metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[S-hexyl (E)-3-(4-meth­­oxy­benzyl­­idene)di­thio­carbazato-κ2N3,S]palladium(II)

aDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127, Trieste, Italy, bDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh, cDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, dDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and eCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
*Correspondence e-mail: miyatake@ctg.u-toyama.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 1 March 2016; accepted 28 March 2016; online 5 April 2016)

In the title complex, [Pd(C15H21N2OS2)2], the PdII ion is located on a crystallographic inversion center. The two Schiff base ligands in a deprotonated imino thiol­ate form chelate the metal atom via the azomithine N and thiol­ate S atoms in a trans-square-planar configuration as imposed by the crystal symmetry. The complex has an approximately planar geometry with the exception of the hexyl chains; the mean plane of the five-membered chelate ring makes a dihedral angle of 15.43 (5)° with the benzene ring. In the crystal, the complex mol­ecules are stacked along the a axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. In the complex, the Pd—S and Pd—N bond lengths are 2.2949 (5) and 2.0358 (14) Å, respectively, with the S1—Pd1—N1 chelating angle of 83.13 (5)°. These values are in agreement with those observed in similar bis­(di­thio­carbazato)PdII complexes, either with a trans configuration of ligands (Khaledi & Mohd Ali, 2011[Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m230.]; Tampouris et al., 2007[Tampouris, K., Coco, S., Yannopoulos, A. & Koinis, S. (2007). Polyhedron, 26, 4269-4275.]; Tarafder et al., 2010[Tarafder, M. T. H., Islam, M. A. A. A. A., Howlader, M. B. H., Guidolin, N. & Zangrando, E. (2010). Acta Cryst. C66, m363-m365.]) or with a cis configuration (Begum, Howlader, Sheikh et al., 2015[Begum, M. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m63-m64.]; Ali et al., 2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]; Liu et al., 2011[Liu, Z.-D., Zhang, X.-J., Wu, J.-Y., Hao, F.-Y., Zhou, H.-P. & Tian, Y.-P. (2011). Polyhedron, 30, 279-283.]; Duan et al., 1998[Duan, C.-Y., Tian, Y.-P., Liu, Z.-H., You, X.-Z. & Mak, T. C. W. (1998). J. Organomet. Chem. 570, 155-162.]; Tampouris et al., 2007[Tampouris, K., Coco, S., Yannopoulos, A. & Koinis, S. (2007). Polyhedron, 26, 4269-4275.]). The ligand recently reported (Begum, Howlader, Miyatake et al., 2015[Begum, M. S., Howlader, M. B. H., Miyatake, R., Zangrando, E. & Sheikh, M. C. (2015). Acta Cryst. E71, o199.]) rotates about the C9—N2 bond by 180° in order to allow the N,S chelating behavior towards the metal. Upon coordination some salient features are observed, compared to the free ligand The most significant one is an elongation of the C9—S1 bond length; the C9—S1 distance of 1.7311 (17) Å in the present PdL2 complex is longer than that of 1.6713 (19) Å in the ligand HL, validating the coordination with the deprotonated thiol­ate S atom. Correspondingly, the present N2—C9 and N1—N2 bond lengths of 1.284 (3) and 1.411 (3) Å, respectively, are shorter and slightly longer than the values of 1.343 (3) and 1.377 (2) Å in the free ligand. In the crystal, the mol­ecules are stacked along the a axis (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 50% probability level [symmetry code: (i) −x, −y, −z].
[Figure 2]
Figure 2
A packing view of the title compound along the a axis.

Synthesis and crystallization

A solution of PdCl2 (0.044 g, 0.25 mmol) in 25 ml methanol was added to a solution of S-hexyl (E)-3-(4-meth­oxy­benzyl­idene)di­thio­carbazate (0.155 g, 0.5 mmol) in 10 ml methanol. The resulting mixture was refluxed with constant stirring for 4 h. The orange–red precipitate formed was filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Orange–red single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation from a solution in a mixture of di­chloro­methane and aceto­nitrile (2:1) (m.p. 457 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Pd(C15H21N2OS2)2]
Mr 725.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 4.54371 (18), 11.6697 (6), 15.5677 (8)
α, β, γ (°) 90.8429 (14), 98.1733 (18), 100.3441 (11)
V3) 803.10 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.87
Crystal size (mm) 0.20 × 0.09 × 0.02
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.891, 0.983
No. of measured, independent and observed [F2 > 2σ(F2)] reflections 6642, 2935, 2802
Rint 0.017
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.057, 1.15
No. of reflections 2935
No. of parameters 189
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.23
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Comment top

ENTER TEXT

Experimental top

A solution of PdCl2 (0.044 g, 0.25 mmol) in 25 ml methanol was added to a solution of S-hexyl (E)-3-(4-methoxybenzylidene)dithiocarbazate (0.155 g, 0.5 mmol) in 10 ml methanol. The resulting mixture was refluxed with constant stirring for 4 h. The orange–red precipitate formed was filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Orange–red single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation from a solution in a mixture of dichloromethane and acetonitrile (2:1) (m.p. 457 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

The molecular structure of the title compound is illustrated in Fig. 1. In the complex, the Pd—S and Pd—N bond lengths are 2.2949 (5) and 2.0358 (14) Å, respectively, with the S1—Pd1—N1 chelating angle of 83.13 (5)°. These values are in agreement with those observed in similar bis(dithiocarbazato)PdII complexes, either with a trans configuration of ligands (Khaledi et al., 2011; Tampouris et al., 2007; Tarafder et al., 2010) or with a cis configuration (Begum, Howlader, Sheikh et al., 2015; Ali et al., 2002; Liu et al., 2011; Duan et al., 1998; Tampouris et al., 2007). The ligand recently reported (Begum, Howlader, Miyatake et al., 2015) rotates about the C9—N2 bond by 180° in order to allow the N,S chelating behavior towards the metal. Upon coordination some salient features are observed, compared to the free ligand The most significant one is an elongation of the C9—S1 bond length; the C9—S1 distance of 1.7311 (17) Å in the present PdL2 complex is longer than that of 1.6713 (19) Å in the ligand HL, validating the coordination with the deprotonated thiolate S atom. Correspondingly, the present N2—C9 and N1—N2 bond lengths of 1.284 (3) and 1.411 (3) Å, respectively, are shorter and slightly longer than the values of 1.343 (3) and 1.377 (2) Å in the free ligand. In the crystal, the molecules are stacked along the a axis (Fig. 2).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level [symmetry code: (i) -x, -y, -z].
[Figure 2] Fig. 2. A packing view of the title compound along the a axis.
Bis[S-hexyl (E)-3-(4-methoxybenzylidene)dithiocarbazato-κ2N3,S]palladium(II) top
Crystal data top
[Pd(C15H21N2OS2)2]Z = 1
Mr = 725.33F(000) = 376.00
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 4.54371 (18) ÅCell parameters from 7004 reflections
b = 11.6697 (6) Åθ = 3.1–27.5°
c = 15.5677 (8) ŵ = 0.87 mm1
α = 90.8429 (14)°T = 173 K
β = 98.1733 (18)°Platelet, orange
γ = 100.3441 (11)°0.20 × 0.09 × 0.02 mm
V = 803.10 (7) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2802 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.017
ω scansθmax = 25.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 55
Tmin = 0.891, Tmax = 0.983k = 1414
6642 measured reflectionsl = 1818
2935 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0251P)2 + 0.3967P]
where P = (Fo2 + 2Fc2)/3
2935 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.23 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Pd(C15H21N2OS2)2]γ = 100.3441 (11)°
Mr = 725.33V = 803.10 (7) Å3
Triclinic, P1Z = 1
a = 4.54371 (18) ÅMo Kα radiation
b = 11.6697 (6) ŵ = 0.87 mm1
c = 15.5677 (8) ÅT = 173 K
α = 90.8429 (14)°0.20 × 0.09 × 0.02 mm
β = 98.1733 (18)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2935 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2802 reflections with F2 > 2σ(F2)
Tmin = 0.891, Tmax = 0.983Rint = 0.017
6642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.15Δρmax = 0.43 e Å3
2935 reflectionsΔρmin = 0.23 e Å3
189 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00000.00000.00000.02080 (8)
S10.00459 (11)0.13653 (4)0.10464 (3)0.02995 (12)
S20.36335 (11)0.12720 (4)0.27412 (3)0.02920 (12)
O11.5353 (4)0.49771 (13)0.23168 (10)0.0379 (4)
N10.3597 (4)0.08710 (13)0.08319 (10)0.0223 (4)
N20.4365 (4)0.04560 (14)0.16655 (10)0.0239 (4)
C10.7997 (4)0.25574 (16)0.11173 (12)0.0235 (4)
C20.9437 (5)0.34306 (17)0.06407 (12)0.0270 (4)
C31.1907 (5)0.42501 (17)0.10040 (13)0.0282 (4)
C41.2993 (5)0.42088 (17)0.18824 (13)0.0280 (4)
C51.1622 (5)0.33362 (18)0.23675 (13)0.0330 (5)
C60.9169 (5)0.25205 (18)0.19998 (13)0.0297 (5)
C71.6597 (5)0.59746 (18)0.18742 (15)0.0383 (5)
C80.5364 (4)0.17987 (16)0.06361 (12)0.0241 (4)
C90.2833 (4)0.05543 (16)0.17755 (11)0.0229 (4)
C100.6641 (5)0.02298 (18)0.33661 (12)0.0281 (4)
C110.5519 (5)0.07304 (18)0.38258 (12)0.0283 (5)
C120.8067 (5)0.15415 (18)0.44003 (12)0.0297 (5)
C130.6976 (5)0.24810 (19)0.48976 (13)0.0320 (5)
C140.9466 (5)0.32555 (19)0.55097 (14)0.0349 (5)
C150.8324 (6)0.4187 (2)0.59973 (16)0.0448 (6)
H10.86930.34650.00410.0325*
H21.28470.48320.06590.0339*
H31.23890.33000.29650.0396*
H40.82660.19300.23440.0356*
H51.50030.64150.16740.0460*
H61.74400.57200.13740.0460*
H71.82010.64720.22720.0460*
H80.48340.20320.00610.0289*
H90.77930.06490.38050.0337*
H100.80440.01300.29730.0337*
H110.40010.03720.41870.0340*
H120.45080.11920.33860.0340*
H130.95390.19220.40330.0357*
H140.91330.10720.48210.0357*
H150.60070.29750.44750.0384*
H160.54170.21000.52380.0384*
H171.10270.36390.51710.0418*
H181.04330.27640.59360.0418*
H190.68900.38130.63680.0537*
H200.73110.46630.55800.0537*
H211.00350.46840.63580.0537*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02019 (11)0.02079 (12)0.01926 (11)0.00035 (8)0.00101 (7)0.00108 (7)
S10.0326 (3)0.0252 (3)0.0254 (3)0.0065 (2)0.00314 (19)0.00252 (19)
S20.0342 (3)0.0249 (3)0.0250 (3)0.0003 (2)0.00123 (19)0.00403 (19)
O10.0355 (8)0.0308 (8)0.0380 (9)0.0094 (7)0.0067 (7)0.0002 (7)
N10.0230 (8)0.0230 (8)0.0203 (8)0.0034 (7)0.0022 (6)0.0000 (6)
N20.0255 (8)0.0242 (9)0.0202 (8)0.0023 (7)0.0000 (6)0.0011 (6)
C10.0220 (9)0.0219 (10)0.0256 (10)0.0031 (8)0.0019 (7)0.0016 (8)
C20.0291 (10)0.0265 (10)0.0240 (10)0.0044 (8)0.0005 (8)0.0005 (8)
C30.0278 (10)0.0241 (10)0.0316 (11)0.0012 (8)0.0046 (8)0.0026 (8)
C40.0242 (9)0.0227 (10)0.0343 (11)0.0013 (8)0.0005 (8)0.0034 (8)
C50.0362 (11)0.0311 (11)0.0259 (10)0.0019 (9)0.0049 (9)0.0012 (9)
C60.0312 (10)0.0277 (11)0.0266 (10)0.0023 (9)0.0014 (8)0.0032 (8)
C70.0358 (11)0.0259 (11)0.0464 (13)0.0089 (9)0.0019 (10)0.0016 (10)
C80.0237 (9)0.0253 (10)0.0225 (9)0.0041 (8)0.0010 (7)0.0008 (8)
C90.0239 (9)0.0240 (10)0.0207 (9)0.0050 (8)0.0030 (7)0.0015 (7)
C100.0248 (9)0.0315 (11)0.0251 (10)0.0029 (9)0.0029 (8)0.0030 (8)
C110.0241 (9)0.0353 (11)0.0236 (10)0.0024 (9)0.0008 (8)0.0008 (8)
C120.0246 (9)0.0371 (12)0.0250 (10)0.0019 (9)0.0002 (8)0.0011 (9)
C130.0273 (10)0.0373 (12)0.0285 (11)0.0024 (9)0.0008 (8)0.0007 (9)
C140.0330 (11)0.0353 (12)0.0319 (11)0.0007 (9)0.0009 (9)0.0013 (9)
C150.0492 (14)0.0371 (13)0.0427 (13)0.0045 (11)0.0062 (11)0.0071 (10)
Geometric parameters (Å, º) top
Pd1—S12.2949 (5)C14—C151.522 (4)
Pd1—S1i2.2949 (5)C2—H10.950
Pd1—N12.0358 (14)C3—H20.950
Pd1—N1i2.0358 (14)C5—H30.950
S1—C91.7311 (17)C6—H40.950
S2—C91.7564 (19)C7—H50.980
S2—C101.8119 (18)C7—H60.980
O1—C41.357 (3)C7—H70.980
O1—C71.431 (3)C8—H80.950
N1—N21.411 (3)C10—H90.990
N1—C81.295 (3)C10—H100.990
N2—C91.284 (3)C11—H110.990
C1—C21.392 (3)C11—H120.990
C1—C61.405 (3)C12—H130.990
C1—C81.457 (3)C12—H140.990
C2—C31.383 (3)C13—H150.990
C3—C41.391 (3)C13—H160.990
C4—C51.387 (3)C14—H170.990
C5—C61.377 (3)C14—H180.990
C10—C111.521 (3)C15—H190.980
C11—C121.524 (3)C15—H200.980
C12—C131.525 (4)C15—H210.980
C13—C141.519 (3)
S1—Pd1—S1i180.00 (3)O1—C7—H5109.469
S1—Pd1—N183.13 (5)O1—C7—H6109.467
S1—Pd1—N1i96.87 (5)O1—C7—H7109.464
S1i—Pd1—N196.87 (5)H5—C7—H6109.479
S1i—Pd1—N1i83.13 (5)H5—C7—H7109.470
N1—Pd1—N1i180.00 (9)H6—C7—H7109.477
Pd1—S1—C995.72 (7)N1—C8—H8113.450
C9—S2—C10102.89 (9)C1—C8—H8113.448
C4—O1—C7118.18 (16)S2—C10—H9108.858
Pd1—N1—N2120.58 (11)S2—C10—H10108.853
Pd1—N1—C8123.64 (13)C11—C10—H9108.859
N2—N1—C8115.75 (14)C11—C10—H10108.849
N1—N2—C9112.98 (14)H9—C10—H10107.706
C2—C1—C6117.37 (16)C10—C11—H11109.100
C2—C1—C8115.14 (16)C10—C11—H12109.105
C6—C1—C8127.46 (17)C12—C11—H11109.106
C1—C2—C3122.68 (17)C12—C11—H12109.103
C2—C3—C4118.89 (18)H11—C11—H12107.845
O1—C4—C3124.42 (18)C11—C12—H13108.895
O1—C4—C5116.13 (18)C11—C12—H14108.898
C3—C4—C5119.45 (17)C13—C12—H13108.898
C4—C5—C6121.28 (19)C13—C12—H14108.893
C1—C6—C5120.31 (19)H13—C12—H14107.732
N1—C8—C1133.10 (18)C12—C13—H15108.748
S1—C9—S2112.82 (10)C12—C13—H16108.753
S1—C9—N2127.04 (14)C14—C13—H15108.757
S2—C9—N2120.13 (13)C14—C13—H16108.759
S2—C10—C11113.56 (14)H15—C13—H16107.646
C10—C11—C12112.47 (17)C13—C14—H17108.973
C11—C12—C13113.37 (17)C13—C14—H18108.975
C12—C13—C14114.00 (18)C15—C14—H17108.977
C13—C14—C15113.04 (19)C15—C14—H18108.973
C1—C2—H1118.658H17—C14—H18107.774
C3—C2—H1118.661C14—C15—H19109.470
C2—C3—H2120.558C14—C15—H20109.468
C4—C3—H2120.548C14—C15—H21109.470
C4—C5—H3119.366H19—C15—H20109.477
C6—C5—H3119.354H19—C15—H21109.472
C1—C6—H4119.844H20—C15—H21109.470
C5—C6—H4119.851
S1—Pd1—N1—N27.46 (11)N2—N1—C8—C12.8 (3)
S1—Pd1—N1—C8170.36 (13)C8—N1—N2—C9170.01 (16)
N1—Pd1—S1—C94.28 (5)N1—N2—C9—S13.2 (3)
S1—Pd1—N1i—N2i172.54 (11)N1—N2—C9—S2175.43 (14)
S1—Pd1—N1i—C8i9.64 (13)C2—C1—C6—C50.9 (3)
N1i—Pd1—S1—C9175.72 (5)C6—C1—C2—C30.7 (3)
S1i—Pd1—N1—N2172.54 (11)C2—C1—C8—N1174.9 (2)
S1i—Pd1—N1—C89.64 (13)C8—C1—C2—C3177.76 (17)
N1—Pd1—S1i—C9i175.72 (5)C6—C1—C8—N16.8 (4)
S1i—Pd1—N1i—N2i7.46 (11)C8—C1—C6—C5177.33 (18)
S1i—Pd1—N1i—C8i170.36 (13)C1—C2—C3—C40.4 (4)
N1i—Pd1—S1i—C9i4.28 (5)C2—C3—C4—O1178.54 (19)
Pd1—S1—C9—S2179.30 (10)C2—C3—C4—C51.4 (3)
Pd1—S1—C9—N22.01 (17)O1—C4—C5—C6178.75 (18)
C9—S2—C10—C1180.84 (13)C3—C4—C5—C61.2 (4)
C10—S2—C9—S1179.47 (11)C4—C5—C6—C10.0 (4)
C10—S2—C9—N21.74 (18)S2—C10—C11—C12175.70 (11)
C7—O1—C4—C37.6 (3)C10—C11—C12—C13177.57 (14)
C7—O1—C4—C5172.30 (17)C11—C12—C13—C14176.88 (15)
Pd1—N1—N2—C98.0 (2)C12—C13—C14—C15179.92 (15)
Pd1—N1—C8—C1179.34 (14)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C15H21N2OS2)2]
Mr725.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)4.54371 (18), 11.6697 (6), 15.5677 (8)
α, β, γ (°)90.8429 (14), 98.1733 (18), 100.3441 (11)
V3)803.10 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.20 × 0.09 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.891, 0.983
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6642, 2935, 2802
Rint0.017
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.057, 1.15
No. of reflections2935
No. of parameters189
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.23

Computer programs: RAPID-AUTO (Rigaku, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

MBHH and MSB are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS and RM acknowledge the Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Japan, and Center for Environmental Conservation and Research Safety, University of Toyama, Japan, respectively, for providing funds for single-crystal X-ray analysis.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBegum, M. S., Howlader, M. B. H., Miyatake, R., Zangrando, E. & Sheikh, M. C. (2015). Acta Cryst. E71, o199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBegum, M. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m63–m64.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuan, C.-Y., Tian, Y.-P., Liu, Z.-H., You, X.-Z. & Mak, T. C. W. (1998). J. Organomet. Chem. 570, 155–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKhaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-D., Zhang, X.-J., Wu, J.-Y., Hao, F.-Y., Zhou, H.-P. & Tian, Y.-P. (2011). Polyhedron, 30, 279–283.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTampouris, K., Coco, S., Yannopoulos, A. & Koinis, S. (2007). Polyhedron, 26, 4269–4275.  Web of Science CSD CrossRef CAS Google Scholar
First citationTarafder, M. T. H., Islam, M. A. A. A. A., Howlader, M. B. H., Guidolin, N. & Zangrando, E. (2010). Acta Cryst. C66, m363–m365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds