organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-2-(5-Fluoro-2-oxoindolin-3-yl­­idene)-N-methyl­hydrazinecarbo­thio­amide

aDepartment of Chemistry, Faculty of Science, Sebha University, Libya, bDepartment of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, PO Box 344, Rabigh 21911, Saudi Arabia, and cSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
*Correspondence e-mail: nasertaha90@hotmail.com

Edited by H. Ishida, Okayama University, Japan (Received 9 April 2016; accepted 18 April 2016; online 29 April 2016)

In the title compound, C10H9FN4OS, which is approximately planar with a maximum deviation of 0.0881 (10) Å from the mean plane of the non-H atoms, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming a helical chain along the a axis. The chains are linked by N—H⋯S, C—H⋯S and C—H⋯F hydrogen bonds and C—H⋯ π inter­actions into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title Schiff base was synthesized by the condensation reaction of 5-fluoro­isatin with 4-methyl-3-thio­semicarbazide. In numerous cases, isatins react with nucleophiles, even in the absence of any catalyst, either at room temperature or by heating for a few hours (Singh & Desta, 2012[Singh, G. S. & Desta, Z. Y. (2012). Chem. Rev. 112, 6104-6155.]). Thio­semicarbazones are a class of small mol­ecules that display numerous biological activities as anti­virals and as anti­cancer therapeutics, as well as parasiticidal action against Plasmodium falciparum and Trypanasoma cruzi which are the causative agents of malaria and Chagas's disease, respectively (Er et al., 2008[Er, M., Ünver, Y., Sancak, K. & Dügdü, E. (2008). ARKIVOC, xv, 99-120.]). The crystal structures of (Z)-2-(5-fluoro-2-oxoindolin-3-yl­idene)-N-phenyl­hydrazinecarbo­thio­amide (Ali et al., 2012a[Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012a). Acta Cryst. E68, o285-o286.]) and bis­[2-(2-oxoindolin-3-yl­idene)-N-phenyl­hydrazinecarbo­thio­amidato-κ3O,N2,S]nickel(II) di­methyl­formamide monosolvate (Ali et al., 2012b[Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012b). Acta Cryst. E68, m538-m539.]), closely related to the title compound, have been reported.

The title compound is approximately planar (Fig. 1[link]); the dihedral angle between the benzene C1–C6 ring and the five-membered ring C1/C6/N1/C7/C8 is 1.24 (7)°, and the C8—N2—N3—C9, N2—N3—C9—N4 and N2—N3—C9—S1 torsion angles are 176.91 (12), 0.33 (18) and −178.81 (9)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

In the crystal (Fig. 2[link]), the mol­ecules are linked through N1—H1N1⋯O1i hydrogen bonds, forming a helical chain along the a axis. The chains are linked by N4—H1N4⋯S1ii, C2—H2A⋯S1ii and C10—H10C⋯F1iii hydrogen bonds and a C4—H4ACg2iv inter­action (symmetry codes as given in Table 1[link]), forming a three-dimensional network. No significant aromatic ππ stacking inter­actions are observed, the shortest centroid–centroid separation being 4.715 Å.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1 0.83 (2) 2.09 (2) 2.7407 (15) 135 (2)
N1—H1N1⋯O1i 0.86 (2) 1.96 (2) 2.8173 (15) 178 (3)
N4—H1N4⋯S1ii 0.86 (2) 2.67 (2) 3.4718 (11) 157.0 (19)
C2—H2A⋯S1ii 0.95 2.78 3.6979 (13) 163
C10—H10C⋯F1iii 0.98 2.55 3.1746 (19) 122
C4—H4ACg2iv 0.95 2.62 3.4291 (15) 143
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

The title compound was synthesized by refluxing the reaction mixture of hot ethano­lic solutions (30 ml each) of 4-methyl-3-thio­semicarbazide (0.01 mol) and 5-fluoro­isatin (0.01 mol) for 2 h. The precipitates formed during reflux were filtered and washed with cold ethanol and finally stored in a vacuum desiccator over P2O5 (yield 94%, m.p. 512.4–513.8 K). Yellow crystals were grown from acetone–di­methyl­formamide (3:1) by slow evaporation at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H9FN4OS
Mr 252.27
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.7058 (1), 10.6201 (2), 18.8688 (4)
V3) 1143.38 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.53 × 0.30 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.782, 0.854
No. of measured, independent and observed [I > 2σ(I)] reflections 16340, 4144, 3953
Rint 0.019
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.05
No. of reflections 4144
No. of parameters 167
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.19
Absolute structure Flack x determined using 1583 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.031 (15)
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

The title compound was synthesized by refluxing the reaction mixture of hot ethanolic solutions (30 ml each) of 4-methyl-3-thiosemicarbazide (0.01 mol) and 5-fluoroisatin (0.01 mol) for 2 h. The precipitates formed during reflux were filtered and washed with cold ethanol and finally stored in a vacuum desiccator over P2O5 (yield 94%, m.p. 512.4–513.8 K). Yellow crystals were grown from acetone–dimethylformamide (3:1) by slow evaporation at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title Schiff base was synthesized by the condensation reaction of 5-fluoroisatin with 4-methyl-3-thiosemicarbazide. In numerous cases, isatins react with nucleophiles, even in the absence of any catalyst, either at room temperature or by heating for a few hours (Singh & Desta, 2012). Thiosemicarbazones are a class of small molecules that display numerous biological activities as antivirals and as anticancer therapeutics, as well as parasiticidal action against Plasmodium falciparum and Trypanasoma cruzi which are the causative agents of malaria and Chagas's disease, respectively (Er et al., 2008). The crystal structures of compounds, (Z)-2-(5-fluoro-2-oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide (Ali et al., 2012a) and bis[2-(2-oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamidato-κ3O,N2,S]nickel(II) dimethylformamide monosolvate (Ali et al., 2012b), closely related to the title compound, have been reported.

The title compound is approximately planar (Fig. 1); the dihedral angle between the benzene C1–C6 ring and the five-membered ring C1/C6/N1/C7/C8 is 1.24 (7)°, and the C8—N2—N3—C9, N2—N3—C9—N4 and N2—N3—C9—S1 torsion angles are 176.91 (12), 0.33 (18) and -178.81 (9)°, respectively.

In the crystal (Fig. 2), the molecules are linked through N1—H1N1···O1i hydrogen bonds, forming a helical chain along the a axis. The chains are linked by N4—H1N4···S1ii, C2—H2A···S1ii and C10—H10C···F1iii hydrogen bonds and a C4—H4A···Cg2iv interaction (symmetry codes as given in Table 1), forming a three-dimensional network. No significant aromatic ππ stacking interactions are observed, the shortest centroid–centroid separation being 4.715 Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(Z)-2-(5-Fluoro-2-oxoindolin-3-ylidene)-N-methylhydrazinecarbothioamide top
Crystal data top
C10H9FN4OSDx = 1.466 Mg m3
Mr = 252.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9924 reflections
a = 5.7058 (1) Åθ = 3.7–32.6°
b = 10.6201 (2) ŵ = 0.28 mm1
c = 18.8688 (4) ÅT = 100 K
V = 1143.38 (4) Å3Block, yellow
Z = 40.53 × 0.30 × 0.17 mm
F(000) = 520
Data collection top
Bruker APEXII CCD
diffractometer
3953 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
θmax = 32.6°, θmin = 2.2°
Tmin = 0.782, Tmax = 0.854h = 88
16340 measured reflectionsk = 1614
4144 independent reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2071P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.31 e Å3
4144 reflectionsΔρmin = 0.19 e Å3
167 parametersAbsolute structure: Flack x determined using 1583 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.031 (15)
Crystal data top
C10H9FN4OSV = 1143.38 (4) Å3
Mr = 252.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7058 (1) ŵ = 0.28 mm1
b = 10.6201 (2) ÅT = 100 K
c = 18.8688 (4) Å0.53 × 0.30 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4144 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3953 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.854Rint = 0.019
16340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 0.31 e Å3
S = 1.05Δρmin = 0.19 e Å3
4144 reflectionsAbsolute structure: Flack x determined using 1583 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
167 parametersAbsolute structure parameter: 0.031 (15)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74472 (6)0.26837 (3)0.22344 (2)0.01730 (8)
F10.37420 (18)0.87584 (8)0.12143 (5)0.0246 (2)
O10.13905 (19)0.26894 (10)0.06783 (5)0.0189 (2)
N10.1734 (2)0.39611 (11)0.03438 (6)0.0166 (2)
N20.2390 (2)0.48908 (9)0.16490 (5)0.01366 (19)
N30.3829 (2)0.39002 (10)0.17279 (6)0.0149 (2)
N40.6013 (2)0.50266 (10)0.25329 (6)0.0156 (2)
C10.1048 (2)0.57160 (12)0.10271 (6)0.0129 (2)
C20.1426 (2)0.69283 (12)0.12782 (7)0.0150 (2)
H2A0.04230.73080.16190.018*
C30.3354 (2)0.75503 (12)0.10026 (7)0.0165 (2)
C40.4878 (3)0.70357 (13)0.05128 (7)0.0176 (3)
H4A0.61930.75040.03520.021*
C50.4470 (2)0.58177 (13)0.02560 (7)0.0166 (2)
H5A0.54800.54440.00840.020*
C60.2538 (3)0.51798 (11)0.05173 (6)0.0140 (2)
C70.0219 (2)0.36665 (12)0.07190 (7)0.0150 (2)
C80.0724 (2)0.47780 (12)0.11870 (6)0.0135 (2)
C90.5714 (2)0.39599 (11)0.21827 (7)0.0135 (2)
C100.7908 (3)0.52261 (14)0.30366 (8)0.0211 (3)
H10A0.78550.60950.32110.032*
H10B0.94140.50740.28020.032*
H10C0.77300.46440.34360.032*
H1N30.362 (4)0.324 (2)0.1503 (10)0.022 (5)*
H1N10.234 (5)0.346 (2)0.0038 (11)0.035 (6)*
H1N40.502 (4)0.562 (2)0.2464 (12)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01617 (14)0.01296 (12)0.02276 (14)0.00254 (12)0.00245 (14)0.00152 (10)
F10.0294 (5)0.0163 (4)0.0280 (4)0.0105 (4)0.0010 (4)0.0041 (3)
O10.0242 (5)0.0144 (4)0.0181 (4)0.0039 (4)0.0004 (4)0.0035 (4)
N10.0205 (6)0.0137 (4)0.0157 (5)0.0002 (4)0.0029 (4)0.0032 (4)
N20.0144 (5)0.0122 (4)0.0144 (4)0.0011 (4)0.0003 (4)0.0011 (3)
N30.0164 (5)0.0117 (4)0.0167 (5)0.0019 (4)0.0028 (4)0.0011 (4)
N40.0152 (5)0.0137 (5)0.0180 (5)0.0008 (4)0.0015 (4)0.0002 (4)
C10.0139 (5)0.0125 (5)0.0125 (5)0.0002 (4)0.0003 (4)0.0001 (4)
C20.0168 (6)0.0133 (5)0.0150 (5)0.0023 (4)0.0005 (5)0.0010 (4)
C30.0178 (6)0.0142 (5)0.0175 (5)0.0045 (5)0.0023 (5)0.0001 (4)
C40.0142 (6)0.0200 (6)0.0186 (5)0.0028 (5)0.0005 (5)0.0038 (5)
C50.0141 (6)0.0193 (6)0.0163 (5)0.0013 (5)0.0017 (5)0.0018 (4)
C60.0152 (5)0.0135 (4)0.0131 (4)0.0013 (5)0.0007 (5)0.0002 (4)
C70.0195 (6)0.0129 (5)0.0125 (5)0.0002 (5)0.0003 (5)0.0018 (4)
C80.0157 (6)0.0119 (4)0.0129 (5)0.0012 (4)0.0009 (4)0.0011 (4)
C90.0134 (5)0.0130 (5)0.0140 (5)0.0001 (4)0.0010 (4)0.0021 (4)
C100.0189 (7)0.0212 (6)0.0232 (6)0.0033 (5)0.0049 (5)0.0026 (5)
Geometric parameters (Å, º) top
S1—C91.6804 (13)C1—C61.4043 (18)
F1—C31.3618 (15)C1—C81.4509 (18)
O1—C71.2366 (16)C2—C31.3843 (19)
N1—C71.3567 (18)C2—H2A0.9500
N1—C61.4116 (16)C3—C41.3819 (19)
N1—H1N10.86 (2)C4—C51.4009 (19)
N2—C81.2957 (17)C4—H4A0.9500
N2—N31.3426 (15)C5—C61.3847 (19)
N3—C91.3775 (17)C5—H5A0.9500
N3—H1N30.83 (2)C7—C81.5020 (17)
N4—C91.3225 (16)C10—H10A0.9800
N4—C101.4549 (18)C10—H10B0.9800
N4—H1N40.86 (2)C10—H10C0.9800
C1—C21.3887 (17)
C7—N1—C6110.94 (11)C6—C5—C4117.45 (12)
C7—N1—H1N1122.6 (16)C6—C5—H5A121.3
C6—N1—H1N1126.5 (16)C4—C5—H5A121.3
C8—N2—N3116.80 (10)C5—C6—C1121.83 (12)
N2—N3—C9120.70 (11)C5—C6—N1128.66 (12)
N2—N3—H1N3121.2 (15)C1—C6—N1109.51 (12)
C9—N3—H1N3118.1 (14)O1—C7—N1127.23 (12)
C9—N4—C10123.16 (12)O1—C7—C8126.33 (12)
C9—N4—H1N4117.9 (15)N1—C7—C8106.43 (11)
C10—N4—H1N4118.9 (15)N2—C8—C1126.00 (11)
C2—C1—C6121.04 (12)N2—C8—C7127.51 (12)
C2—C1—C8132.37 (12)C1—C8—C7106.49 (11)
C6—C1—C8106.60 (11)N4—C9—N3116.83 (11)
C3—C2—C1115.96 (12)N4—C9—S1125.88 (10)
C3—C2—H2A122.0N3—C9—S1117.29 (9)
C1—C2—H2A122.0N4—C10—H10A109.5
F1—C3—C4117.79 (12)N4—C10—H10B109.5
F1—C3—C2117.95 (12)H10A—C10—H10B109.5
C4—C3—C2124.24 (13)N4—C10—H10C109.5
C3—C4—C5119.46 (13)H10A—C10—H10C109.5
C3—C4—H4A120.3H10B—C10—H10C109.5
C5—C4—H4A120.3
C8—N2—N3—C9176.91 (12)C6—N1—C7—O1177.89 (13)
C6—C1—C2—C30.79 (19)C6—N1—C7—C80.88 (14)
C8—C1—C2—C3179.31 (13)N3—N2—C8—C1178.69 (12)
C1—C2—C3—F1177.62 (11)N3—N2—C8—C70.75 (19)
C1—C2—C3—C40.7 (2)C2—C1—C8—N22.3 (2)
F1—C3—C4—C5176.88 (12)C6—C1—C8—N2177.77 (13)
C2—C3—C4—C51.4 (2)C2—C1—C8—C7178.15 (14)
C3—C4—C5—C60.64 (19)C6—C1—C8—C71.76 (13)
C4—C5—C6—C10.80 (19)O1—C7—C8—N23.3 (2)
C4—C5—C6—N1179.45 (13)N1—C7—C8—N2177.88 (13)
C2—C1—C6—C51.56 (19)O1—C7—C8—C1177.15 (13)
C8—C1—C6—C5178.52 (12)N1—C7—C8—C11.64 (14)
C2—C1—C6—N1178.64 (12)C10—N4—C9—N3179.35 (12)
C8—C1—C6—N11.28 (14)C10—N4—C9—S11.59 (19)
C7—N1—C6—C5179.55 (13)N2—N3—C9—N40.33 (18)
C7—N1—C6—C10.23 (15)N2—N3—C9—S1178.81 (9)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10.83 (2)2.09 (2)2.7407 (15)135 (2)
N1—H1N1···O1i0.86 (2)1.96 (2)2.8173 (15)178 (3)
N4—H1N4···S1ii0.86 (2)2.67 (2)3.4718 (11)157.0 (19)
C2—H2A···S1ii0.952.783.6979 (13)163
C10—H10C···F1iii0.982.553.1746 (19)122
C4—H4A···Cg2iv0.952.623.4291 (15)143
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10.83 (2)2.09 (2)2.7407 (15)135 (2)
N1—H1N1···O1i0.86 (2)1.96 (2)2.8173 (15)178 (3)
N4—H1N4···S1ii0.86 (2)2.67 (2)3.4718 (11)157.0 (19)
C2—H2A···S1ii0.952.783.6979 (13)163
C10—H10C···F1iii0.982.553.1746 (19)122
C4—H4A···Cg2iv0.952.623.4291 (15)143
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC10H9FN4OS
Mr252.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.7058 (1), 10.6201 (2), 18.8688 (4)
V3)1143.38 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.53 × 0.30 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.782, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
16340, 4144, 3953
Rint0.019
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.05
No. of reflections4144
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.19
Absolute structureFlack x determined using 1583 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.031 (15)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

References

First citationAli, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012a). Acta Cryst. E68, o285–o286.  CrossRef IUCr Journals Google Scholar
First citationAli, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012b). Acta Cryst. E68, m538–m539.  CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEr, M., Ünver, Y., Sancak, K. & Dügdü, E. (2008). ARKIVOC, xv, 99–120.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, G. S. & Desta, Z. Y. (2012). Chem. Rev. 112, 6104–6155.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds