organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4Z)-1-[(E)-(4-Meth­­oxy­benzyl­­idene)amino]-2-phenyl-4-[(thio­phen-2-yl)­methyl­­idene]-1H-imidazol-5(4H)-one

aSchool of Physics, Shri Mata Vaishno Devi University, Katra 182 320, J&K, India, bDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, D.K., Mangalore, India, cDepartment of Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, D.K., Mangalore, India, and dX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 25 March 2016; accepted 5 April 2016; online 12 April 2016)

In the title compound, C22H17N3O2S, the imidazole ring forms dihedral angles of 9.2 (2), 10.9 (2) and 12.5 (2)° with the thio­phene, phenyl and meth­oxy-substituted benzene rings, respectively. There are two intra­molecular C—H⋯N hydrogen bonds forming S(5) and S(6) rings and one intra­molecular C—H⋯O hydrogen bond forming an S(6) ring.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds containing the imidazolone as well as the imine moiety exhibit pharmaceutical activities such as anti­microbial (Suthakaran et al., 2008[Suthakaran, R., Kavimani, S., Venkaiaiah, P. & Suganthi, K. (2008). Rasayan J. Chem. 1, 22-29.]; Patel et al., 2006[Patel, A., Bari, S., Talele, G., Patel, J. & Sarangapani, M. (2006). Iran. J. Pharm. Res. 4, 249-254.]), anti-oxidant (Suhasini et al., 2014[Suhasini, G. E., Nirmala, M., Varalakshmi , Giri, A., Solomon, B. & Sahitha, G. (2014). Int. J. Pharm. 4, 241-246.]), anti­convulsant (Mohamed et al., 2012[Mohamed, M. S., Mahmoud, R. K., Sayad, A. I. & El-Araby, M. E. (2012). J. Med. Chem. 2, 24-29.]), anthelmintic (Patel et al., 2010[Patel, K., Jayachandran, E., Ravishah, Vijayajavali & Sreenivasa, G. M. (2010). Int. J. Pharm. Bio. Sci. 1, 1-13.]) anti­bacterial (Solankee et al., 2011[Solankee, A., Patil, G. & Patel, K. (2011). Indian J. Chem. Sect. B, 50, 949-952.]) analgesic (Sridhar & Ramesh, 2001[Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149-1152.]), anti-inflammatory (Viveka et al., 2015[Viveka, T. L., Saba, M., Sunitha, S. N. T., Aparna, Y. & Sharada, L. N. (2015). Int. J. Pharm. Pharm. Sci. 4, 1087-1105.]) and anti­tumor (Hodnett & Dunn, 1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]). Apart from their biological activity, Schiff bases have assumed importance as ligands in coordination chemistry (Özkar et al. 2004[Özkar, S., Ülkü, D., Yıldırım, L. T., Biricik, N. & Gümgüm, B. (2004). J. Mol. Struct. 688, 207-211.], Pouralimardan et al., 2007[Pouralimardan, O., Chamayou, A. C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]; Patti et al., 2009[Patti, A., Pedotti, S., Ballistreri, F. P. & Sfrazzetto, G. T. (2009). Molecules, 14, 4312-4325.]). Structural information on the title compound is useful in developing the coordination properties of Schiff bases and to investigate new ligands.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The bond lengths and angles have normal values and all aromatic rings are essentially planar. The imidazole ring forms dihedral angles of 9.2 (2), 10.9 (2) and 12.5 (2)° with the thio­phene (S1/C1–C4), phenyl (C9–C14) and meth­oxy-substituted benzene (C16–C21) rings, respectively. The meth­oxy group is essentially planar with the benzene ring to which it is attached, with a C22—O2—C19—C18 torsion angle of −0.8 (4)°. There are two intra­molecular C—H⋯N hydrogen bonds (Table 1[link]), forming S(5) and S(6) rings, and one intra­molecular C—H⋯O hydrogen bond forming an S(6) ring (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N1 0.93 2.46 2.792 (4) 101
C14—H14⋯N3 0.93 2.32 2.942 (4) 124
C15—H15⋯O1 0.93 2.21 2.867 (3) 127
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate weak intra­molecular hydrogen bonds.

Synthesis and crystallization

A mixture of 3-hydrazinyl-3-oxo-1-(thio­phen-2-yl)prop-1-en-2-yl]benzamide (0.01 mol) in 2-propanol (30 ml) with 4-meth­oxy­benzaldehyde (0.01 mol) in presence of one to two drops of sulfuric acid were heated under reflux for 8 h. The reaction mixture was cooled to ambient temperature and poured on cold water. The solid mass obtained was collected by filtration and washed with cold water. It was crystallized at ambient temperature in the presence of air from a mixture of methanol and N,N-di­methyl­formamide­(1:1 v/v) (m.p. 421 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H17N3O2S
Mr 387.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 20.6796 (18), 5.4004 (4), 17.2537 (16)
β (°) 104.299 (9)
V3) 1867.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.769, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7300, 3663, 2215
Rint 0.028
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 1.05
No. of reflections 3663
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.23
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Compounds containing the imidazolone as well as the imine moiety exhibit an important role in pharmaceutical activities, such as antimicrobial (Suthakaran et al., 2008; Patel et al., 2006), antioxidant (Suhasini et al., 2014), anticonvulsant (Mohamed et al., 2012), anthelmintic (Patel et al., 2010) antibacterial (Solankee et al., 2011) analgesic (Sridhar & Ramesh, 2001), anti-inflammatory (Viveka et al., 2015), and antitumor (Hodnett & Dunn, 1970). Apart from biological activity, Schiff bases have assumed importance as ligands in coordination chemistry (Özkar et al. 2004, Pouralimardan et al., 2007; Patti et al., 2009). Structural information of the title compound is useful in developing coordination properties of Schiff bases and to investigate new ligands.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al. 1987) and bond angles in the title compound have normal values and all aromatic rings are essentially planar. The imidazole ring forms dihedral angles of 9.2 (2)°, 10.9 (2)° and 12.5 (2)° with the thiophene [S1/C1-C4] , phenyl [C9-C14] and methoxy-substituted benzene [C16-C21] rings, respectively. The methoxy group is essentially planar with the benzene ring to which it is attached with a C22-O2-C19-C18 torsion angle of -0.8 (4)°. There are two intramolecular C—H···N hydrogen bonds forming S(5) and S(6) rings and one intramolecular C—H···O hydrogen bond forming an S(6) ring (Fig. 1).

Experimental top

A mixture of 3-hydrazinyl-3-oxo-1-(thiophen-2-yl)prop-1-en-2-yl]benzamide (0.01 mol) in 2-propanol (30 ml) with 4-methoxybenzaldehyde (0.01 mol) in presence of one to two drops of sulfuric acid were heated under reflux for 8 h. The reaction mixture was cooled to ambient temperature and poured on cold water. The solid mass obtained was collected by filtration and washed with cold water. It was crystallized at ambient temperature in the presence of air from a mixture of methanol and N,N-dimethylformamide(1:1 v/v) (m.p. 421 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Compounds containing the imidazolone as well as the imine moiety exhibit pharmaceutical activities such as antimicrobial (Suthakaran et al., 2008; Patel et al., 2006), anti-oxidant (Suhasini et al., 2014), anticonvulsant (Mohamed et al., 2012), anthelmintic (Patel et al., 2010) antibacterial (Solankee et al., 2011) analgesic (Sridhar & Ramesh, 2001), anti-inflammatory (Viveka et al., 2015) and antitumor (Hodnett & Dunn, 1970). Apart from their biological activity, Schiff bases have assumed importance as ligands in coordination chemistry (Özkar et al. 2004, Pouralimardan et al., 2007; Patti et al., 2009). Structural information on the title compound is useful in developing the coordination properties of Schiff bases and to investigate new ligands.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles have normal values and all aromatic rings are essentially planar. The imidazole ring forms dihedral angles of 9.2 (2), 10.9 (2) and 12.5 (2)° with the thiophene (S1/C1–C4), phenyl (C9–C14) and methoxy-substituted benzene (C16–C21) rings, respectively. The methoxy group is essentially planar with the benzene ring to which it is attached, with a C22—O2—C19—C18 torsion angle of -0.8 (4)°. There are two intramolecular C—H···N hydrogen bonds (Table 1), forming S(5) and S(6) rings, and one intramolecular C—H···O hydrogen bond forming an S(6) ring (Fig. 1).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate weak intramolecular hydrogen bonds.
(4Z)-1-[(E)-(4-Methoxybenzylidene)amino]-2-phenyl-4-[(thiophen-2-yl)methylidene]-1H-imidazol-5(4H)-one top
Crystal data top
C22H17N3O2SF(000) = 808
Mr = 387.45Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1894 reflections
a = 20.6796 (18) Åθ = 4.2–27.1°
b = 5.4004 (4) ŵ = 0.20 mm1
c = 17.2537 (16) ÅT = 293 K
β = 104.299 (9)°Rectangular, white
V = 1867.2 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3663 independent reflections
Radiation source: fine-focus sealed tube2215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.9°
ω scansh = 2125
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 64
Tmin = 0.769, Tmax = 1.000l = 2115
7300 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.2269P]
where P = (Fo2 + 2Fc2)/3
3663 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H17N3O2SV = 1867.2 (3) Å3
Mr = 387.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.6796 (18) ŵ = 0.20 mm1
b = 5.4004 (4) ÅT = 293 K
c = 17.2537 (16) Å0.30 × 0.20 × 0.20 mm
β = 104.299 (9)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3663 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2215 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 1.000Rint = 0.028
7300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
3663 reflectionsΔρmin = 0.23 e Å3
255 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44505 (4)0.95712 (13)0.26907 (4)0.0566 (3)
N10.33090 (10)0.8287 (4)0.12524 (13)0.0476 (6)
C90.28224 (12)1.0201 (5)0.00327 (15)0.0435 (6)
N20.23366 (10)0.6575 (4)0.05940 (13)0.0469 (5)
O10.22389 (9)0.3399 (4)0.14907 (11)0.0633 (6)
C70.25357 (14)0.5141 (5)0.12958 (16)0.0498 (7)
C80.28221 (12)0.8389 (5)0.06065 (15)0.0444 (6)
N30.17324 (11)0.6492 (4)0.00114 (13)0.0518 (6)
C100.33009 (13)1.2060 (5)0.01438 (17)0.0508 (7)
H100.35911.21320.06500.061*
C50.35065 (13)0.5749 (5)0.24616 (16)0.0499 (7)
H50.33590.43440.26780.060*
C140.23988 (13)1.0125 (5)0.07990 (17)0.0539 (7)
H140.20790.88850.09300.065*
O20.11004 (10)0.3630 (4)0.22410 (13)0.0745 (6)
C40.40723 (13)0.6972 (5)0.29599 (15)0.0473 (7)
C10.50041 (14)0.9677 (6)0.36046 (17)0.0613 (8)
H10.53381.08660.37490.074*
C130.24499 (15)1.1877 (5)0.13666 (17)0.0595 (8)
H130.21641.18120.18750.071*
C120.29240 (15)1.3713 (5)0.11775 (18)0.0600 (8)
H120.29571.48960.15580.072*
C20.49050 (14)0.7853 (6)0.40935 (18)0.0618 (8)
H20.51610.76510.46140.074*
C60.31598 (13)0.6373 (5)0.17177 (16)0.0479 (7)
C160.07441 (14)0.4331 (5)0.06258 (16)0.0527 (7)
C150.13843 (14)0.4562 (5)0.00441 (17)0.0601 (8)
H150.15400.32410.02970.072*
C190.04988 (14)0.3744 (5)0.16912 (17)0.0543 (7)
C210.05040 (15)0.6050 (5)0.12224 (18)0.0634 (8)
H210.07620.74260.12680.076*
C30.43762 (14)0.6291 (5)0.37355 (16)0.0555 (7)
H30.42430.49390.39920.067*
C110.33506 (14)1.3800 (5)0.04245 (18)0.0580 (8)
H110.36731.50350.02990.070*
C170.03512 (17)0.2308 (6)0.0599 (2)0.0823 (11)
H170.05070.10900.02170.099*
C180.02719 (16)0.2015 (6)0.1122 (2)0.0762 (10)
H180.05320.06390.10810.091*
C200.01077 (15)0.5760 (6)0.17477 (19)0.0674 (9)
H200.02590.69350.21450.081*
C220.15119 (16)0.1525 (6)0.2217 (2)0.0901 (12)
H22A0.13000.00680.23570.135*
H22B0.19370.17500.25900.135*
H22C0.15760.13420.16870.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0543 (5)0.0598 (5)0.0512 (5)0.0039 (4)0.0044 (4)0.0050 (3)
N10.0426 (13)0.0533 (13)0.0432 (13)0.0023 (10)0.0038 (11)0.0027 (10)
C90.0389 (15)0.0493 (15)0.0421 (15)0.0057 (12)0.0096 (12)0.0014 (12)
N20.0385 (12)0.0565 (13)0.0431 (13)0.0050 (11)0.0051 (10)0.0003 (10)
O10.0606 (13)0.0725 (13)0.0539 (13)0.0183 (11)0.0089 (11)0.0084 (10)
C70.0466 (16)0.0599 (18)0.0420 (16)0.0003 (14)0.0092 (13)0.0004 (13)
C80.0377 (14)0.0510 (16)0.0440 (16)0.0024 (13)0.0090 (13)0.0023 (12)
N30.0378 (13)0.0688 (15)0.0450 (13)0.0054 (12)0.0032 (11)0.0018 (11)
C100.0443 (16)0.0549 (17)0.0515 (17)0.0014 (13)0.0089 (14)0.0028 (13)
C50.0461 (16)0.0572 (16)0.0457 (16)0.0024 (13)0.0103 (13)0.0079 (13)
C140.0468 (16)0.0619 (18)0.0491 (17)0.0001 (14)0.0042 (14)0.0011 (14)
O20.0502 (13)0.0910 (15)0.0701 (15)0.0045 (12)0.0083 (11)0.0081 (12)
C40.0437 (15)0.0558 (16)0.0413 (15)0.0073 (13)0.0087 (13)0.0036 (12)
C10.0500 (18)0.0685 (19)0.0581 (19)0.0053 (15)0.0002 (15)0.0074 (16)
C130.0559 (19)0.070 (2)0.0478 (17)0.0097 (16)0.0038 (15)0.0091 (15)
C120.063 (2)0.0571 (18)0.063 (2)0.0128 (16)0.0204 (17)0.0121 (15)
C20.0523 (18)0.079 (2)0.0469 (17)0.0021 (16)0.0008 (15)0.0030 (16)
C60.0422 (15)0.0557 (16)0.0431 (15)0.0012 (13)0.0055 (13)0.0026 (13)
C160.0495 (17)0.0588 (17)0.0459 (16)0.0063 (15)0.0045 (14)0.0035 (14)
C150.0549 (18)0.0609 (18)0.0566 (19)0.0094 (16)0.0008 (15)0.0005 (15)
C190.0455 (16)0.0651 (19)0.0477 (17)0.0018 (15)0.0029 (14)0.0114 (15)
C210.0567 (19)0.0653 (19)0.063 (2)0.0126 (16)0.0040 (16)0.0053 (16)
C30.0524 (17)0.0639 (18)0.0459 (17)0.0007 (15)0.0039 (14)0.0076 (14)
C110.0522 (17)0.0547 (17)0.067 (2)0.0003 (14)0.0147 (16)0.0052 (16)
C170.082 (2)0.080 (2)0.066 (2)0.027 (2)0.0183 (19)0.0186 (18)
C180.071 (2)0.080 (2)0.064 (2)0.0310 (19)0.0078 (18)0.0067 (18)
C200.063 (2)0.069 (2)0.061 (2)0.0026 (17)0.0006 (17)0.0091 (16)
C220.054 (2)0.098 (3)0.105 (3)0.015 (2)0.005 (2)0.022 (2)
Geometric parameters (Å, º) top
S1—C11.705 (3)C1—H10.9300
S1—C41.725 (3)C13—C121.376 (4)
N1—C81.306 (3)C13—H130.9300
N1—C61.389 (3)C12—C111.379 (4)
C9—C101.390 (3)C12—H120.9300
C9—C141.395 (3)C2—C31.398 (4)
C9—C81.475 (3)C2—H20.9300
N2—N31.398 (3)C16—C171.369 (4)
N2—C81.399 (3)C16—C211.384 (4)
N2—C71.410 (3)C16—C151.456 (4)
O1—C71.215 (3)C15—H150.9300
C7—C61.475 (3)C19—C181.353 (4)
N3—C151.257 (3)C19—C201.374 (4)
C10—C111.380 (4)C21—C201.371 (4)
C10—H100.9300C21—H210.9300
C5—C61.349 (3)C3—H30.9300
C5—C41.431 (3)C11—H110.9300
C5—H50.9300C17—C181.388 (4)
C14—C131.384 (4)C17—H170.9300
C14—H140.9300C18—H180.9300
O2—C191.367 (3)C20—H200.9300
O2—C221.426 (3)C22—H22A0.9600
C4—C31.380 (3)C22—H22B0.9600
C1—C21.345 (4)C22—H22C0.9600
C1—S1—C491.37 (14)C1—C2—H2123.6
C8—N1—C6106.9 (2)C3—C2—H2123.6
C10—C9—C14118.4 (2)C5—C6—N1126.4 (2)
C10—C9—C8116.6 (2)C5—C6—C7123.5 (3)
C14—C9—C8125.0 (2)N1—C6—C7110.0 (2)
N3—N2—C8123.0 (2)C17—C16—C21117.0 (3)
N3—N2—C7128.3 (2)C17—C16—C15119.4 (3)
C8—N2—C7108.4 (2)C21—C16—C15123.6 (3)
O1—C7—N2127.0 (3)N3—C15—C16122.0 (3)
O1—C7—C6130.8 (3)N3—C15—H15119.0
N2—C7—C6102.1 (2)C16—C15—H15119.0
N1—C8—N2112.5 (2)C18—C19—O2124.4 (3)
N1—C8—C9121.6 (2)C18—C19—C20119.6 (3)
N2—C8—C9125.9 (2)O2—C19—C20115.9 (3)
C15—N3—N2118.3 (2)C20—C21—C16121.2 (3)
C11—C10—C9120.7 (3)C20—C21—H21119.4
C11—C10—H10119.7C16—C21—H21119.4
C9—C10—H10119.7C4—C3—C2112.7 (3)
C6—C5—C4128.3 (3)C4—C3—H3123.6
C6—C5—H5115.8C2—C3—H3123.6
C4—C5—H5115.8C12—C11—C10120.2 (3)
C13—C14—C9120.7 (3)C12—C11—H11119.9
C13—C14—H14119.6C10—C11—H11119.9
C9—C14—H14119.6C16—C17—C18122.2 (3)
C19—O2—C22117.6 (2)C16—C17—H17118.9
C3—C4—C5124.6 (3)C18—C17—H17118.9
C3—C4—S1110.5 (2)C19—C18—C17119.6 (3)
C5—C4—S1124.9 (2)C19—C18—H18120.2
C2—C1—S1112.6 (2)C17—C18—H18120.2
C2—C1—H1123.7C21—C20—C19120.4 (3)
S1—C1—H1123.7C21—C20—H20119.8
C12—C13—C14119.9 (3)C19—C20—H20119.8
C12—C13—H13120.0O2—C22—H22A109.5
C14—C13—H13120.0O2—C22—H22B109.5
C13—C12—C11120.0 (3)H22A—C22—H22B109.5
C13—C12—H12120.0O2—C22—H22C109.5
C11—C12—H12120.0H22A—C22—H22C109.5
C1—C2—C3112.9 (3)H22B—C22—H22C109.5
N3—N2—C7—O17.1 (4)C4—C5—C6—N14.4 (5)
C8—N2—C7—O1180.0 (3)C4—C5—C6—C7172.6 (2)
N3—N2—C7—C6170.7 (2)C8—N1—C6—C5174.8 (3)
C8—N2—C7—C62.3 (3)C8—N1—C6—C72.5 (3)
C6—N1—C8—N21.0 (3)O1—C7—C6—C53.1 (5)
C6—N1—C8—C9179.0 (2)N2—C7—C6—C5174.5 (2)
N3—N2—C8—N1172.4 (2)O1—C7—C6—N1179.5 (3)
C7—N2—C8—N11.0 (3)N2—C7—C6—N12.9 (3)
N3—N2—C8—C99.6 (4)N2—N3—C15—C16179.1 (2)
C7—N2—C8—C9177.0 (2)C17—C16—C15—N3172.5 (3)
C10—C9—C8—N110.9 (4)C21—C16—C15—N38.1 (5)
C14—C9—C8—N1166.7 (2)C22—O2—C19—C180.8 (4)
C10—C9—C8—N2171.4 (2)C22—O2—C19—C20178.1 (3)
C14—C9—C8—N211.1 (4)C17—C16—C21—C201.6 (5)
C8—N2—N3—C15166.7 (2)C15—C16—C21—C20179.0 (3)
C7—N2—N3—C1521.3 (4)C5—C4—C3—C2178.0 (2)
C14—C9—C10—C110.6 (4)S1—C4—C3—C20.3 (3)
C8—C9—C10—C11178.3 (2)C1—C2—C3—C40.1 (4)
C10—C9—C14—C130.7 (4)C13—C12—C11—C100.5 (4)
C8—C9—C14—C13178.2 (2)C9—C10—C11—C120.0 (4)
C6—C5—C4—C3176.1 (3)C21—C16—C17—C182.4 (5)
C6—C5—C4—S11.3 (4)C15—C16—C17—C18178.1 (3)
C1—S1—C4—C30.5 (2)O2—C19—C18—C17179.3 (3)
C1—S1—C4—C5178.2 (2)C20—C19—C18—C170.4 (5)
C4—S1—C1—C20.6 (2)C16—C17—C18—C191.5 (6)
C9—C14—C13—C120.2 (4)C16—C21—C20—C190.2 (5)
C14—C13—C12—C110.4 (4)C18—C19—C20—C211.2 (5)
S1—C1—C2—C30.5 (3)O2—C19—C20—C21179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N10.932.462.792 (4)101
C14—H14···N30.932.322.942 (4)124
C15—H15···O10.932.212.867 (3)127
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N10.932.462.792 (4)101
C14—H14···N30.932.322.942 (4)124
C15—H15···O10.932.212.867 (3)127

Experimental details

Crystal data
Chemical formulaC22H17N3O2S
Mr387.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)20.6796 (18), 5.4004 (4), 17.2537 (16)
β (°) 104.299 (9)
V3)1867.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.769, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7300, 3663, 2215
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 1.05
No. of reflections3663
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

RK acknowledges the Indian Council of Medical Research, New Delhi, for Financial Support under Research Project No. BIC/12 (14)/2012. SNK acknowledges the Department of Chemistry, Shri MadhwaVadiraja Institute of Technology, Bantakal (VTU Belgam), for providing research facilities.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMohamed, M. S., Mahmoud, R. K., Sayad, A. I. & El-Araby, M. E. (2012). J. Med. Chem. 2, 24–29.  CAS Google Scholar
First citationÖzkar, S., Ülkü, D., Yıldırım, L. T., Biricik, N. & Gümgüm, B. (2004). J. Mol. Struct. 688, 207–211.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPatel, A., Bari, S., Talele, G., Patel, J. & Sarangapani, M. (2006). Iran. J. Pharm. Res. 4, 249–254.  Google Scholar
First citationPatel, K., Jayachandran, E., Ravishah, Vijayajavali & Sreenivasa, G. M. (2010). Int. J. Pharm. Bio. Sci. 1, 1–13.  Google Scholar
First citationPatti, A., Pedotti, S., Ballistreri, F. P. & Sfrazzetto, G. T. (2009). Molecules, 14, 4312–4325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPouralimardan, O., Chamayou, A. C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolankee, A., Patil, G. & Patel, K. (2011). Indian J. Chem. Sect. B, 50, 949–952.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuhasini, G. E., Nirmala, M., Varalakshmi , Giri, A., Solomon, B. & Sahitha, G. (2014). Int. J. Pharm. 4, 241–246.  Google Scholar
First citationSuthakaran, R., Kavimani, S., Venkaiaiah, P. & Suganthi, K. (2008). Rasayan J. Chem. 1, 22–29.  CAS Google Scholar
First citationViveka, T. L., Saba, M., Sunitha, S. N. T., Aparna, Y. & Sharada, L. N. (2015). Int. J. Pharm. Pharm. Sci. 4, 1087–1105.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds