organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4Z,5E,9E,10Z)-N4,N5,N9,N10-Tetra­kis(2,6-diiso­propyl­phen­yl)pyrene-4,5,9,10-tetra­imine

a105 E. 24th St., Austin, TX 78704, USA
*Correspondence e-mail: acowley@cm.utexas.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 4 February 2016; accepted 22 March 2016; online 8 April 2016)

The title mol­ecule, C64H74N4, consists of a pyrene backbone with imine moieties located on the 4-, 5-, 9-, and 10-positions of the ring system. The aryl groups on these imines are sterically bulky 2,6-diiso­propyl­phenyl units. As a consequence, the backbone itself is twisted, with an angle of 15.29 (6)° between the mean planes (r.m.s. deviations = 0.006 and 0.009 Å) of the phenyl units. The N=C—C=N units are significantly twisted and feature torsion angles of −48.8 (2) and −46.3 (3)°. The non-planarity of the backbone and short C—N distances [ranging from 1.281 (2) to 1.285 (2) Å] indicate the lack of conjugation in the mol­ecule and double-bond nature of the imines. Weak intra­molecular and intermolecular C—H⋯π inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imine–metal complexes have been widely studied as ligands in organometallic catalysts (Xing et al., 2014[Xing, Q., Song, K., Liang, T., Liu, Q., Sun, W.-H. & Redshaw, C. (2014). Dalton Trans. 43, 7830-7837.]; Song et al., 2013[Song, K., Yang, W., Li, B., Liu, Q., Redshaw, C., Li, Y. & Sun, W.-H. (2013). Dalton Trans. 42, 9166-9175.]; Zhao et al., 2015[Zhao, T., Xing, Q., Song, K., Ban, Q., Liang, T., Liu, Q. & Sun, W.-H. (2015). RSC Adv. 5, 14228-14234.]; Gao et al., 2012[Gao, B., Luo, X., Gao, W., Huang, L., Gao, S., Liu, X., Wu, Q. & Mu, Y. (2012). Dalton Trans. 41, 2755-2763.]). In addition, the syntheses and structures of a variety of phenanthrene-based imine complexes have been reported (Cherkasov et al., 2012[Cherkasov, V. K., Druzhkov, N. O., Kocherova, T. N., Shavyrin, A. S. & Fukin, G. K. (2012). Tetrahedron, 68, 1422-1426.]) and the crystal structure of the asymmetric (Z)-N-{(E)-10-[(2,6-diiso­propyl­phen­yl)imino]-9,10-di­hydro­phenanthren-9-yl­idene}-2,6-di­methylaniline complex has been reported by Li et al. (2012[Li, D., Yu, H., Yu, T., Liang, H. & Liu, T. (2012). Acta Cryst. E68, o607.]). Our lab has been active in the study of bis-imino acenaphenthene-based complexes due to the unique redox characteristics of the ligand. Herein is reported the structure of a sterically hindered di­imine mol­ecule based on the pyrene backbone (Figs. 1[link] and 2[link]). The structure shows a twisted rather than planar backbone, indicating the lack of conjugation across the ring system. The imines adopt an EZ, EZ conformation with relatively large torsion angles across the N—C—C—N fragments.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, shown with 50% probability ellipsoids for non-H atoms. For clarity, the H atoms and the isopropyl groups have been removed.
[Figure 2]
Figure 2
Alternative view of the title compound, shown with 50% probability ellipsoids for non-H atoms. For clarity, the H atoms and the isopropyl groups have been removed.

There are three weak intra­molecular C—H⋯π inter­actions observed (Table 1[link]), one between the pyrene backbone and phenyl imine substituents, and two between isopropyl H atoms and neighboring phenyl substituents. In the crystal, a weak C—H⋯π inter­action links inversion-related mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C29–C34, C53–C58 and C41–C46 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.61 3.327 (2) 134
C11—H11⋯Cg2 0.93 2.93 3.469 (2) 118
C23—H23⋯Cg1 0.98 2.73 3.613 (2) 149
C59—H59⋯Cg3 0.98 2.64 3.571 (2) 158
Symmetry code: (i) -x, -y, -z.

Synthesis and crystallization

Pyrene-4,5,9,10-tetra­one was synthesized according to literature procedures (Hu et al., 2005[Hu, J., Zhang, D. & Harris, F. W. (2005). J. Org. Chem. 70, 707-708.]). 2,6-Diiso­propyl­aniline was purchased from Sigma Aldrich and purified by distillation under vacuum. TiCl4 was purchased as a 1 M solution in DCM and used as received. The tetra­one (52.3 mg; 0.2 mmol) and aniline (0.4375 g; 2.5 mmol) were added to a Schlenk flask and pumped under vacuum for one h. To this, 100 ml of dry toluene was added via cannulation. To this, 0.4 ml of 1.0 M TiCl4 was added via syringe. This exothermic reaction was allowed to continue overnight, followed by careful neutralization of excess TiCl4 by hydrolysis with 20 mL of deionized water. This mixture was washed three times with toluene (50 mL) to extract the product. The resulting organic solution was then washed three times with water (50 mL) and the aqueous layers discarded. The resulting organic solution was then dried over magnesium sulfate and excess toluene solvent removed in vacuo, leaving a crude product with excess aniline oil. The oil was removed by additional washing in aceto­nitrile and crystals were produced by slow evaporation of a saturated solution of the product in di­chloro­methane (yield: 62.5 mg; 0.07 mmol; 35%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C64H74N4
Mr 899.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 223
a, b, c (Å) 14.527 (4), 10.721 (3), 36.004 (10)
β (°) 97.459 (3)
V3) 5560 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.30 × 0.28 × 0.25
 
Data collection
Diffractometer Rigaku SCXMini
Absorption correction Multi-scan (ABSCOR; Higashi, 2001[Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.875, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 55003, 12755, 9576
Rint 0.049
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.175, 1.06
No. of reflections 12755
No. of parameters 630
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.26
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2015 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Comment top

Imine metal complexes have been widely studied as ligands in organometallic catalysts (Xing et al., 2014; Song et al., 2013; Zhao et al., 2015; Gao et al., 2012). In addition, the syntheses and structures of a variety of phenanthrene based imine complexes have been reported (Cherkasov et al., 2012) and the crystal structure of the asymmetric (Z)—N-{(E)-10-[(2,6-Diiso­propyl­phenyl)- imino]-9,10-di­hydro­phenanthren-9-yl­idene}-2,6-di­methyl­aniline complex has been reported by Li et al. (2012). Our lab has been active in the study of bis-imino acenaphenthene based complexes due to the unique redox characteristics of the ligand. Herein is reported the structure of a sterically hindered di­imine molecule based on the pyrene backbone. The structure shows a twisted rather than planar backbone, indicating the lack of conjugation across the ring system. The imines adopt an E—Z, E—Z conformation with relatively large torsion angles across the N–C–C–N fragments.

Experimental top

Pyrene-4,5,9,10-tetra­one was synthesized according to literature procedures (Hu et al., 2005). 2,6-diiso­propyl­aniline was purchased from Sigma Aldrich and purified by distillation under vacuum. TiCl4 was purchased as a 1 M solution in DCM and used as received. The tetra­one (52.3 mg; 0.2 mmol) and aniline (0.4375 g; 2.5 mmol) were added to a Schlenk flask and pumped under vacuum for one hour. To this, 100 mL of dry toluene was added via cannulation. To this, 0.4 mL of 1.0 M TiCl4 was added via syringe. This exothermic reaction was allowed to continue overnight, followed by careful neutralization of excess TiCl4 with 20 mL of deionized water. The solution was washed three times with toluene and aqueous layers discarded. This was further washed with three aliquots (50 mL) of water and dried of magnesium sulfate. The organic solvent was removed in vacuo, leaving a crude product with excell aniline oil. The oil was removed by additional washing in aceto­nitrile. Crystals were afforded by slow evaporation of a saturated solution of the product in DCM.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All C and N atoms were refined anisotripically without restraint. H atoms were placed in calculated postions with C–H = 0.93-0.96Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Experimental top

Pyrene-4,5,9,10-tetraone was synthesized according to literature procedures (Hu et al., 2005). 2,6-Diisopropylaniline was purchased from Sigma Aldrich and purified by distillation under vacuum. TiCl4 was purchased as a 1 M solution in DCM and used as received. The tetraone (52.3 mg; 0.2 mmol) and aniline (0.4375 g; 2.5 mmol) were added to a Schlenk flask and pumped under vacuum for one hour. To this, 100 ml of dry toluene was added via cannulation. To this, 0.4 ml of 1.0 M TiCl4 was added via syringe. This exothermic reaction was allowed to continue overnight, followed by careful neutralization of excess TiCl4 by hydrolysis with 20 mL of deionized water. This mixture was washed three times with toluene (50 mL) to extract the product. The resulting organic solution was then washed three times with water (50 mL) and the aqueous layers discarded. The resulting organic solution was then dried over magnesium sulfate and excess toluene solvent removed in vacuo, leaving a crude product with excess aniline oil. The oil was removed by additional washing in acetonitrile and crystals were produced by slow evaporation of a saturated solution of the product in dichloromethane (yield: 62.5 mg; 0.07 mmol; 35%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

Imine–metal complexes have been widely studied as ligands in organometallic catalysts (Xing et al., 2014; Song et al., 2013; Zhao et al., 2015; Gao et al., 2012). In addition, the syntheses and structures of a variety of phenanthrene-based imine complexes have been reported (Cherkasov et al., 2012) and the crystal structure of the asymmetric (Z)-N-{(E)-10-[(2,6-diisopropylphenyl)imino]-9,10-dihydrophenanthren-9-ylidene}-2,6-dimethylaniline complex has been reported by Li et al. (2012). Our lab has been active in the study of bis-imino acenaphenthene-based complexes due to the unique redox characteristics of the ligand. Herein is reported the structure of a sterically hindered diimine molecule based on the pyrene backbone (Figs. 1 and 2). The structure shows a twisted rather than planar backbone, indicating the lack of conjugation across the ring system. The imines adopt an EZ, EZ conformation with relatively large torsion angles across the N—C—C—N fragments.

There are three weak intramolecular C—H···π interactions observed (Table 1), one between the pyrene backbone and phenyl imine substituents, and two between isopropyl H atoms and neighboring phenyl substituents. In the crystal, a weak C—H···π interaction links inversion-related molecules.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown with 50% probability ellipsoids for non-H atoms. For clarity, the H atoms and the isopropyl groups have been removed.
[Figure 2] Fig. 2. Alternative view of the title compound, shown with 50% probability ellipsoids for non-H atoms. For clarity, the H atoms and the isopropyl groups have been removed.
N4,N5,N9,N10-Tetrakis(2,6-diisopropylphenyl)pyrene-4,5,9,10-tetraimine top
Crystal data top
C64H74N4F(000) = 1944
Mr = 899.27Dx = 1.074 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 14.527 (4) ÅCell parameters from 12747 reflections
b = 10.721 (3) Åθ = 1.5–31.8°
c = 36.004 (10) ŵ = 0.06 mm1
β = 97.459 (3)°T = 223 K
V = 5560 (3) Å3Chip, red
Z = 40.30 × 0.28 × 0.25 mm
Data collection top
Rigaku SCXMini
diffractometer
12755 independent reflections
Radiation source: fine-focus sealed tube9576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 1.5°
dtprofit.ref scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
k = 1313
Tmin = 0.875, Tmax = 1.000l = 4646
55003 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0719P)2 + 1.9541P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
12755 reflectionsΔρmax = 0.29 e Å3
630 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL2015 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (4)
Crystal data top
C64H74N4V = 5560 (3) Å3
Mr = 899.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.527 (4) ŵ = 0.06 mm1
b = 10.721 (3) ÅT = 223 K
c = 36.004 (10) Å0.30 × 0.28 × 0.25 mm
β = 97.459 (3)°
Data collection top
Rigaku SCXMini
diffractometer
12755 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
9576 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 1.000Rint = 0.049
55003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
12755 reflectionsΔρmin = 0.26 e Å3
630 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49832 (11)0.51934 (15)0.12003 (4)0.0277 (3)
C20.48073 (11)0.50049 (16)0.07841 (5)0.0284 (3)
C30.41788 (11)0.39395 (16)0.06713 (4)0.0287 (3)
C40.42666 (12)0.32550 (17)0.03492 (5)0.0339 (4)
H40.47100.34810.01970.041*
C50.36908 (13)0.22307 (17)0.02536 (5)0.0371 (4)
H50.37600.17660.00410.045*
C60.30148 (13)0.19055 (17)0.04757 (5)0.0352 (4)
H60.26340.12220.04110.042*
C70.29020 (11)0.25977 (16)0.07959 (5)0.0305 (4)
C80.21651 (11)0.22783 (16)0.10310 (5)0.0318 (4)
C90.18629 (11)0.33671 (16)0.12526 (5)0.0313 (4)
C100.26231 (11)0.41920 (16)0.14303 (5)0.0314 (4)
C110.25731 (12)0.48532 (18)0.17612 (5)0.0378 (4)
H110.20560.47610.18860.045*
C120.32859 (13)0.56458 (19)0.19062 (5)0.0398 (4)
H120.32390.60870.21250.048*
C130.40675 (12)0.57830 (17)0.17261 (5)0.0346 (4)
H130.45400.63210.18240.042*
C140.41470 (11)0.51166 (16)0.13989 (5)0.0289 (3)
C150.34171 (11)0.43211 (15)0.12454 (4)0.0282 (3)
C160.34973 (11)0.36087 (15)0.09003 (4)0.0279 (3)
C170.61232 (11)0.52544 (16)0.17381 (5)0.0305 (4)
C180.65262 (12)0.63428 (17)0.19052 (5)0.0336 (4)
C190.68610 (13)0.63059 (19)0.22873 (5)0.0410 (4)
H190.71210.70190.24050.049*
C200.68105 (14)0.5223 (2)0.24931 (5)0.0458 (5)
H200.70360.52120.27470.055*
C210.64232 (14)0.4153 (2)0.23205 (5)0.0433 (5)
H210.63940.34320.24620.052*
C220.60764 (12)0.41313 (17)0.19406 (5)0.0351 (4)
C230.65868 (13)0.75380 (18)0.16818 (5)0.0390 (4)
H230.63120.73730.14230.047*
C240.60355 (17)0.8601 (2)0.18337 (7)0.0585 (6)
H24A0.53990.83540.18280.088*
H24B0.60690.93300.16810.088*
H24C0.62940.87850.20870.088*
C250.75956 (15)0.7927 (2)0.16737 (6)0.0518 (5)
H25A0.78880.80690.19250.078*
H25B0.76140.86800.15310.078*
H25C0.79190.72780.15600.078*
C260.56948 (13)0.29313 (18)0.17513 (6)0.0395 (4)
H260.51700.31620.15650.047*
C270.64194 (18)0.2308 (2)0.15424 (8)0.0658 (7)
H27A0.66460.29000.13760.099*
H27B0.61430.16150.14010.099*
H27C0.69260.20180.17190.099*
C280.5334 (2)0.1993 (3)0.20199 (8)0.0752 (8)
H28A0.58440.16790.21900.113*
H28B0.50330.13140.18790.113*
H28C0.48980.23990.21590.113*
C290.57577 (12)0.66810 (16)0.06262 (5)0.0313 (4)
C300.53572 (13)0.78722 (17)0.06514 (5)0.0380 (4)
C310.59601 (15)0.89013 (19)0.06964 (6)0.0439 (5)
H310.57130.96960.07140.053*
C320.69093 (15)0.87621 (19)0.07145 (6)0.0462 (5)
H320.72940.94580.07410.055*
C330.72863 (14)0.7581 (2)0.06927 (5)0.0439 (5)
H330.79270.74940.07080.053*
C340.67281 (12)0.65180 (18)0.06483 (5)0.0355 (4)
C350.71522 (14)0.5223 (2)0.06276 (6)0.0447 (5)
H350.66640.46110.06540.054*
C360.7492 (2)0.4998 (3)0.02474 (7)0.0849 (10)
H36A0.69700.49980.00540.127*
H36B0.78020.42060.02500.127*
H36C0.79150.56480.02000.127*
C370.79362 (16)0.5003 (3)0.09455 (7)0.0621 (6)
H37A0.84390.55630.09190.093*
H37B0.81500.41570.09360.093*
H37C0.77130.51500.11810.093*
C380.43110 (14)0.8061 (2)0.06214 (7)0.0497 (5)
H380.40310.72510.06650.060*
C390.40294 (19)0.8972 (3)0.09120 (8)0.0752 (8)
H39A0.42690.86880.11580.113*
H39B0.33650.90190.08900.113*
H39C0.42780.97830.08700.113*
C400.39214 (18)0.8485 (3)0.02283 (8)0.0814 (9)
H40A0.42130.92520.01710.122*
H40B0.32640.86110.02160.122*
H40C0.40420.78580.00500.122*
C410.11614 (14)0.07997 (17)0.12561 (6)0.0431 (5)
C420.14708 (16)0.0448 (2)0.16259 (7)0.0508 (5)
C430.07912 (18)0.0067 (2)0.18480 (8)0.0623 (7)
H430.09710.01570.20960.075*
C440.01338 (18)0.0019 (2)0.17045 (9)0.0668 (8)
H440.05740.02050.18580.080*
C450.04085 (17)0.0303 (2)0.13339 (9)0.0645 (7)
H450.10330.02340.12380.077*
C460.02251 (14)0.0690 (2)0.10983 (7)0.0529 (6)
C470.24984 (17)0.0398 (2)0.17811 (7)0.0598 (6)
H470.28470.07600.15920.072*
C480.2740 (2)0.1124 (4)0.21356 (10)0.0971 (11)
H48A0.25310.19690.20970.146*
H48B0.34000.11140.22050.146*
H48C0.24420.07530.23320.146*
C490.2818 (3)0.0966 (3)0.18420 (11)0.1078 (13)
H49A0.34790.09880.19110.162*
H49B0.26550.14290.16150.162*
H49C0.25190.13290.20390.162*
C500.00859 (16)0.0977 (3)0.06890 (8)0.0675 (7)
H500.04530.12740.05760.081*
C510.0829 (2)0.1989 (3)0.06418 (12)0.1088 (13)
H51A0.13710.17020.07430.163*
H51B0.09880.21740.03800.163*
H51C0.05960.27280.07720.163*
C520.0476 (3)0.0191 (3)0.04723 (10)0.0965 (10)
H52A0.00190.07690.04510.145*
H52B0.07580.00480.02270.145*
H52C0.09330.05800.06050.145*
C530.06311 (12)0.46672 (17)0.13839 (6)0.0380 (4)
C540.01332 (13)0.45625 (19)0.16917 (6)0.0422 (4)
C550.01907 (15)0.5656 (2)0.18385 (8)0.0575 (6)
H550.05030.56160.20480.069*
C560.00538 (17)0.6805 (2)0.16772 (9)0.0669 (7)
H560.02610.75270.17830.080*
C570.03855 (15)0.6884 (2)0.13618 (8)0.0597 (6)
H570.04520.76590.12520.072*
C580.07356 (13)0.58199 (19)0.12018 (6)0.0449 (5)
C590.00367 (13)0.33123 (19)0.18684 (6)0.0434 (5)
H590.02240.26620.17210.052*
C600.04326 (18)0.3211 (3)0.22711 (7)0.0658 (7)
H60A0.10910.33060.22760.099*
H60B0.03010.24100.23710.099*
H60C0.02010.38550.24200.099*
C610.10869 (15)0.3066 (2)0.18514 (7)0.0587 (6)
H61A0.13580.36870.19960.088*
H61B0.11840.22540.19520.088*
H61C0.13730.31040.15960.088*
C620.11638 (14)0.5925 (2)0.08387 (7)0.0504 (5)
H620.15100.51530.08110.061*
C630.04002 (19)0.6008 (3)0.05049 (8)0.0797 (8)
H63A0.00140.52790.04990.120*
H63B0.06770.60580.02770.120*
H63C0.00300.67380.05290.120*
C640.18473 (19)0.7004 (3)0.08374 (9)0.0724 (8)
H64A0.15250.77790.08550.109*
H64B0.21240.69870.06090.109*
H64C0.23230.69250.10470.109*
N10.58376 (9)0.52720 (13)0.13434 (4)0.0301 (3)
N20.51647 (10)0.56282 (13)0.05351 (4)0.0314 (3)
N30.18357 (10)0.11668 (14)0.10194 (4)0.0379 (4)
N40.09839 (10)0.35489 (14)0.12354 (4)0.0355 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (8)0.0274 (8)0.0290 (8)0.0020 (6)0.0045 (6)0.0005 (6)
C20.0239 (8)0.0328 (8)0.0291 (8)0.0006 (6)0.0052 (6)0.0013 (6)
C30.0272 (8)0.0320 (9)0.0266 (8)0.0004 (6)0.0025 (6)0.0029 (6)
C40.0354 (9)0.0377 (10)0.0294 (9)0.0043 (7)0.0071 (7)0.0006 (7)
C50.0465 (10)0.0352 (9)0.0304 (9)0.0041 (8)0.0081 (8)0.0023 (7)
C60.0391 (9)0.0303 (9)0.0359 (9)0.0053 (7)0.0035 (7)0.0001 (7)
C70.0287 (8)0.0311 (9)0.0318 (9)0.0001 (7)0.0043 (7)0.0044 (7)
C80.0279 (8)0.0324 (9)0.0350 (9)0.0025 (7)0.0039 (7)0.0022 (7)
C90.0279 (8)0.0325 (9)0.0343 (9)0.0012 (7)0.0073 (7)0.0045 (7)
C100.0267 (8)0.0321 (9)0.0359 (9)0.0000 (7)0.0063 (7)0.0001 (7)
C110.0292 (9)0.0459 (11)0.0402 (10)0.0002 (8)0.0115 (7)0.0034 (8)
C120.0361 (9)0.0484 (11)0.0359 (10)0.0000 (8)0.0090 (8)0.0094 (8)
C130.0306 (9)0.0395 (10)0.0341 (9)0.0025 (7)0.0054 (7)0.0052 (7)
C140.0243 (8)0.0343 (9)0.0281 (8)0.0005 (6)0.0035 (6)0.0026 (7)
C150.0262 (8)0.0293 (8)0.0291 (8)0.0003 (6)0.0041 (6)0.0028 (6)
C160.0262 (8)0.0285 (8)0.0288 (8)0.0006 (6)0.0025 (6)0.0037 (6)
C170.0241 (8)0.0376 (9)0.0297 (8)0.0004 (7)0.0031 (6)0.0000 (7)
C180.0290 (8)0.0381 (9)0.0330 (9)0.0013 (7)0.0020 (7)0.0017 (7)
C190.0404 (10)0.0438 (11)0.0373 (10)0.0033 (8)0.0009 (8)0.0052 (8)
C200.0488 (11)0.0546 (12)0.0313 (9)0.0025 (9)0.0048 (8)0.0014 (9)
C210.0451 (11)0.0452 (11)0.0382 (10)0.0032 (9)0.0006 (8)0.0097 (8)
C220.0301 (9)0.0376 (10)0.0373 (9)0.0008 (7)0.0027 (7)0.0021 (7)
C230.0415 (10)0.0385 (10)0.0361 (10)0.0081 (8)0.0018 (8)0.0013 (8)
C240.0597 (14)0.0387 (11)0.0781 (16)0.0006 (10)0.0125 (12)0.0065 (11)
C250.0497 (12)0.0643 (14)0.0414 (11)0.0186 (11)0.0056 (9)0.0056 (10)
C260.0365 (10)0.0354 (10)0.0452 (11)0.0004 (8)0.0002 (8)0.0048 (8)
C270.0604 (15)0.0536 (14)0.0872 (19)0.0082 (11)0.0236 (13)0.0212 (13)
C280.095 (2)0.0570 (15)0.0794 (19)0.0236 (14)0.0319 (16)0.0015 (13)
C290.0337 (9)0.0347 (9)0.0260 (8)0.0053 (7)0.0060 (7)0.0030 (7)
C300.0403 (10)0.0359 (10)0.0392 (10)0.0028 (8)0.0101 (8)0.0045 (8)
C310.0550 (12)0.0354 (10)0.0432 (11)0.0054 (9)0.0129 (9)0.0004 (8)
C320.0527 (12)0.0428 (11)0.0437 (11)0.0188 (9)0.0090 (9)0.0021 (9)
C330.0363 (10)0.0544 (12)0.0413 (11)0.0126 (9)0.0064 (8)0.0006 (9)
C340.0324 (9)0.0417 (10)0.0329 (9)0.0041 (8)0.0068 (7)0.0004 (7)
C350.0343 (10)0.0482 (12)0.0518 (12)0.0001 (8)0.0063 (8)0.0006 (9)
C360.107 (2)0.092 (2)0.0540 (15)0.0527 (19)0.0045 (15)0.0058 (14)
C370.0494 (13)0.0716 (16)0.0642 (15)0.0124 (12)0.0028 (11)0.0099 (12)
C380.0418 (11)0.0391 (11)0.0702 (14)0.0037 (9)0.0143 (10)0.0066 (10)
C390.0639 (16)0.092 (2)0.0724 (18)0.0221 (15)0.0203 (13)0.0010 (15)
C400.0537 (15)0.116 (3)0.0720 (18)0.0201 (16)0.0011 (13)0.0130 (17)
C410.0406 (10)0.0294 (9)0.0630 (13)0.0035 (8)0.0206 (9)0.0035 (9)
C420.0530 (12)0.0405 (11)0.0640 (14)0.0004 (9)0.0274 (11)0.0076 (10)
C430.0716 (16)0.0459 (13)0.0778 (17)0.0033 (11)0.0415 (14)0.0100 (11)
C440.0644 (15)0.0380 (12)0.110 (2)0.0085 (11)0.0553 (16)0.0005 (13)
C450.0450 (12)0.0430 (12)0.111 (2)0.0094 (10)0.0317 (14)0.0022 (13)
C460.0382 (11)0.0375 (11)0.0859 (17)0.0055 (9)0.0190 (11)0.0022 (11)
C470.0591 (14)0.0753 (17)0.0482 (13)0.0044 (12)0.0192 (11)0.0159 (12)
C480.078 (2)0.104 (3)0.112 (3)0.0106 (19)0.0232 (19)0.031 (2)
C490.103 (3)0.098 (3)0.113 (3)0.046 (2)0.022 (2)0.023 (2)
C500.0380 (12)0.0681 (16)0.095 (2)0.0067 (11)0.0022 (12)0.0140 (14)
C510.095 (2)0.079 (2)0.140 (3)0.0176 (19)0.032 (2)0.005 (2)
C520.116 (3)0.074 (2)0.101 (3)0.0035 (19)0.022 (2)0.0123 (18)
C530.0244 (8)0.0344 (9)0.0555 (11)0.0022 (7)0.0070 (8)0.0006 (8)
C540.0287 (9)0.0413 (10)0.0585 (12)0.0031 (8)0.0131 (8)0.0022 (9)
C550.0453 (12)0.0497 (13)0.0836 (17)0.0031 (10)0.0313 (12)0.0075 (12)
C560.0530 (14)0.0407 (12)0.114 (2)0.0018 (10)0.0372 (14)0.0095 (13)
C570.0443 (12)0.0361 (11)0.103 (2)0.0007 (9)0.0272 (12)0.0060 (11)
C580.0283 (9)0.0387 (10)0.0690 (14)0.0016 (8)0.0117 (9)0.0054 (9)
C590.0388 (10)0.0439 (11)0.0500 (11)0.0009 (8)0.0149 (9)0.0027 (9)
C600.0584 (14)0.0793 (18)0.0592 (15)0.0043 (13)0.0055 (11)0.0046 (13)
C610.0427 (12)0.0576 (14)0.0776 (16)0.0086 (10)0.0148 (11)0.0158 (12)
C620.0392 (11)0.0470 (12)0.0667 (14)0.0006 (9)0.0128 (10)0.0155 (10)
C630.0599 (16)0.098 (2)0.0799 (19)0.0061 (15)0.0019 (14)0.0099 (17)
C640.0633 (16)0.0670 (17)0.090 (2)0.0177 (13)0.0231 (14)0.0145 (14)
N10.0270 (7)0.0328 (7)0.0302 (7)0.0024 (6)0.0030 (5)0.0004 (6)
N20.0291 (7)0.0342 (8)0.0312 (7)0.0024 (6)0.0054 (6)0.0024 (6)
N30.0331 (8)0.0346 (8)0.0470 (9)0.0040 (6)0.0094 (7)0.0022 (7)
N40.0291 (7)0.0343 (8)0.0443 (9)0.0019 (6)0.0096 (6)0.0039 (7)
Geometric parameters (Å, º) top
C1—N11.283 (2)C36—H36B0.9600
C1—C141.490 (2)C36—H36C0.9600
C1—C21.501 (2)C37—H37A0.9600
C2—N21.281 (2)C37—H37B0.9600
C2—C31.486 (2)C37—H37C0.9600
C3—C41.392 (2)C38—C401.524 (4)
C3—C161.414 (2)C38—C391.526 (3)
C4—C51.396 (2)C38—H380.9800
C4—H40.9300C39—H39A0.9600
C5—C61.389 (3)C39—H39B0.9600
C5—H50.9300C39—H39C0.9600
C6—C71.398 (2)C40—H40A0.9600
C6—H60.9300C40—H40B0.9600
C7—C161.407 (2)C40—H40C0.9600
C7—C81.488 (2)C41—C421.401 (3)
C8—N31.283 (2)C41—C461.409 (3)
C8—C91.511 (2)C41—N31.434 (2)
C9—N41.285 (2)C42—C431.409 (3)
C9—C101.492 (2)C42—C471.525 (3)
C10—C111.396 (2)C43—C441.377 (4)
C10—C151.412 (2)C43—H430.9300
C11—C121.388 (3)C44—C451.376 (4)
C11—H110.9300C44—H440.9300
C12—C131.386 (2)C45—C461.393 (3)
C12—H120.9300C45—H450.9300
C13—C141.395 (2)C46—C501.516 (4)
C13—H130.9300C47—C481.497 (4)
C14—C151.416 (2)C47—C491.541 (4)
C15—C161.476 (2)C47—H470.9800
C17—C181.405 (2)C48—H48A0.9600
C17—C221.414 (2)C48—H48B0.9600
C17—N11.428 (2)C48—H48C0.9600
C18—C191.399 (3)C49—H49A0.9600
C18—C231.522 (3)C49—H49B0.9600
C19—C201.384 (3)C49—H49C0.9600
C19—H190.9300C50—C511.524 (4)
C20—C211.388 (3)C50—C521.544 (4)
C20—H200.9300C50—H500.9800
C21—C221.395 (3)C51—H51A0.9600
C21—H210.9300C51—H51B0.9600
C22—C261.526 (3)C51—H51C0.9600
C23—C251.528 (3)C52—H52A0.9600
C23—C241.534 (3)C52—H52B0.9600
C23—H230.9800C52—H52C0.9600
C24—H24A0.9600C53—C541.404 (3)
C24—H24B0.9600C53—C581.416 (3)
C24—H24C0.9600C53—N41.434 (2)
C25—H25A0.9600C54—C551.393 (3)
C25—H25B0.9600C54—C591.517 (3)
C25—H25C0.9600C55—C561.387 (3)
C26—C271.525 (3)C55—H550.9300
C26—C281.534 (3)C56—C571.376 (4)
C26—H260.9800C56—H560.9300
C27—H27A0.9600C57—C581.403 (3)
C27—H27B0.9600C57—H570.9300
C27—H27C0.9600C58—C621.523 (3)
C28—H28A0.9600C59—C601.524 (3)
C28—H28B0.9600C59—C611.542 (3)
C28—H28C0.9600C59—H590.9800
C29—C301.411 (3)C60—H60A0.9600
C29—C341.412 (2)C60—H60B0.9600
C29—N21.432 (2)C60—H60C0.9600
C30—C311.405 (3)C61—H61A0.9600
C30—C381.523 (3)C61—H61B0.9600
C31—C321.380 (3)C61—H61C0.9600
C31—H310.9300C62—C641.525 (3)
C32—C331.386 (3)C62—C631.529 (4)
C32—H320.9300C62—H620.9800
C33—C341.395 (3)C63—H63A0.9600
C33—H330.9300C63—H63B0.9600
C34—C351.525 (3)C63—H63C0.9600
C35—C371.524 (3)C64—H64A0.9600
C35—C361.533 (3)C64—H64B0.9600
C35—H350.9800C64—H64C0.9600
C36—H36A0.9600
N1—C1—C14128.11 (15)H37A—C37—H37B109.5
N1—C1—C2116.12 (14)C35—C37—H37C109.5
C14—C1—C2115.35 (14)H37A—C37—H37C109.5
N2—C2—C3120.00 (15)H37B—C37—H37C109.5
N2—C2—C1126.64 (15)C30—C38—C40110.63 (18)
C3—C2—C1113.30 (13)C30—C38—C39113.0 (2)
C4—C3—C16120.04 (15)C40—C38—C39110.2 (2)
C4—C3—C2120.91 (15)C30—C38—H38107.6
C16—C3—C2119.04 (15)C40—C38—H38107.6
C3—C4—C5120.21 (16)C39—C38—H38107.6
C3—C4—H4119.9C38—C39—H39A109.5
C5—C4—H4119.9C38—C39—H39B109.5
C6—C5—C4120.08 (17)H39A—C39—H39B109.5
C6—C5—H5120.0C38—C39—H39C109.5
C4—C5—H5120.0H39A—C39—H39C109.5
C5—C6—C7120.58 (16)H39B—C39—H39C109.5
C5—C6—H6119.7C38—C40—H40A109.5
C7—C6—H6119.7C38—C40—H40B109.5
C6—C7—C16119.69 (15)H40A—C40—H40B109.5
C6—C7—C8121.11 (15)C38—C40—H40C109.5
C16—C7—C8119.20 (15)H40A—C40—H40C109.5
N3—C8—C7119.21 (16)H40B—C40—H40C109.5
N3—C8—C9127.02 (15)C42—C41—C46122.31 (19)
C7—C8—C9113.73 (14)C42—C41—N3118.64 (18)
N4—C9—C10127.31 (16)C46—C41—N3118.8 (2)
N4—C9—C8116.52 (15)C41—C42—C43117.1 (2)
C10—C9—C8115.76 (14)C41—C42—C47122.38 (18)
C11—C10—C15119.27 (15)C43—C42—C47120.4 (2)
C11—C10—C9123.30 (15)C44—C43—C42121.3 (3)
C15—C10—C9117.41 (15)C44—C43—H43119.4
C12—C11—C10120.86 (16)C42—C43—H43119.4
C12—C11—H11119.6C45—C44—C43120.1 (2)
C10—C11—H11119.6C45—C44—H44119.9
C13—C12—C11120.35 (17)C43—C44—H44119.9
C13—C12—H12119.8C44—C45—C46121.7 (2)
C11—C12—H12119.8C44—C45—H45119.2
C12—C13—C14120.20 (16)C46—C45—H45119.2
C12—C13—H13119.9C45—C46—C41117.3 (2)
C14—C13—H13119.9C45—C46—C50121.0 (2)
C13—C14—C15119.88 (15)C41—C46—C50121.68 (19)
C13—C14—C1122.62 (15)C48—C47—C42113.8 (2)
C15—C14—C1117.50 (15)C48—C47—C49109.8 (3)
C10—C15—C14119.42 (15)C42—C47—C49110.3 (2)
C10—C15—C16120.33 (15)C48—C47—H47107.5
C14—C15—C16120.23 (14)C42—C47—H47107.5
C7—C16—C3119.35 (15)C49—C47—H47107.5
C7—C16—C15120.71 (14)C47—C48—H48A109.5
C3—C16—C15119.94 (15)C47—C48—H48B109.5
C18—C17—C22122.11 (16)H48A—C48—H48B109.5
C18—C17—N1117.78 (15)C47—C48—H48C109.5
C22—C17—N1119.83 (15)H48A—C48—H48C109.5
C19—C18—C17118.03 (17)H48B—C48—H48C109.5
C19—C18—C23120.47 (16)C47—C49—H49A109.5
C17—C18—C23121.50 (15)C47—C49—H49B109.5
C20—C19—C18120.95 (18)H49A—C49—H49B109.5
C20—C19—H19119.5C47—C49—H49C109.5
C18—C19—H19119.5H49A—C49—H49C109.5
C19—C20—C21119.98 (18)H49B—C49—H49C109.5
C19—C20—H20120.0C46—C50—C51111.8 (3)
C21—C20—H20120.0C46—C50—C52111.7 (2)
C20—C21—C22121.77 (18)C51—C50—C52108.2 (2)
C20—C21—H21119.1C46—C50—H50108.4
C22—C21—H21119.1C51—C50—H50108.4
C21—C22—C17117.13 (17)C52—C50—H50108.4
C21—C22—C26121.07 (17)C50—C51—H51A109.5
C17—C22—C26121.77 (16)C50—C51—H51B109.5
C18—C23—C25111.20 (16)H51A—C51—H51B109.5
C18—C23—C24111.62 (16)C50—C51—H51C109.5
C25—C23—C24110.51 (17)H51A—C51—H51C109.5
C18—C23—H23107.8H51B—C51—H51C109.5
C25—C23—H23107.8C50—C52—H52A109.5
C24—C23—H23107.8C50—C52—H52B109.5
C23—C24—H24A109.5H52A—C52—H52B109.5
C23—C24—H24B109.5C50—C52—H52C109.5
H24A—C24—H24B109.5H52A—C52—H52C109.5
C23—C24—H24C109.5H52B—C52—H52C109.5
H24A—C24—H24C109.5C54—C53—C58122.16 (18)
H24B—C24—H24C109.5C54—C53—N4118.22 (16)
C23—C25—H25A109.5C58—C53—N4119.47 (17)
C23—C25—H25B109.5C55—C54—C53117.78 (19)
H25A—C25—H25B109.5C55—C54—C59120.21 (18)
C23—C25—H25C109.5C53—C54—C59121.99 (17)
H25A—C25—H25C109.5C56—C55—C54121.0 (2)
H25B—C25—H25C109.5C56—C55—H55119.5
C27—C26—C22110.83 (16)C54—C55—H55119.5
C27—C26—C28109.8 (2)C57—C56—C55120.5 (2)
C22—C26—C28113.91 (18)C57—C56—H56119.7
C27—C26—H26107.3C55—C56—H56119.7
C22—C26—H26107.3C56—C57—C58121.4 (2)
C28—C26—H26107.3C56—C57—H57119.3
C26—C27—H27A109.5C58—C57—H57119.3
C26—C27—H27B109.5C57—C58—C53116.94 (19)
H27A—C27—H27B109.5C57—C58—C62120.17 (19)
C26—C27—H27C109.5C53—C58—C62122.84 (18)
H27A—C27—H27C109.5C54—C59—C60112.61 (19)
H27B—C27—H27C109.5C54—C59—C61110.40 (17)
C26—C28—H28A109.5C60—C59—C61110.10 (18)
C26—C28—H28B109.5C54—C59—H59107.9
H28A—C28—H28B109.5C60—C59—H59107.9
C26—C28—H28C109.5C61—C59—H59107.9
H28A—C28—H28C109.5C59—C60—H60A109.5
H28B—C28—H28C109.5C59—C60—H60B109.5
C30—C29—C34121.68 (16)H60A—C60—H60B109.5
C30—C29—N2119.16 (15)C59—C60—H60C109.5
C34—C29—N2118.80 (16)H60A—C60—H60C109.5
C31—C30—C29117.52 (17)H60B—C60—H60C109.5
C31—C30—C38120.37 (18)C59—C61—H61A109.5
C29—C30—C38122.10 (17)C59—C61—H61B109.5
C32—C31—C30121.65 (19)H61A—C61—H61B109.5
C32—C31—H31119.2C59—C61—H61C109.5
C30—C31—H31119.2H61A—C61—H61C109.5
C31—C32—C33119.72 (18)H61B—C61—H61C109.5
C31—C32—H32120.1C58—C62—C64113.4 (2)
C33—C32—H32120.1C58—C62—C63110.09 (18)
C32—C33—C34121.63 (18)C64—C62—C63111.1 (2)
C32—C33—H33119.2C58—C62—H62107.3
C34—C33—H33119.2C64—C62—H62107.3
C33—C34—C29117.80 (18)C63—C62—H62107.3
C33—C34—C35121.10 (17)C62—C63—H63A109.5
C29—C34—C35121.10 (16)C62—C63—H63B109.5
C37—C35—C34111.79 (18)H63A—C63—H63B109.5
C37—C35—C36110.53 (19)C62—C63—H63C109.5
C34—C35—C36111.44 (18)H63A—C63—H63C109.5
C37—C35—H35107.6H63B—C63—H63C109.5
C34—C35—H35107.6C62—C64—H64A109.5
C36—C35—H35107.6C62—C64—H64B109.5
C35—C36—H36A109.5H64A—C64—H64B109.5
C35—C36—H36B109.5C62—C64—H64C109.5
H36A—C36—H36B109.5H64A—C64—H64C109.5
C35—C36—H36C109.5H64B—C64—H64C109.5
H36A—C36—H36C109.5C1—N1—C17122.66 (14)
H36B—C36—H36C109.5C2—N2—C29122.49 (14)
C35—C37—H37A109.5C8—N3—C41121.07 (16)
C35—C37—H37B109.5C9—N4—C53120.64 (15)
N1—C1—C2—N248.8 (2)C34—C29—C30—C38178.96 (17)
C14—C1—C2—N2138.04 (17)N2—C29—C30—C385.9 (3)
N1—C1—C2—C3128.57 (16)C29—C30—C31—C320.2 (3)
C14—C1—C2—C344.60 (19)C38—C30—C31—C32178.28 (19)
N2—C2—C3—C428.3 (2)C30—C31—C32—C330.8 (3)
C1—C2—C3—C4149.28 (16)C31—C32—C33—C340.7 (3)
N2—C2—C3—C16153.03 (16)C32—C33—C34—C290.1 (3)
C1—C2—C3—C1629.4 (2)C32—C33—C34—C35179.54 (18)
C16—C3—C4—C50.8 (3)C30—C29—C34—C330.6 (3)
C2—C3—C4—C5177.87 (16)N2—C29—C34—C33172.46 (16)
C3—C4—C5—C61.3 (3)C30—C29—C34—C35178.89 (17)
C4—C5—C6—C70.1 (3)N2—C29—C34—C358.1 (2)
C5—C6—C7—C162.0 (3)C33—C34—C35—C3749.3 (3)
C5—C6—C7—C8178.46 (16)C29—C34—C35—C37130.14 (19)
C6—C7—C8—N322.8 (3)C33—C34—C35—C3674.9 (3)
C16—C7—C8—N3156.74 (16)C29—C34—C35—C36105.6 (2)
C6—C7—C8—C9155.04 (16)C31—C30—C38—C4079.0 (3)
C16—C7—C8—C925.4 (2)C29—C30—C38—C4099.4 (2)
N3—C8—C9—N446.3 (3)C31—C30—C38—C3945.1 (3)
C7—C8—C9—N4131.38 (16)C29—C30—C38—C39136.5 (2)
N3—C8—C9—C10140.50 (18)C46—C41—C42—C435.0 (3)
C7—C8—C9—C1041.8 (2)N3—C41—C42—C43178.65 (19)
N4—C9—C10—C1137.2 (3)C46—C41—C42—C47171.5 (2)
C8—C9—C10—C11150.49 (17)N3—C41—C42—C472.2 (3)
N4—C9—C10—C15141.28 (18)C41—C42—C43—C441.3 (3)
C8—C9—C10—C1531.1 (2)C47—C42—C43—C44175.3 (2)
C15—C10—C11—C121.0 (3)C42—C43—C44—C452.4 (4)
C9—C10—C11—C12177.43 (17)C43—C44—C45—C462.5 (4)
C10—C11—C12—C130.8 (3)C44—C45—C46—C411.0 (3)
C11—C12—C13—C140.5 (3)C44—C45—C46—C50178.9 (2)
C12—C13—C14—C151.5 (3)C42—C41—C46—C454.9 (3)
C12—C13—C14—C1177.92 (17)N3—C41—C46—C45178.52 (19)
N1—C1—C14—C1337.8 (3)C42—C41—C46—C50175.1 (2)
C2—C1—C14—C13149.99 (16)N3—C41—C46—C501.4 (3)
N1—C1—C14—C15141.67 (18)C41—C42—C47—C48127.0 (3)
C2—C1—C14—C1530.5 (2)C43—C42—C47—C4856.6 (3)
C11—C10—C15—C140.1 (2)C41—C42—C47—C49109.0 (3)
C9—C10—C15—C14178.56 (15)C43—C42—C47—C4967.3 (3)
C11—C10—C15—C16178.48 (16)C45—C46—C50—C5157.7 (3)
C9—C10—C15—C163.0 (2)C41—C46—C50—C51122.4 (3)
C13—C14—C15—C101.3 (2)C45—C46—C50—C5263.7 (3)
C1—C14—C15—C10178.19 (15)C41—C46—C50—C52116.2 (3)
C13—C14—C15—C16179.73 (15)C58—C53—C54—C555.8 (3)
C1—C14—C15—C160.2 (2)N4—C53—C54—C55178.76 (19)
C6—C7—C16—C32.4 (2)C58—C53—C54—C59175.47 (18)
C8—C7—C16—C3177.99 (15)N4—C53—C54—C590.0 (3)
C6—C7—C16—C15177.48 (15)C53—C54—C55—C562.2 (3)
C8—C7—C16—C152.1 (2)C59—C54—C55—C56179.0 (2)
C4—C3—C16—C71.1 (2)C54—C55—C56—C571.7 (4)
C2—C3—C16—C7179.76 (15)C55—C56—C57—C582.2 (4)
C4—C3—C16—C15178.85 (15)C56—C57—C58—C531.2 (3)
C2—C3—C16—C150.2 (2)C56—C57—C58—C62176.1 (2)
C10—C15—C16—C714.3 (2)C54—C53—C58—C575.3 (3)
C14—C15—C16—C7164.07 (15)N4—C53—C58—C57179.36 (18)
C10—C15—C16—C3165.74 (15)C54—C53—C58—C62171.93 (18)
C14—C15—C16—C315.8 (2)N4—C53—C58—C623.4 (3)
C22—C17—C18—C192.1 (3)C55—C54—C59—C6062.9 (3)
N1—C17—C18—C19176.02 (15)C53—C54—C59—C60115.8 (2)
C22—C17—C18—C23178.90 (16)C55—C54—C59—C6160.6 (3)
N1—C17—C18—C235.0 (2)C53—C54—C59—C61120.7 (2)
C17—C18—C19—C201.1 (3)C57—C58—C62—C6446.7 (3)
C23—C18—C19—C20179.91 (18)C53—C58—C62—C64136.2 (2)
C18—C19—C20—C210.0 (3)C57—C58—C62—C6378.5 (3)
C19—C20—C21—C220.1 (3)C53—C58—C62—C6398.6 (2)
C20—C21—C22—C170.9 (3)C14—C1—N1—C172.3 (3)
C20—C21—C22—C26177.08 (18)C2—C1—N1—C17169.90 (15)
C18—C17—C22—C212.0 (3)C18—C17—N1—C1113.95 (19)
N1—C17—C22—C21175.80 (16)C22—C17—N1—C172.0 (2)
C18—C17—C22—C26175.96 (16)C3—C2—N2—C29178.53 (15)
N1—C17—C22—C262.2 (2)C1—C2—N2—C294.3 (3)
C19—C18—C23—C2562.7 (2)C30—C29—N2—C286.7 (2)
C17—C18—C23—C25118.32 (19)C34—C29—N2—C2100.1 (2)
C19—C18—C23—C2461.2 (2)C7—C8—N3—C41176.58 (16)
C17—C18—C23—C24117.8 (2)C9—C8—N3—C415.9 (3)
C21—C22—C26—C2798.8 (2)C42—C41—N3—C882.3 (2)
C17—C22—C26—C2779.0 (2)C46—C41—N3—C8103.8 (2)
C21—C22—C26—C2825.5 (3)C10—C9—N4—C532.6 (3)
C17—C22—C26—C28156.6 (2)C8—C9—N4—C53169.70 (15)
C34—C29—C30—C310.5 (3)C54—C53—N4—C9114.88 (19)
N2—C29—C30—C31172.49 (16)C58—C53—N4—C969.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C29–C34, C53–C58 and C41–C46 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.613.327 (2)134
C11—H11···Cg20.932.933.469 (2)118
C23—H23···Cg10.982.733.613 (2)149
C59—H59···Cg30.982.643.571 (2)158
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C29–C34, C53–C58 and C41–C46 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.613.327 (2)134
C11—H11···Cg20.932.933.469 (2)118
C23—H23···Cg10.982.733.613 (2)149
C59—H59···Cg30.982.643.571 (2)158
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC64H74N4
Mr899.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)14.527 (4), 10.721 (3), 36.004 (10)
β (°) 97.459 (3)
V3)5560 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerRigaku SCXMini
Absorption correctionMulti-scan
(ABSCOR; Higashi, 2001)
Tmin, Tmax0.875, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
55003, 12755, 9576
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.175, 1.06
No. of reflections12755
No. of parameters630
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrystalClear (Rigaku, 2008), SIR97 (Altomare et al., 1999), SHELXL2015 (Sheldrick, 2015), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

 

Acknowledgements

The present work was supported by the Robert A. Welch Foundation (grant F-0003).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCherkasov, V. K., Druzhkov, N. O., Kocherova, T. N., Shavyrin, A. S. & Fukin, G. K. (2012). Tetrahedron, 68, 1422–1426.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, B., Luo, X., Gao, W., Huang, L., Gao, S., Liu, X., Wu, Q. & Mu, Y. (2012). Dalton Trans. 41, 2755–2763.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, J., Zhang, D. & Harris, F. W. (2005). J. Org. Chem. 70, 707–708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, D., Yu, H., Yu, T., Liang, H. & Liu, T. (2012). Acta Cryst. E68, o607.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, K., Yang, W., Li, B., Liu, Q., Redshaw, C., Li, Y. & Sun, W.-H. (2013). Dalton Trans. 42, 9166–9175.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, Q., Song, K., Liang, T., Liu, Q., Sun, W.-H. & Redshaw, C. (2014). Dalton Trans. 43, 7830–7837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, T., Xing, Q., Song, K., Ban, Q., Liang, T., Liu, Q. & Sun, W.-H. (2015). RSC Adv. 5, 14228–14234.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds