organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(2-Hy­dr­oxy­benzoyl)-2-(1H-indol-3-yl)pyridine-3-carbo­nitrile

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamil Nadu, India, bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India, and cPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 7 March 2016; accepted 8 April 2016; online 12 April 2016)

In the title compound, C21H13N3O2, the indole and pyridine rings are planar. The pyridine ring is in an anti­periplanar (−ap) orientation with the indole ring system and an anti­periplanar (+ap) orientation with the hy­droxy­phenyl ring. An intra­molecular O—H⋯O hydrogen bond stabilizes the mol­ecular structure. In the crystal, N—H⋯N hydrogen bonds involving the indole NH group and the cyanide nitro­gen atom lead to the formation of a two-dimensional supra­molecular network lying parallel to (011).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole ring systems have become an important structural component in many pharmaceutical agents (Sundberg, 1996[Sundberg, R. J. (1996). Best Synthetic Methods, Indoles; Academic Press: New York, pp. 7-11.]). Substituted indoles have been refered to as privileged structures since they are capable of binding to many receptors with high affinity (Evans et al., 1988[Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Verber, D. F., Anderson, P. S., Chang, R. S., Lotti, V. J., Cerino, D. H., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235-2246.]). Some indole derivatives possess cytotoxic activity (Muratake et al., 1994[Muratake, H., Mikawa, A., Seino, T. & Natsume, M. (1994). Chem. Pharm. Bull. 42, 854-864.]). Indole and its bioisosters and derivatives have anti­microbial activity against Gram-negative and Gram-positive bacteria, the yeast Candida albicans and Enterobacter, Pseudomonas aeruginosa, E. coli, and Staphylococcus epidermidis (Biswal et al., 2012[Biswal, S., Sahoo, U., Sethy, S., Kumar, H. K. S. & Banerjee, M. (2012). Asia. J. Pharm. Clin. Res. 5, 1-6.]).

The structure of the title compound is shown in Fig. 1[link]. The C—N distances range from 1.345 (2) to 1.370 (2) Å, and are in good agreement with the related reported values (Vishnupriya et al., 2014[Vishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014). Acta Cryst. E70, o968-o969.]). The C14—O1 and C21—N3 bond lengths are 1.2347 (14) Å and 1.1413 (16) Å, respectively, in agreement with values reported by Vimala et al. (2015[Vimala, G., Poomathi, N., AaminaNaaz, Y., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o822-o823.]), confirming the presence of double and triple bonds. The pyridine ring (C9/N2/C10–C13) is in an anti­periplanar (−ap) orientation with the indole ring system (C1/N1/C2–C8) and in an anti­periplanar (+ap) orientation with the hy­droxy­phenyl ring (C15–C20), as evidenced by the torsion angles C7—C8—C9—C13 = −163.54 (11)° and C10—C11—C14—C15 = 155.15 (11)°, respectively. An intra­molecular O—H⋯O hydrogen bond (Table 1[link]) stabilizes the mol­ecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.86 2.15 3.0016 (17) 171
O2—H2⋯O1 0.82 1.84 2.5653 (14) 146
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

In the crystal, N—H⋯N hydrogen bonds (Table 1[link]) between the indole NH group and the cyanide nitro­gen atom result in a two-dimensional supra­molecular network lying parallel to (011) (Fig. 2[link]).

[Figure 2]
Figure 2
The packing of the mol­ecules in the crystal structure. The dashed lines indicate hydrogen bonds.

Synthesis and crystallization

A mixture of 3-formyl­chromone (1 mmol), cyano­acetyl­indole (1 mmol) and ammonium acetate (1 mmol) in DMF and a catalytic amount of SnCl2·2H2O (0.020 mol%) was added and refluxed for about 3 h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by column chromatography on siliga gel (3:97% ethyl acetate and petetroleum ether) to afford pure product in 94% yield. The purified compound was recrystallized from ethanol through slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H13N3O2
Mr 339.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 12.4764 (6), 7.8471 (3), 16.7265 (8)
β (°) 90.478 (2)
V3) 1637.53 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.28 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.969, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 10911, 4105, 2665
Rint 0.019
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.57
No. of reflections 4105
No. of parameters 237
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Comment top

Indole rings systems have become an important structural component in many pharmaceutical agents (Sundberg, 1996). Substituted indoles have been refered to as privileged structures since they are capable of binding to many receptors with high affinity (Evans et al., 1988). Some indole derivatives possess cytotoxic activity (Muratake et al., 1994). Indole and its bioisosters and derivatives have antimicrobial activity against Gram-negative and Gram-positive bacteria, the yeast Candida albicans and Enterobacter, Pseudomonas aeruginosa, E.coli, and Staphylococcus epidermidis (Biswal et al., 2012).

The structure of the title compound is shown in Figure 1. The C-N distances range from 1.345 (2) to 1.369 (2)Å, and are in good agreement with the related reported values (Vishnupriya et al., 2014). The bond distances C14-O1 and C21-N3 are 1.235 (1)Å and 1.141 (2)Å respectively, in agreement with values reported by (Vimala et al., 2015), confirming the presence of double and triple bonds. The pyridine ring (C9/N2/C10-C13) is in antiperiplanar(-ap) orientation with the indole ring (C1/N1/C2-C8)and in anti periplanar(+ap)orientation with the carbonyl bound hydroxy phenyl ring system (C15-C20) which are evidenced by the torsion angles (C7-C8-C9-C13 = -163.54 (1)°) and C10-C11-C14-C15 = 155.15 (1)°) respectively.

In the compound the intramolecular O-H···O hydrogen bond stabilizes the molecular structure while the intermolecular N-H···N hydrogen bonds between the indole NH and the cyanide nitrogen stabilize the crystal packing resulting to a two dimensional supra molecular network lying parallel to (011)plane.

Related literature top

For biological activity, see: Sundberg(1996); Muratake et al. (1994) and Biswal et al. (2012). For related structures see: Vimala et al. (2015) and Vishnupriya et al. (2014).

Experimental top

A mixture of 3-formylchromone (1 mmol), cyanoacetylindole (1 mmol) and ammonium acetate (1 mmol) in DMF and a catalytic amount of SnCl2·2H2O (0.020 mol%) was added and refluxed for about 3 h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by column chromatography on siliga gel (3:97% ethyl acetate and petetroleum ether) to afford pure product in 94% yield. The purified compound was recrystallized from ethanol through slow evaporation of the solvent.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Indole ring systems have become an important structural component in many pharmaceutical agents (Sundberg, 1996). Substituted indoles have been refered to as privileged structures since they are capable of binding to many receptors with high affinity (Evans et al., 1988). Some indole derivatives possess cytotoxic activity (Muratake et al., 1994). Indole and its bioisosters and derivatives have antimicrobial activity against Gram-negative and Gram-positive bacteria, the yeast Candida albicans and Enterobacter, Pseudomonas aeruginosa, E. coli, and Staphylococcus epidermidis (Biswal et al., 2012).

The structure of the title compound is shown in Fig. 1. The C—N distances range from 1.345 (2) to 1.370 (2) Å, and are in good agreement with the related reported values (Vishnupriya et al., 2014). The C14—O1 and C21—N3 bond lengths are 1.2347 (14) Å and 1.1413 (16) Å, respectively, in agreement with values reported by Vimala et al. (2015), confirming the presence of double and triple bonds. The pyridine ring (C9/N2/C10–C13) is in an antiperiplanar (-ap) orientation with the indole ring system (C1/N1/C2–C8) and in an antiperiplanar(+ap) orientation with the hydroxyphenyl ring (C15–C20), as evidenced by the torsion angles C7—C8—C9—C13 = -163.54 (11)° and C10—C11—C14—C15 = 155.15 (11)°, respectively. An intramolecular O—H···O hydrogen bond (Table 1) stabilizes the molecular structure.

In the crystal, N—H···N hydrogen bonds (Table 1) between the indole NH group and the cyanide nitrogen atom result in a two-dimensional supramolecular network lying parallel to (011) (Fig. 2).

For biological activity, see: Sundberg(1996); Muratake et al.,(1994) and Biswal et al.,(2012). For related structures see: Vimala et al.,(2015) and Vishnupriya et al., (2014).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate hydrogen bonds.
5-(2-Hydroxybenzoyl)-2-(1H-indol-3-yl)pyridine-3-carbonitrile top
Crystal data top
C21H13N3O2F(000) = 704
Mr = 339.34Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2665 reflections
a = 12.4764 (6) Åθ = 1.6–28.4°
b = 7.8471 (3) ŵ = 0.09 mm1
c = 16.7265 (8) ÅT = 298 K
β = 90.478 (2)°Block, colorless
V = 1637.53 (13) Å30.35 × 0.28 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4105 independent reflections
Radiation source: fine-focus sealed tube2665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and φ scanθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1613
Tmin = 0.969, Tmax = 0.986k = 109
10911 measured reflectionsl = 2215
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.57(Δ/σ)max = 0.020
4105 reflectionsΔρmax = 0.19 e Å3
237 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0087 (17)
Crystal data top
C21H13N3O2V = 1637.53 (13) Å3
Mr = 339.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4764 (6) ŵ = 0.09 mm1
b = 7.8471 (3) ÅT = 298 K
c = 16.7265 (8) Å0.35 × 0.28 × 0.15 mm
β = 90.478 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2665 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.986Rint = 0.019
10911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.57Δρmax = 0.19 e Å3
4105 reflectionsΔρmin = 0.17 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53477 (11)0.87467 (16)0.13362 (8)0.0454 (3)
H10.47220.85590.16290.054*
C20.69959 (10)0.96028 (15)0.10314 (8)0.0443 (3)
C30.80237 (11)1.02854 (18)0.10597 (10)0.0611 (4)
H30.82961.07460.15280.073*
C40.86139 (12)1.0249 (2)0.03697 (12)0.0765 (5)
H40.93001.07100.03640.092*
C50.82078 (12)0.9534 (2)0.03258 (11)0.0775 (6)
H50.86320.95250.07860.093*
C60.71998 (10)0.88427 (19)0.03513 (9)0.0574 (4)
H60.69440.83620.08210.069*
C70.65674 (10)0.88730 (15)0.03363 (8)0.0407 (3)
C80.54967 (9)0.82906 (14)0.05491 (7)0.0364 (3)
C90.47648 (9)0.74161 (13)0.00264 (7)0.0345 (3)
C100.43851 (9)0.66464 (15)0.12686 (7)0.0409 (3)
H100.45780.66900.18070.049*
C110.34536 (9)0.57542 (15)0.10706 (7)0.0376 (3)
C120.32069 (9)0.56672 (15)0.02623 (7)0.0392 (3)
H120.26110.50540.00890.047*
C130.38481 (9)0.64939 (14)0.02888 (7)0.0364 (3)
C140.28746 (11)0.48524 (15)0.17204 (8)0.0430 (3)
C150.17239 (10)0.44727 (16)0.16690 (7)0.0424 (3)
C160.12797 (11)0.32598 (17)0.21906 (9)0.0510 (4)
C170.02012 (12)0.2849 (2)0.21349 (10)0.0673 (5)
H170.00820.20170.24680.081*
C180.04463 (13)0.3656 (2)0.15956 (11)0.0717 (5)
H180.11690.33680.15640.086*
C190.00423 (11)0.4898 (2)0.10947 (9)0.0632 (4)
H190.04930.54640.07380.076*
C200.10269 (11)0.52865 (18)0.11289 (8)0.0498 (4)
H200.12980.61100.07860.060*
C210.35909 (10)0.62929 (17)0.11168 (8)0.0438 (3)
N10.62325 (9)0.95015 (13)0.16227 (6)0.0499 (3)
H1A0.63080.98650.21040.060*
N20.50172 (8)0.74344 (12)0.07581 (6)0.0392 (3)
N30.33755 (10)0.60956 (18)0.17749 (7)0.0645 (4)
O10.34049 (8)0.44114 (13)0.23117 (6)0.0621 (3)
O20.18699 (9)0.24606 (14)0.27537 (7)0.0697 (3)
H20.24820.28400.27530.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0571 (8)0.0470 (7)0.0320 (8)0.0046 (6)0.0009 (6)0.0008 (5)
C20.0465 (8)0.0416 (7)0.0451 (9)0.0062 (5)0.0104 (6)0.0042 (5)
C30.0499 (9)0.0560 (9)0.0778 (12)0.0058 (6)0.0199 (8)0.0196 (7)
C40.0375 (8)0.0842 (12)0.1078 (15)0.0035 (7)0.0015 (9)0.0368 (10)
C50.0478 (9)0.0969 (12)0.0875 (14)0.0088 (8)0.0205 (9)0.0371 (10)
C60.0441 (8)0.0715 (9)0.0564 (10)0.0035 (6)0.0074 (7)0.0228 (7)
C70.0402 (7)0.0400 (6)0.0419 (8)0.0065 (5)0.0047 (6)0.0050 (5)
C80.0402 (7)0.0386 (6)0.0305 (7)0.0043 (5)0.0017 (5)0.0006 (5)
C90.0381 (6)0.0364 (6)0.0291 (7)0.0063 (5)0.0006 (5)0.0018 (5)
C100.0465 (7)0.0479 (7)0.0282 (7)0.0030 (5)0.0016 (6)0.0013 (5)
C110.0410 (7)0.0396 (6)0.0324 (7)0.0033 (5)0.0039 (5)0.0006 (5)
C120.0397 (7)0.0429 (6)0.0349 (8)0.0001 (5)0.0019 (6)0.0058 (5)
C130.0383 (7)0.0421 (6)0.0289 (7)0.0044 (5)0.0014 (5)0.0046 (5)
C140.0524 (8)0.0439 (7)0.0327 (8)0.0001 (5)0.0032 (6)0.0010 (5)
C150.0483 (7)0.0458 (7)0.0332 (8)0.0002 (5)0.0100 (6)0.0021 (5)
C160.0582 (9)0.0535 (7)0.0415 (9)0.0012 (6)0.0142 (7)0.0014 (6)
C170.0595 (10)0.0708 (10)0.0719 (13)0.0104 (7)0.0225 (9)0.0100 (8)
C180.0482 (9)0.0942 (13)0.0730 (13)0.0084 (8)0.0133 (9)0.0017 (10)
C190.0504 (9)0.0874 (11)0.0521 (10)0.0078 (8)0.0042 (7)0.0025 (8)
C200.0529 (8)0.0564 (8)0.0403 (8)0.0034 (6)0.0101 (6)0.0018 (6)
C210.0402 (7)0.0572 (8)0.0342 (8)0.0042 (5)0.0034 (6)0.0070 (6)
N10.0678 (8)0.0498 (6)0.0323 (7)0.0033 (5)0.0102 (6)0.0029 (5)
N20.0430 (6)0.0465 (6)0.0282 (6)0.0023 (4)0.0006 (5)0.0015 (4)
N30.0605 (8)0.0974 (10)0.0357 (8)0.0149 (7)0.0007 (6)0.0136 (6)
O10.0644 (6)0.0780 (7)0.0438 (6)0.0103 (5)0.0053 (5)0.0185 (5)
O20.0717 (7)0.0794 (7)0.0583 (8)0.0027 (6)0.0100 (6)0.0290 (6)
Geometric parameters (Å, º) top
C1—N11.3446 (17)C11—C121.3857 (16)
C1—C81.3754 (17)C11—C141.4891 (18)
C1—H10.9300C12—C131.3867 (17)
C2—N11.3697 (16)C12—H120.9300
C2—C31.3908 (19)C13—C211.4278 (17)
C2—C71.4057 (18)C14—O11.2347 (14)
C3—C41.364 (2)C14—C151.4680 (18)
C3—H30.9300C15—C201.4025 (18)
C4—C51.391 (2)C15—C161.4079 (19)
C4—H40.9300C16—O21.3458 (16)
C5—C61.371 (2)C16—C171.386 (2)
C5—H50.9300C17—C181.362 (2)
C6—C71.3895 (17)C17—H170.9300
C6—H60.9300C18—C191.383 (2)
C7—C81.4532 (17)C18—H180.9300
C8—C91.4431 (18)C19—C201.3690 (19)
C9—N21.3469 (15)C19—H190.9300
C9—C131.4199 (16)C20—H200.9300
C10—N21.3209 (16)C21—N31.1413 (16)
C10—C111.3943 (16)N1—H1A0.8600
C10—H100.9300O2—H20.8200
N1—C1—C8110.55 (11)C13—C12—C11120.06 (11)
N1—C1—H1124.7C13—C12—H12120.0
C8—C1—H1124.7C11—C12—H12120.0
N1—C2—C3129.31 (13)C12—C13—C9120.04 (11)
N1—C2—C7107.86 (12)C12—C13—C21117.84 (10)
C3—C2—C7122.83 (13)C9—C13—C21122.01 (11)
C4—C3—C2117.03 (15)O1—C14—C15120.48 (12)
C4—C3—H3121.5O1—C14—C11117.25 (11)
C2—C3—H3121.5C15—C14—C11122.26 (10)
C3—C4—C5121.22 (14)C20—C15—C16117.50 (12)
C3—C4—H4119.4C20—C15—C14123.11 (12)
C5—C4—H4119.4C16—C15—C14119.38 (11)
C6—C5—C4121.76 (15)O2—C16—C17117.64 (13)
C6—C5—H5119.1O2—C16—C15122.20 (12)
C4—C5—H5119.1C17—C16—C15120.16 (13)
C5—C6—C7118.83 (14)C18—C17—C16120.44 (15)
C5—C6—H6120.6C18—C17—H17119.8
C7—C6—H6120.6C16—C17—H17119.8
C6—C7—C2118.32 (12)C17—C18—C19120.77 (14)
C6—C7—C8135.38 (12)C17—C18—H18119.6
C2—C7—C8106.30 (11)C19—C18—H18119.6
C1—C8—C9128.49 (11)C20—C19—C18119.45 (14)
C1—C8—C7105.62 (11)C20—C19—H19120.3
C9—C8—C7125.89 (11)C18—C19—H19120.3
N2—C9—C13119.19 (11)C19—C20—C15121.61 (14)
N2—C9—C8116.18 (10)C19—C20—H20119.2
C13—C9—C8124.56 (11)C15—C20—H20119.2
N2—C10—C11125.62 (11)N3—C21—C13178.40 (14)
N2—C10—H10117.2C1—N1—C2109.65 (11)
C11—C10—H10117.2C1—N1—H1A125.2
C12—C11—C10115.75 (11)C2—N1—H1A125.2
C12—C11—C14125.71 (11)C10—N2—C9119.27 (10)
C10—C11—C14118.27 (11)C16—O2—H2109.5
N1—C2—C3—C4178.70 (13)C8—C9—C13—C12178.66 (10)
C7—C2—C3—C41.0 (2)N2—C9—C13—C21174.18 (10)
C2—C3—C4—C51.0 (2)C8—C9—C13—C212.61 (18)
C3—C4—C5—C60.3 (3)C12—C11—C14—O1148.20 (13)
C4—C5—C6—C70.5 (3)C10—C11—C14—O125.54 (17)
C5—C6—C7—C20.5 (2)C12—C11—C14—C1531.12 (18)
C5—C6—C7—C8179.75 (15)C10—C11—C14—C15155.15 (11)
N1—C2—C7—C6179.50 (11)O1—C14—C15—C20163.36 (13)
C3—C2—C7—C60.29 (19)C11—C14—C15—C2017.35 (19)
N1—C2—C7—C81.05 (13)O1—C14—C15—C1615.49 (19)
C3—C2—C7—C8179.16 (12)C11—C14—C15—C16163.80 (12)
N1—C1—C8—C9178.21 (11)C20—C15—C16—O2177.12 (13)
N1—C1—C8—C71.71 (13)C14—C15—C16—O21.8 (2)
C6—C7—C8—C1179.03 (14)C20—C15—C16—C173.0 (2)
C2—C7—C8—C11.66 (13)C14—C15—C16—C17178.12 (12)
C6—C7—C8—C91.1 (2)O2—C16—C17—C18177.76 (15)
C2—C7—C8—C9178.26 (10)C15—C16—C17—C182.3 (2)
C1—C8—C9—N2166.77 (11)C16—C17—C18—C190.0 (3)
C7—C8—C9—N213.34 (17)C17—C18—C19—C201.7 (3)
C1—C8—C9—C1316.36 (19)C18—C19—C20—C150.9 (2)
C7—C8—C9—C13163.54 (11)C16—C15—C20—C191.3 (2)
N2—C10—C11—C121.95 (18)C14—C15—C20—C19179.78 (13)
N2—C10—C11—C14176.31 (11)C8—C1—N1—C21.10 (14)
C10—C11—C12—C132.43 (16)C3—C2—N1—C1179.80 (13)
C14—C11—C12—C13176.31 (11)C7—C2—N1—C10.02 (14)
C11—C12—C13—C90.66 (17)C11—C10—N2—C90.53 (18)
C11—C12—C13—C21176.88 (11)C13—C9—N2—C102.44 (16)
N2—C9—C13—C121.88 (16)C8—C9—N2—C10179.49 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.153.0016 (17)171
O2—H2···O10.821.842.5653 (14)146
Symmetry code: (i) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.862.153.0016 (17)171.2
O2—H2···O10.821.842.5653 (14)145.9
Symmetry code: (i) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H13N3O2
Mr339.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.4764 (6), 7.8471 (3), 16.7265 (8)
β (°) 90.478 (2)
V3)1637.53 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.28 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.969, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
10911, 4105, 2665
Rint0.019
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.57
No. of reflections4105
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Footnotes

Emeritus Scientist.

Acknowledgements

The authors thank SAIF, IIT Madras, for providing the X-ray data collection facility.

References

First citationBiswal, S., Sahoo, U., Sethy, S., Kumar, H. K. S. & Banerjee, M. (2012). Asia. J. Pharm. Clin. Res. 5, 1–6.  CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Verber, D. F., Anderson, P. S., Chang, R. S., Lotti, V. J., Cerino, D. H., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235–2246.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuratake, H., Mikawa, A., Seino, T. & Natsume, M. (1994). Chem. Pharm. Bull. 42, 854–864.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). Best Synthetic Methods, Indoles; Academic Press: New York, pp. 7-11.  Google Scholar
First citationVimala, G., Poomathi, N., AaminaNaaz, Y., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o822–o823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVishnupriya, R., Suresh, J., Bharkavi, S., Perumal, S. & Lakshman, P. L. N. (2014). Acta Cryst. E70, o968–o969.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds