 (5)0.0063 (5)0.0060 (5)
C130.0327 (7)0.0251 (7)0.0345 (7)0.0011 (5)0.0086 (5)0.0021 (5)
C140.0330 (7)0.0311 (7)0.0332 (7)0.0012 (5)0.0019 (5)0.0041 (5)
C150.0273 (7)0.0293 (7)0.0369 (7)0.0021 (5)0.0024 (5)0.0044 (5)
C160.0447 (9)0.0339 (8)0.0486 (9)0.0090 (6)0.0169 (7)0.0021 (6)
C170.0309 (7)0.0395 (8)0.0358 (7)0.0107 (6)0.0077 (6)0.0061 (6)
C180.0217 (6)0.0348 (7)0.0304 (6)0.0046 (5)0.0026 (5)0.0006 (5)
C190.0262 (6)0.0310 (7)0.0319 (6)0.0021 (5)0.0016 (5)0.0013 (5)
C200.0304 (7)0.0409 (8)0.0433 (8)0.0094 (6)0.0047 (6)0.0003 (6)
C210.0503 (9)0.0339 (8)0.0405 (8)0.0109 (7)0.0088 (7)0.0003 (6)
C220.0545 (10)0.0286 (7)0.0346 (7)0.0036 (6)0.0012 (6)0.0016 (6)
C230.0342 (7)0.0342 (7)0.0352 (7)0.0055 (6)0.0019 (6)0.0020 (6)
C240.0255 (6)0.0287 (7)0.0288 (6)0.0010 (5)0.0020 (5)0.0027 (5)
Geometric parameters (Å, º) top
S1—C11.7614 (14)C8—H8C0.9800
S1—C171.8149 (15)C10—C111.3917 (19)
O1—C71.2076 (19)C10—C151.4021 (19)
O2—C131.3613 (16)C11—C121.3920 (19)
O2—C161.4224 (18)C11—H110.9500
N1—C11.3314 (18)C12—C131.390 (2)
N1—C51.3427 (18)C12—H120.9500
N2—C91.146 (2)C13—C141.393 (2)
N3—C181.3596 (17)C14—C151.378 (2)
N3—C191.3815 (18)C14—H140.9500
N3—H3A0.92 (2)C15—H150.9500
N4—C181.3209 (18)C16—H16A0.9800
N4—C241.3917 (17)C16—H16B0.9800
C1—C21.4039 (19)C16—H16C0.9800
C2—C31.4004 (19)C17—C181.4838 (19)
C2—C91.438 (2)C17—H17A0.9900
C3—C41.3958 (19)C17—H17B0.9900
C3—C101.4841 (18)C19—C201.3922 (19)
C4—C51.4046 (19)C19—C241.3995 (18)
C4—C71.5120 (19)C20—C211.378 (2)
C5—C61.504 (2)C20—H200.9500
C6—H6A0.9800C21—C221.397 (2)
C6—H6B0.9800C21—H210.9500
C6—H6C0.9800C22—C231.383 (2)
C7—C81.497 (2)C22—H220.9500
C8—H8A0.9800C23—C241.3942 (19)
C8—H8B0.9800C23—H230.9500
C1—S1—C17101.35 (7)C13—C12—H12120.2
C13—O2—C16117.95 (12)C11—C12—H12120.2
C1—N1—C5118.73 (12)O2—C13—C12124.79 (13)
C18—N3—C19106.75 (11)O2—C13—C14115.05 (12)
C18—N3—H3A130.7 (12)C12—C13—C14120.16 (12)
C19—N3—H3A122.3 (12)C15—C14—C13119.94 (13)
C18—N4—C24104.95 (11)C15—C14—H14120.0
N1—C1—C2122.62 (12)C13—C14—H14120.0
N1—C1—S1119.65 (10)C14—C15—C10120.71 (13)
C2—C1—S1117.69 (11)C14—C15—H15119.6
C3—C2—C1119.35 (13)C10—C15—H15119.6
C3—C2—C9121.70 (12)O2—C16—H16A109.5
C1—C2—C9118.91 (12)O2—C16—H16B109.5
C4—C3—C2117.52 (12)H16A—C16—H16B109.5
C4—C3—C10122.00 (12)O2—C16—H16C109.5
C2—C3—C10120.46 (12)H16A—C16—H16C109.5
C3—C4—C5119.45 (12)H16B—C16—H16C109.5
C3—C4—C7121.51 (12)C18—C17—S1110.62 (10)
C5—C4—C7119.02 (12)C18—C17—H17A109.5
N1—C5—C4122.31 (13)S1—C17—H17A109.5
N1—C5—C6115.99 (12)C18—C17—H17B109.5
C4—C5—C6121.66 (13)S1—C17—H17B109.5
C5—C6—H6A109.5H17A—C17—H17B108.1
C5—C6—H6B109.5N4—C18—N3113.14 (12)
H6A—C6—H6B109.5N4—C18—C17123.51 (12)
C5—C6—H6C109.5N3—C18—C17123.20 (12)
H6A—C6—H6C109.5N3—C19—C20131.89 (13)
H6B—C6—H6C109.5N3—C19—C24105.67 (11)
O1—C7—C8122.73 (14)C20—C19—C24122.44 (13)
O1—C7—C4120.25 (14)C21—C20—C19116.50 (14)
C8—C7—C4116.92 (13)C21—C20—H20121.8
C7—C8—H8A109.5C19—C20—H20121.8
C7—C8—H8B109.5C20—C21—C22121.85 (14)
H8A—C8—H8B109.5C20—C21—H21119.1
C7—C8—H8C109.5C22—C21—H21119.1
H8A—C8—H8C109.5C23—C22—C21121.49 (14)
H8B—C8—H8C109.5C23—C22—H22119.3
N2—C9—C2177.63 (16)C21—C22—H22119.3
C11—C10—C15118.86 (12)C22—C23—C24117.55 (13)
C11—C10—C3120.55 (12)C22—C23—H23121.2
C15—C10—C3120.58 (12)C24—C23—H23121.2
C10—C11—C12120.68 (13)N4—C24—C23130.31 (12)
C10—C11—H11119.7N4—C24—C19109.49 (11)
C12—C11—H11119.7C23—C24—C19120.17 (13)
C13—C12—C11119.62 (13)
C5—N1—C1—C20.72 (19)C10—C11—C12—C131.9 (2)
C5—N1—C1—S1176.93 (10)C16—O2—C13—C124.4 (2)
C17—S1—C1—N119.43 (12)C16—O2—C13—C14176.31 (12)
C17—S1—C1—C2162.81 (10)C11—C12—C13—O2178.69 (12)
N1—C1—C2—C31.2 (2)C11—C12—C13—C140.6 (2)
S1—C1—C2—C3176.50 (10)O2—C13—C14—C15179.48 (12)
N1—C1—C2—C9176.39 (12)C12—C13—C14—C151.2 (2)
S1—C1—C2—C95.92 (17)C13—C14—C15—C101.7 (2)
C1—C2—C3—C40.78 (18)C11—C10—C15—C140.4 (2)
C9—C2—C3—C4176.73 (12)C3—C10—C15—C14179.48 (12)
C1—C2—C3—C10179.13 (12)C1—S1—C17—C1891.64 (11)
C9—C2—C3—C101.62 (19)C24—N4—C18—N30.80 (15)
C2—C3—C4—C50.01 (19)C24—N4—C18—C17174.81 (13)
C10—C3—C4—C5178.31 (12)C19—N3—C18—N40.81 (16)
C2—C3—C4—C7178.31 (12)C19—N3—C18—C17174.82 (13)
C10—C3—C4—C73.4 (2)S1—C17—C18—N4103.92 (14)
C1—N1—C5—C40.13 (19)S1—C17—C18—N371.25 (16)
C1—N1—C5—C6177.84 (12)C18—N3—C19—C20178.33 (15)
C3—C4—C5—N10.5 (2)C18—N3—C19—C240.44 (15)
C7—C4—C5—N1177.87 (12)N3—C19—C20—C21178.13 (14)
C3—C4—C5—C6178.07 (13)C24—C19—C20—C210.5 (2)
C7—C4—C5—C60.3 (2)C19—C20—C21—C220.2 (2)
C3—C4—C7—O1112.49 (16)C20—C21—C22—C230.2 (2)
C5—C4—C7—O169.18 (19)C21—C22—C23—C240.3 (2)
C3—C4—C7—C870.98 (18)C18—N4—C24—C23177.89 (14)
C5—C4—C7—C8107.35 (16)C18—N4—C24—C190.49 (15)
C4—C3—C10—C1156.59 (18)C22—C23—C24—N4178.18 (13)
C2—C3—C10—C11121.69 (14)C22—C23—C24—C190.0 (2)
C4—C3—C10—C15124.37 (14)N3—C19—C24—N40.02 (15)
C2—C3—C10—C1557.35 (17)C20—C19—C24—N4178.94 (12)
C15—C10—C11—C121.36 (19)N3—C19—C24—C23178.55 (12)
C3—C10—C11—C12177.70 (12)C20—C19—C24—C230.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.92 (2)1.98 (2)2.8441 (16)157.1 (17)
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.92 (2)1.98 (2)2.8441 (16)157.1 (17)
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H20N4O2S
Mr428.50
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)9.8513 (2), 15.0619 (2), 28.9310 (4)
V3)4292.76 (12)
Z8
Radiation typeCu Kα
µ (mm1)1.57
Crystal size (mm)0.24 × 0.15 × 0.06
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2015)
Tmin, Tmax0.79, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
31421, 4292, 3787
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.02
No. of reflections4292
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.40

Computer programs: APEX2 (Bruker, 2015), SAINT (Bruker, 2015), SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF–MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAlamgir, M., Black, D. St C. & Kumar, N. (2007). Top. Heterocycl. Chem. 9, 87–118.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIngle, R. G. & Magar, D. D. (2011). Int. J. Drug Res. Technol. 1, 26–32.  Google Scholar
First citationLitvinov, V. P. (2003). Russ. Chem. Rev. 72, 69–85.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds