organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1R,2R)-8-Bromo-1-[(E)-2-(4-bromo­phen­yl)ethen­yl]-2-nitro-1,2-di­hydro­naphtho­[2,1-b]furan

aCatalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
*Correspondence e-mail: wangyifeng@zjut.edu.cn

Edited by S. Parkin, University of Kentucky, USA (Received 12 March 2016; accepted 26 March 2016; online 8 April 2016)

The title compound,C20H13Br2NO3, contains the di­hydro­benzo­furan moiety, which is present in the physiologically active components of many medicinal plants. The naphthyl ring system is nearly perpendicular to the phenyl ring, while the mean plane of the double bond is almost coplanar with the phenyl ring [dihedral angles of 79.14 (3) and 13.56 (1)°, respectively]. The nitro group and bromo­benzene alkenyl group are trans to one another on opposite sides of the furan ring. There are two stereogenic centres, and each has the R configuration. In the crystal, there are very weak inter­molecular C—H⋯Br inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound has a di­hydro­benzo­furan skeleton, which is the effective physiologically active component in many medicinal plants(Ohkawa et al. 1997[Ohkawa, S., Fukatsu, K., Miki, S., Hashimoto, T., Sakamoto, J., Doi, T., Nagai, Y. & Aono, T. (1997). J. Med. Chem. 40, 559-573.]; Snyder et al., 2011[Snyder, S. A., Gollner, A. & Chiriac, M. I. (2011). Nature, 474, 461-466.]). The mol­ecular structure of the title compound is shown in Fig. 1[link]. The five-membered ring involving C9/C10/C11/C12/O1adopts an envelope conformation and is characterized by torsion angle values of −140.9 (6) and −18.7 (7)° for C13—C12—C11—N1 and C10—C12—C11—O1, respectively. The naphthyl group is nearly perpendicular to the phenyl ring, while the mean plane through the double bond and its attached substituents is almost coplanar with the phenyl ring [dihedral angles of 79.14 (3) and 13.56 (1)°, respectively]. Furthermore, the C12—C10—C9 and C10—C9—O1 bond angles are 109.7 (5)° and 112.0 (5)°, respectively. The nitro group and bromo­benzene alkenyl group are mutually trans to one another, on opposite sides of the furan ring. The mol­ecule possesses two stereogenic centres, C11 and C12, and both have the R configuration. In the crystal, there are very weak inter­molecular C—H⋯Br inter­actions present (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Br1i 0.98 3.04 3.786 (7) 134
C11—H11⋯Br2ii 0.98 3.04 3.942 (7) 154
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2].
[Figure 1]
Figure 1
The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed down the crystallographic a axis. C—H⋯Br inter­actions are shown with dashed lines.

Synthesis and crystallization

The title compound was synthesized from 1-bromo-4-[(1E,3Z)-4-bromo-4-nitro­buta-1,3-dien­yl]benzene and 7-bromo­naphthalen-2-ol (Jarava-Barrera et al., 2013[Jarava-Barrera, C., Esteban, F., Navarro-Ranninger, C., Parra, A. & Alemán, J. (2013). Chem. Commun. 49, 2001-2003.]; Pan et al., 2013[Pan, J. Y., Li, X. S., Xu, D. C. & Xie, J. W. (2013). Aust. J. Chem. 66, 1415-1421.]). To a solution of the chiral amine catalyst 3-(benzyl­amino)-4-({R-(6-meth­oxy­quinolin-4-yl)[(1S,2R,4S,5R)-5-vinyl­quinuclidin-2-yl]meth­yl}amino)­cyclo­but-3-ene-1,2-dione (5.08 mg, 5 mol%) and 1-bromo-4-[(1E,3Z)-4-bromo-4-nitro­buta-1,3-dien­yl]benzene (66.2 mg, 0.2 mmol) in chloro­form (6 ml) was added sequentially a solution of 7-bromo­naphthalen-2-ol (88.8 mg, 0. 4 mmol) and potassium carbonate (27.6 mg, 0.2 mmol) in water (3.0 ml) with vigorous stirring. The reaction was monitored by TLC. After completion of the reaction, the mixture was extracted with DCM (3 × 5 mL), washed with water, dried and concentrated. The residue was purified by flash chromatography to give a white solid. Single crystals were obtained by slow evaporation of a solution in ethyl acetate.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H13Br2NO3
Mr 475.13
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 9.4796 (15), 7.1550 (12), 13.651 (2)
β (°) 90.968 (4)
V3) 925.8 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.40
Crystal size (mm) 0.20 × 0.14 × 0.10
 
Data collection
Diffractometer CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.308, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 5364, 3269, 2731
Rint 0.032
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.093, 0.97
No. of reflections 3269
No. of parameters 235
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.33
Absolute structure Flack x determined using 998 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.020 (14)
Computer programs: SMART and SAINT (Bruker, 2013[Bruker (2013). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Comment top

The title compound, which was readily synthesized from 1-bromo-4-((1E,3Z)-4-bromo-4-nitrobuta-1,3-dienyl) benzene and 7-bromonaphthalen-2-ol, has the dihydrobenzofuran skeleton, which is the effective physiologically active component in many medicinal plants. The molecular structure of the title compound is shown in Fig. 1. The five-membered ring involving C9/C10/C11/C12/O1 is characterized by torsion angle values of -140.93 (1)° and -18.75 (4)° for C13-C12-C11-N1 and C10-C12-C11-O1. The naphthyl group is nearly perpendicular to the phenyl ring, while the mean plane of the double bond is almost coplanar with the phenyl ring [dihedral angles of 79.14 (3)° and 13.56 (1)°, respectively]. Furthermore, the C12-C10-C9 and C10-C9-O1 bond angles are 109.73 (1)° and 111.99 (2)°, respectively. The molecule possesses two stereogenic centres, C11 and C12, and both have the R configuration. The nitro group and bromobenzene alkenyl group are mutually trans to one another, on opposite sides of the furan ring. In the crystal, there are weak intermolecular C—H···Br interactions.

Experimental top

The title compound was synthesized from 1-bromo-4-[(1E,3Z)-4-bromo-4-nitrobuta-1,3-dienyl]benzene and 7-bromonaphthalen-2-ol (Jarava-Barrera et al., 2013; Pan et al., 2013). To a solution of the chiral amine catalyst 3-(benzylamino)-4-({R-(6-methoxyquinolin-4-yl)[(1S,2R,4S,5R)-5-vinylquinuclidin-2-yl]methyl}amino)cyclobut-3-ene-1,2-dione (5.08 mg, 5 mol%) and 1-bromo-4-[(1E,3Z)-4-bromo-4-nitrobuta-1,3-dienyl]benzene (66.2 mg, 0.2 mmol) in chloroform (6 ml) was added sequentially a solution of 7-bromonaphthalen-2-ol (88.8 mg, 0. 4 mmol) and potassium carbonate (27.6 mg, 0.2 mmol) in water (3.0 ml) with vigorous stirring. The reaction was monitored by TLC. After completion of the reaction, the mixture was extracted with DCM (3 × 5 mL), washed with water, dried and concentrated. The residue was purified by flash chromatography to give a white solid. Single crystals were obtained by slow evaporation of a solution in ethyl acetate.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound has a dihydrobenzofuran skeleton, which is the effective physiologically active component in many medicinal plants(Ohkawa et al. 1997; Snyder et al., 2011). The molecular structure of the title compound is shown in Fig. 1. The five-membered ring involving C9/C10/C11/C12/O1adopts an envelope conformation and is characterized by torsion angle values of -140.9 (6) and -18.7 (7)° for C13—C12—C11—N1 and C10—C12—C11—O1, respectively. The naphthyl group is nearly perpendicular to the phenyl ring, while the mean plane of the double bond and its attached substituents is almost coplanar with the phenyl ring [dihedral angles of 79.14 (3) and 13.56 (1)°, respectively]. Furthermore, the C12—C10—C9 and C10—C9—O1 bond angles are 109.7 (5)° and 112.0 (5)°, respectively. The nitro group and bromobenzene alkenyl group are mutually trans to one another, on opposite sides of the furan ring. The molecule possesses two stereogenic centres, C11 and C12, and both have the R configuration. In the crystal, there are very weak intermolecular C—H···Br interactions present (Fig. 2 and Table 1).

Computing details top

Data collection: SMART (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the crystallographic a axis. C—H···Br interactions are shown with dashed lines.
(1R,2R)-8-Bromo-1-[(E)-2-(4-bromophenyl)ethenyl]-2-nitro-1,2-dihydronaphtho[2,1-b]furan top
Crystal data top
C20H13Br2NO3F(000) = 468
Mr = 475.13Dx = 1.704 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.4796 (15) ÅCell parameters from 1587 reflections
b = 7.1550 (12) Åθ = 4.3–42.0°
c = 13.651 (2) ŵ = 4.40 mm1
β = 90.968 (4)°T = 293 K
V = 925.8 (3) Å3Prismatic, colorless
Z = 20.20 × 0.14 × 0.10 mm
Data collection top
CCD area detector
diffractometer
2731 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.5°, θmin = 2.2°
Tmin = 0.308, Tmax = 0.746h = 1110
5364 measured reflectionsk = 88
3269 independent reflectionsl = 1614
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.46 e Å3
3269 reflectionsΔρmin = 0.33 e Å3
235 parametersAbsolute structure: Flack x determined using 998 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.020 (14)
Crystal data top
C20H13Br2NO3V = 925.8 (3) Å3
Mr = 475.13Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.4796 (15) ŵ = 4.40 mm1
b = 7.1550 (12) ÅT = 293 K
c = 13.651 (2) Å0.20 × 0.14 × 0.10 mm
β = 90.968 (4)°
Data collection top
CCD area detector
diffractometer
3269 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
2731 reflections with I > 2σ(I)
Tmin = 0.308, Tmax = 0.746Rint = 0.032
5364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.46 e Å3
S = 0.97Δρmin = 0.33 e Å3
3269 reflectionsAbsolute structure: Flack x determined using 998 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
235 parametersAbsolute structure parameter: 0.020 (14)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.34554 (7)0.79114 (10)0.40480 (6)0.0566 (2)
Br20.15172 (9)0.04620 (14)0.97004 (6)0.0734 (3)
N10.8641 (6)1.1062 (9)0.8084 (5)0.0505 (17)
O10.9655 (4)0.8187 (7)0.7633 (4)0.0494 (13)
O20.7964 (6)1.1871 (10)0.8702 (5)0.087 (2)
O30.9374 (6)1.1853 (8)0.7504 (5)0.0684 (16)
C10.7710 (8)0.6837 (11)0.3851 (6)0.055 (2)
H10.83220.64690.33620.066*
C20.6321 (8)0.7072 (11)0.3625 (6)0.0526 (19)
H20.59830.68780.29900.063*
C30.5398 (7)0.7617 (10)0.4377 (5)0.0443 (16)
C40.5847 (6)0.7928 (11)0.5314 (5)0.0393 (14)
H40.52150.82840.57930.047*
C50.7298 (6)0.7699 (10)0.5543 (5)0.0377 (14)
C60.8249 (7)0.7137 (10)0.4806 (5)0.0428 (16)
C70.9695 (8)0.6893 (11)0.5051 (6)0.053 (2)
H71.03070.64990.45670.064*
C81.0220 (7)0.7214 (11)0.5972 (6)0.0530 (19)
H81.11720.70600.61260.064*
C90.9269 (6)0.7780 (11)0.6662 (5)0.0431 (15)
C100.7863 (6)0.8018 (10)0.6493 (4)0.0364 (13)
C110.8482 (7)0.8968 (10)0.8071 (5)0.0429 (17)
H110.83800.84850.87380.052*
C120.7149 (6)0.8505 (9)0.7436 (5)0.0406 (16)
H120.65510.96130.73520.049*
C130.6332 (7)0.6920 (10)0.7872 (5)0.0393 (15)
H130.68210.58180.80000.047*
C140.4995 (7)0.6957 (10)0.8085 (5)0.0435 (16)
H140.45250.80810.79750.052*
C150.4160 (6)0.5434 (11)0.8476 (4)0.0401 (14)
C160.2702 (6)0.5486 (12)0.8480 (5)0.0486 (16)
H160.22500.65500.82410.058*
C170.1888 (7)0.4044 (11)0.8820 (6)0.0510 (19)
H170.09090.41150.88040.061*
C180.2568 (7)0.2504 (11)0.9182 (5)0.049 (2)
C190.4018 (7)0.2356 (10)0.9217 (5)0.0497 (18)
H190.44550.12950.94720.060*
C200.4800 (7)0.3820 (11)0.8865 (5)0.0457 (17)
H200.57790.37400.88860.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0575 (4)0.0457 (4)0.0659 (5)0.0035 (4)0.0212 (3)0.0074 (4)
Br20.0799 (6)0.0793 (6)0.0607 (5)0.0367 (5)0.0063 (4)0.0148 (5)
N10.038 (3)0.058 (4)0.055 (4)0.000 (3)0.003 (3)0.012 (3)
O10.041 (2)0.058 (4)0.049 (3)0.013 (2)0.011 (2)0.012 (3)
O20.074 (4)0.085 (5)0.102 (6)0.006 (4)0.015 (4)0.040 (4)
O30.069 (4)0.061 (4)0.075 (4)0.019 (3)0.001 (3)0.000 (3)
C10.064 (5)0.062 (5)0.041 (5)0.001 (4)0.018 (4)0.009 (4)
C20.066 (5)0.056 (5)0.036 (4)0.010 (4)0.001 (4)0.002 (4)
C30.052 (4)0.036 (4)0.045 (4)0.003 (3)0.004 (3)0.001 (3)
C40.042 (3)0.033 (3)0.043 (4)0.001 (4)0.001 (3)0.003 (4)
C50.047 (3)0.029 (3)0.037 (4)0.003 (3)0.004 (3)0.006 (3)
C60.050 (4)0.043 (4)0.035 (4)0.003 (3)0.011 (3)0.002 (3)
C70.052 (4)0.054 (5)0.054 (5)0.004 (4)0.014 (4)0.013 (4)
C80.034 (4)0.060 (5)0.065 (5)0.007 (3)0.007 (3)0.004 (4)
C90.044 (3)0.037 (3)0.048 (4)0.005 (3)0.002 (3)0.001 (4)
C100.042 (3)0.030 (3)0.038 (4)0.001 (3)0.004 (3)0.001 (3)
C110.047 (4)0.046 (4)0.036 (4)0.001 (3)0.002 (3)0.002 (3)
C120.039 (3)0.045 (4)0.037 (4)0.001 (3)0.006 (3)0.002 (3)
C130.047 (4)0.039 (4)0.032 (4)0.001 (3)0.003 (3)0.001 (3)
C140.045 (4)0.045 (4)0.041 (4)0.000 (3)0.002 (3)0.003 (3)
C150.042 (3)0.045 (4)0.034 (3)0.001 (3)0.002 (3)0.003 (3)
C160.041 (4)0.050 (4)0.055 (4)0.004 (4)0.002 (3)0.003 (4)
C170.042 (4)0.062 (5)0.049 (5)0.006 (4)0.002 (3)0.001 (4)
C180.053 (4)0.060 (6)0.034 (4)0.016 (4)0.005 (3)0.002 (3)
C190.060 (4)0.049 (5)0.040 (4)0.003 (3)0.006 (3)0.008 (3)
C200.041 (4)0.056 (4)0.041 (4)0.002 (3)0.002 (3)0.006 (3)
Geometric parameters (Å, º) top
Br1—C31.900 (6)C8—H80.9300
Br2—C181.911 (7)C9—C101.359 (8)
N1—O31.204 (8)C10—C121.505 (9)
N1—O21.215 (8)C11—C121.556 (9)
N1—C111.506 (10)C11—H110.9800
O1—C111.389 (8)C12—C131.501 (9)
O1—C91.400 (8)C12—H120.9800
C1—C21.358 (10)C13—C141.306 (9)
C1—C61.408 (11)C13—H130.9300
C1—H10.9300C14—C151.454 (10)
C2—C31.415 (10)C14—H140.9300
C2—H20.9300C15—C161.382 (8)
C3—C41.359 (9)C15—C201.404 (10)
C4—C51.415 (8)C16—C171.374 (10)
C4—H40.9300C16—H160.9300
C5—C101.413 (9)C17—C181.365 (11)
C5—C61.421 (9)C17—H170.9300
C6—C71.416 (10)C18—C191.378 (10)
C7—C81.364 (11)C19—C201.374 (10)
C7—H70.9300C19—H190.9300
C8—C91.376 (9)C20—H200.9300
O3—N1—O2123.4 (7)O1—C11—C12108.8 (5)
O3—N1—C11121.2 (7)N1—C11—C12107.3 (6)
O2—N1—C11115.4 (7)O1—C11—H11110.5
C11—O1—C9107.0 (5)N1—C11—H11110.5
C2—C1—C6121.7 (7)C12—C11—H11110.5
C2—C1—H1119.1C13—C12—C10114.0 (6)
C6—C1—H1119.1C13—C12—C11111.0 (5)
C1—C2—C3118.6 (7)C10—C12—C1198.8 (5)
C1—C2—H2120.7C13—C12—H12110.8
C3—C2—H2120.7C10—C12—H12110.8
C4—C3—C2122.7 (6)C11—C12—H12110.8
C4—C3—Br1119.4 (5)C14—C13—C12125.6 (7)
C2—C3—Br1117.9 (5)C14—C13—H13117.2
C3—C4—C5118.5 (6)C12—C13—H13117.2
C3—C4—H4120.8C13—C14—C15127.1 (7)
C5—C4—H4120.8C13—C14—H14116.5
C10—C5—C4122.4 (6)C15—C14—H14116.5
C10—C5—C6117.4 (6)C16—C15—C20116.5 (7)
C4—C5—C6120.1 (6)C16—C15—C14122.1 (7)
C1—C6—C7122.3 (6)C20—C15—C14121.4 (6)
C1—C6—C5118.3 (6)C17—C16—C15123.2 (8)
C7—C6—C5119.4 (6)C17—C16—H16118.4
C8—C7—C6122.3 (6)C15—C16—H16118.4
C8—C7—H7118.9C18—C17—C16117.7 (6)
C6—C7—H7118.9C18—C17—H17121.2
C7—C8—C9116.6 (6)C16—C17—H17121.2
C7—C8—H8121.7C17—C18—C19122.6 (7)
C9—C8—H8121.7C17—C18—Br2120.4 (5)
C10—C9—C8124.9 (7)C19—C18—Br2117.0 (6)
C10—C9—O1112.0 (5)C20—C19—C18118.2 (7)
C8—C9—O1123.1 (6)C20—C19—H19120.9
C9—C10—C5119.4 (6)C18—C19—H19120.9
C9—C10—C12109.7 (5)C19—C20—C15121.8 (6)
C5—C10—C12130.8 (5)C19—C20—H20119.1
O1—C11—N1109.0 (6)C15—C20—H20119.1
C6—C1—C2—C30.5 (11)C9—O1—C11—C1217.4 (7)
C1—C2—C3—C40.5 (11)O3—N1—C11—O124.1 (9)
C1—C2—C3—Br1179.4 (6)O2—N1—C11—O1157.1 (6)
C2—C3—C4—C50.1 (11)O3—N1—C11—C1293.6 (7)
Br1—C3—C4—C5179.9 (5)O2—N1—C11—C1285.2 (8)
C3—C4—C5—C10179.1 (6)C9—C10—C12—C13104.2 (7)
C3—C4—C5—C60.6 (10)C5—C10—C12—C1372.0 (9)
C2—C1—C6—C7179.8 (7)C9—C10—C12—C1113.6 (8)
C2—C1—C6—C50.0 (11)C5—C10—C12—C11170.2 (7)
C10—C5—C6—C1179.1 (7)O1—C11—C12—C13101.3 (6)
C4—C5—C6—C10.6 (10)N1—C11—C12—C13140.9 (6)
C10—C5—C6—C71.1 (10)O1—C11—C12—C1018.7 (7)
C4—C5—C6—C7179.2 (7)N1—C11—C12—C1099.1 (6)
C1—C6—C7—C8178.8 (7)C10—C12—C13—C14123.6 (7)
C5—C6—C7—C81.4 (11)C11—C12—C13—C14125.9 (7)
C6—C7—C8—C90.5 (11)C12—C13—C14—C15177.8 (6)
C7—C8—C9—C100.7 (12)C13—C14—C15—C16165.8 (7)
C7—C8—C9—O1179.1 (7)C13—C14—C15—C2013.8 (11)
C11—O1—C9—C108.4 (8)C20—C15—C16—C171.5 (10)
C11—O1—C9—C8171.3 (7)C14—C15—C16—C17178.1 (7)
C8—C9—C10—C50.9 (11)C15—C16—C17—C181.0 (11)
O1—C9—C10—C5178.8 (6)C16—C17—C18—C190.1 (11)
C8—C9—C10—C12175.8 (7)C16—C17—C18—Br2178.4 (5)
O1—C9—C10—C124.4 (9)C17—C18—C19—C200.5 (11)
C4—C5—C10—C9179.7 (7)Br2—C18—C19—C20178.8 (6)
C6—C5—C10—C90.0 (10)C18—C19—C20—C150.2 (11)
C4—C5—C10—C124.4 (12)C16—C15—C20—C191.1 (10)
C6—C5—C10—C12175.9 (7)C14—C15—C20—C19178.6 (7)
C9—O1—C11—N199.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Br1i0.983.043.786 (7)134
C11—H11···Br2ii0.983.043.942 (7)154
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Br1i0.983.043.786 (7)134.2
C11—H11···Br2ii0.983.043.942 (7)154.2
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H13Br2NO3
Mr475.13
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.4796 (15), 7.1550 (12), 13.651 (2)
β (°) 90.968 (4)
V3)925.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.40
Crystal size (mm)0.20 × 0.14 × 0.10
Data collection
DiffractometerCCD area detector
Absorption correctionMulti-scan
(SADABS; Krause et al., 2015)
Tmin, Tmax0.308, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
5364, 3269, 2731
Rint0.032
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.093, 0.97
No. of reflections3269
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.33
Absolute structureFlack x determined using 998 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.020 (14)

Computer programs: SMART (Bruker, 2013), SAINT (Bruker, 2013), SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015).

 

Acknowledgements

We acknowledge the help of Professor Jie Sun of Shanghai Institute of Organic Chemistry.

References

First citationBruker (2013). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJarava-Barrera, C., Esteban, F., Navarro-Ranninger, C., Parra, A. & Alemán, J. (2013). Chem. Commun. 49, 2001–2003.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhkawa, S., Fukatsu, K., Miki, S., Hashimoto, T., Sakamoto, J., Doi, T., Nagai, Y. & Aono, T. (1997). J. Med. Chem. 40, 559–573.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationPan, J. Y., Li, X. S., Xu, D. C. & Xie, J. W. (2013). Aust. J. Chem. 66, 1415–1421.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSnyder, S. A., Gollner, A. & Chiriac, M. I. (2011). Nature, 474, 461–466.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds