organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Benzoyl-2-(5-bromo-1H-indol-3-yl)-4-(4-nitro­phen­yl)-1H-pyrrole-3-carbo­nitrile di­methyl sulfoxide monosolvate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 602 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 28 December 2015; accepted 11 April 2016; online 15 April 2016)

The title compound, C26H15BrN4O3·C2H6OS, contains five rings. The indole unit is essentially planar [maximum deviation = 0.0067 (1) Å for the N atom]. The central pyrrole ring makes dihedral angles of 44.1 (2) and 51.3 (2)° with the pendant indole ring system and the nitro­benzene ring, respectively. The benzene ring is inclined with the central pyrrole ring by 51.9 (3)°. In the crystal, N—H⋯O hydrogen-bonding inter­actions between aromatic-H-atom donors and sulfoxide-O-atom acceptors result in the formation of inversion dimers with an R42(16) ring motif. The mol­ecules are further linked into chains running along the c axis by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole derivatives are known to exhibit activities such as anti­tumour (Andreani et al., 2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); anti­viral (Kolocouris et al., 1994[Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896-2902.]) and anti-hepatitis C virus (Andreev et al., 2015[Andreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250-258.]). Indoles have attracted much attention because of their wide variety of applications especially in medicinal field. Indole derivatives are used as bioactive drugs (Stevenson et al., 2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2699.]) and they exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Theor. 128, 353-363.]; Ho et al., 1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]). The title compound was prepared as part of our ongoing research to synthesize and evaluate the biological activities of structural analogues of 1H-indolyl­pyrrole derivatives (Kamalraja et al., 2014[Kamalraja, J., Sowndarya, R. & Perumal, P. T. (2014). Synlett, 25, 2208-2212.]) and we report herein on its crystal structure.

The title compound contain 5-bromo-3-methyl-1H-indole connected to the 5-benzoyl-4-(4-nitro­phen­yl)-1H-pyrrole-3-carbo­nitrile system and a dimethyl sulfoxide solvent mol­ecule (Fig. 1[link]). The indole unit (N3/C19—C26) is essentially planar [maximum deviation = 0.0067 (1) Å for the N atom]. In the 2-(5-bromo-1H-indole-3-yl)-1H-pyrrole-3-carbo­nitrile portion, the central pyrrole ring and the pendent indole ring system make a dihedral angle of 44.1 (2)°; the torsion angles C16—C18—C19—C20 and N2—C18—C19—C26 for the link between them are 43.5 (7) and 38.6 (6)°, respectively]. The nitro­benzene and phenyl rings are inclined with the central pyrrole ring by 51.3 (2)° and 51.9 (3)°, respectively. Atoms N4 and C17 of the carbo­nitrile substituent deviate from the pyrrole ring plane by 0.197 (2) and 0.109 (1) Å, respectively, similar to the corresponding values in 2-amino-4-(2-naphth­yl)thio­phene-3-carbo­nitrile [0.194 (2) and 0.101 (3) Å, respectively; Çoruh et al., 2005[Çoruh, U., Tümer, F., Vázquez-López, E. M. & Demir, Ü. (2005). Acta Cryst. E61, o1680-o1682.]]. A similar structure, 4-(2-azido-phen­yl)-5-benzoyl-2-(1H-indol-3-yl)-1H-pyrrole-3-carbo­nitrile is reported by Vimala et al. (2015[Vimala, G., Raja, J. K., Naaz, Y. A., Preumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o335-o336.]).

[Figure 1]
Figure 1
A view of the title compound with the atom-numbering scheme and displacement ellipsoids are drawn at 30% probability level.

The crystal structure features a C—H⋯π inter­action in addition to N—H⋯O, C—H⋯O and C—H⋯N hydrogen-bonding inter­actions (Table 1[link]). The N—H⋯O hydrogen-bonding inter­actions between aromatic H-atom donors and sulfoxide-O-atom acceptors result in an R42(16) ring motif, as shown in Fig. 2[link]. The mol­ecules are further linked into chains running along [001] direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4i 0.86 2.02 2.842 (5) 161
C4—H4⋯N4ii 0.93 2.62 3.485 (8) 155
C28—H28C⋯O1iii 0.96 2.48 3.245 (9) 137
N2—H2⋯O4 0.86 2.03 2.876 (4) 166
C28—H28A⋯O3 0.96 2.57 3.289 (8) 132
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y, z+1; (iii) -x+2, -y+2, -z+1.
[Figure 2]
Figure 2
N—H⋯O inter­actions (dotted lines) generating an R42(16) ring motif.
[Figure 3]
Figure 3
A partial packing view, showing hydrogen-bonded chain structure running along the c axis.

Synthesis and crystallization

For the synthesis, see: Kamalraja et al. (2014[Kamalraja, J., Sowndarya, R. & Perumal, P. T. (2014). Synlett, 25, 2208-2212.]). To a stirred mixture of 4-nitro­benzaldehyde 1 (1.0 mmol), 3-(5-bromo-1H- indol-3-yl)-3-oxo­propane­nitrile 2 (1.0 mmol) and phenacyl­azide 3 (1.0 mmol) in H2O (3 ml), piperidine (0.25 mmol) was added at 80°C. The turbid solution slowly turned into a clear solution, followed by the formation of solid after 0.5 h. After completion of the reaction as indicated by TLC, the solid was filtered and washed with PE–EtOAc mixture (1:1 ratio, v/v, 5 ml). The compound was recrystallized by slow evaporation of an EtOH solution at room temperature to yield yellow block-shaped crystals. The yield of the isolated product was 90%.

Refinement

Crystal data, data collection and structure refinement are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H15BrN4O3·C2H6OS
Mr 589.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.1721 (3), 11.2475 (3), 12.0154 (4)
α, β, γ (°) 79.638 (2), 82.454 (2), 82.371 (2)
V3) 1332.14 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.66
Crystal size (mm) 0.21 × 0.19 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.712, 0.741
No. of measured, independent and observed [I > 2σ(I)] reflections 24122, 4694, 3272
Rint 0.037
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.186, 1.04
No. of reflections 4694
No. of parameters 344
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −0.66
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Indole derivatives are known to exhibit activities such as antitumour (Andreani et al., 2001); antiviral (Kolocouris et al., 1994) and anti-hepatitis C virus (Andreev et al., 2015). Indoles have attracted much attention because of their wide variety of applications especially in medicinal field. Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exhibit antiallergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). The title compound was synthesize as a part of our ongoing research to synthesize and evaluate the biological activities of structural analogues of 1H-indolylpyrrole derivatives (Kamalraja et al., 2014) and reported herein on their crystal structure.

The title compound contain 5-bromo-3-methyl-1H-indole connected to the 5-benzoyl-4-(4-nitrophenyl)-1H-pyrrole-3-carbonitrile system and a dimethyl sulfoxide solvent molecule (Fig. 1). For a similar structure, see: Vimala et al. (2015)The indole unit (N3/C19-C26) is essentially coplanar [maximum deviation=0.0067Å for N atom]. In the 2-(5-bromo-1H-indole-3-yl)-1H-pyrrole-3-carbonitrile portion, the torsion angles C16-C18-C19-C20 and N2-C18-C19-C26 for the link between the central pyrrole ring and the pendent indole ring system [43.5 (7)° and 38.6 (6)°, respectively] with the dihedral angle 44.1 (2)°. The nitrobenzene and benzene ring are inclined with the central pyrrole ring by 51.3 (2)° and 51.9 (3)°, respectively. Atoms N4 and C17 of the carbonitrile substituent deviate from this plane by 0.197 (2)Å and 0.109 (1)Å respectively are similar to those in 2-amino-4-(2-naphthyl)thiophene-3-carbonitrile [0.194 (2)Å and 0.101 (3)Å, respectively (Çoruh et al., 2005)].

The crystal structure exhibits a C-H···π hydrogen bond in addition to inter and intramolecular N–H···O, C–H···O and C–H···N hydrogen bonding interactions, and the details are given in Table 2. The inter and intramolecular N–H···(O,O) hydrogen-bonding interaction between aromatic H-atom donor and sulfoxide-O-atom acceptors results in an R42(16) ring motif shown in Fig 3. The molecules are further linked into chains running along [001] direction (Fig 2).

Related literature top

For the biological activity of indole derivatives, see: Andreani et al. (2001); Andreev et al. (2015); Kolocouris et al. (1994); Stevenson et al. (2000); Harris & Uhle (1960); Ho et al. (1986); For similar structure, see: Vimala et al. (2015). The deviation of carbonitrile substituent is similar to those in 2-amino-4-(2-naphthyl) thiophene-3-carbonitrile, see: Coruh et al. (2005). For the synthesis, see: Kamalraja et al. (2014).

Experimental top

For the synthesis, see: Kamalraja et al. (2014). To a stirred mixture of 4-nitrobenzaldehyde 1 (1.0 mmol), 3-(5-bromo-1H- indol-3-yl)-3-oxopropanenitrile 2 (1.0 mmol) and phenacylazide 3 (1.0 mmol) in H2O (3 ml), piperidine (0.25 mmol) was added at 80°C. The turbid solution slowly turned into a clear solution, followed by the formation of solid after 0.5 h. After completion of the reaction as indicated by TLC, the solid was filtered and washed with PE–EtOAc mixture (1:1 ratio, v/v, 5 ml). The compound was recrystallized by slow evaporation of an EtOH solution at room temperature to yield yellow block-shaped crystals. The yield of the isolated product was 90%.

Refinement top

Crystal data, data collection and structure refinement are summarized in Table 2.

Structure description top

Indole derivatives are known to exhibit activities such as antitumour (Andreani et al., 2001); antiviral (Kolocouris et al., 1994) and anti-hepatitis C virus (Andreev et al., 2015). Indoles have attracted much attention because of their wide variety of applications especially in medicinal field. Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). The title compound was synthesize as a part of our ongoing research to synthesize and evaluate the biological activities of structural analogues of 1H-indolylpyrrole derivatives (Kamalraja et al., 2014) and reported herein on their crystal structure.

The title compound contain 5-bromo-3-methyl-1H-indole connected to the 5-benzoyl-4-(4-nitrophenyl)-1H-pyrrole-3-carbonitrile system and a dimethyl sulfoxide solvent molecule (Fig. 1). The indole unit (N3/C19—C26) is essentially coplanar [maximum deviation = 0.0067 (su?) Å for N atom]. In the 2-(5-bromo-1H-indole-3-yl)-1H-pyrrole-3-carbonitrile portion, the central pyrrole ring and the pendent indole ring system make a dihedral angle of 44.1 (2)°; the torsion angles C16—C18—C19—C20 and N2—C18—C19—C26 for the link between them are 43.5 (7) and 38.6 (6)°, respectively] . The nitrobenzene and phenyl rings are inclined with the central pyrrole ring by 51.3 (2)° and 51.9 (3)°, respectively. Atoms N4 and C17 of the carbonitrile substituent deviate from the pyrrole ring plane by 0.197 (2) and 0.109 (1) Å, respectively, similar to the corresponding values in 2-amino-4-(2-naphthyl)thiophene-3-carbonitrile [0.194 (2) and 0.101 (3) Å, respectively; Çoruh et al., 2005]. A similar structure, 4-(2-azido-phenyl)-5-benzoyl-2-(1H-indol-3-yl)-1H-pyrrole-3-carbonitrile is reported by Vimala et al. (2015).

The crystal structure features a C—H···π interaction in addition to N—H···O, C—H···O and C—H···N hydrogen-bonding interactions (Table 1). The N—H···O hydrogen-bonding interactions between aromatic H-atom donors and sulfoxide-O-atom acceptors result in an R42(16) ring motif, as shown in Fig 3. The molecules are further linked into chains running along [001] direction (Fig 4).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme and displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. N—H···O interactions (dotted lines) generating an R42(16) ring motif.
[Figure 3] Fig. 3. A partial packing view, showing hydrogen-bonded chain structure running along the c axis.
5-Benzoyl-2-(5-bromo-1H-indol-3-yl)-4-(4-nitrophenyl)-1H-pyrrole-3-carbonitrile dimethyl sulfoxide monosolvate top
Crystal data top
C26H15BrN4O3·C2H6OSZ = 2
Mr = 589.46F(000) = 600
Triclinic, P1Dx = 1.470 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1721 (3) ÅCell parameters from 3272 reflections
b = 11.2475 (3) Åθ = 2.3–25.0°
c = 12.0154 (4) ŵ = 1.66 mm1
α = 79.638 (2)°T = 293 K
β = 82.454 (2)°Block, yellow
γ = 82.371 (2)°0.21 × 0.19 × 0.18 mm
V = 1332.14 (7) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4694 independent reflections
Radiation source: fine-focus sealed tube3272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.712, Tmax = 0.741k = 1313
24122 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.P)2 + 1.7603P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4694 reflectionsΔρmax = 0.93 e Å3
344 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0085 (18)
Crystal data top
C26H15BrN4O3·C2H6OSγ = 82.371 (2)°
Mr = 589.46V = 1332.14 (7) Å3
Triclinic, P1Z = 2
a = 10.1721 (3) ÅMo Kα radiation
b = 11.2475 (3) ŵ = 1.66 mm1
c = 12.0154 (4) ÅT = 293 K
α = 79.638 (2)°0.21 × 0.19 × 0.18 mm
β = 82.454 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4694 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3272 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.741Rint = 0.037
24122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.04Δρmax = 0.93 e Å3
4694 reflectionsΔρmin = 0.66 e Å3
344 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.49737 (5)0.66722 (5)0.13859 (6)0.0800 (3)
S0.78523 (17)0.57068 (14)0.37985 (14)0.0802 (5)
N11.4544 (5)1.2779 (4)0.2474 (4)0.0639 (11)
N21.0331 (3)0.7630 (3)0.1857 (3)0.0427 (8)
H20.98310.70820.21880.051*
N31.0226 (4)0.6139 (3)0.1434 (3)0.0475 (9)
H31.05150.57810.20080.057*
N41.2224 (4)1.0041 (4)0.1418 (3)0.0591 (10)
O11.4065 (5)1.3381 (4)0.3185 (4)0.0938 (14)
O21.5640 (4)1.2893 (4)0.1934 (4)0.0864 (12)
O30.9785 (4)0.7663 (3)0.4168 (3)0.0694 (10)
O40.9070 (3)0.5529 (3)0.2988 (3)0.0615 (9)
C11.3124 (5)0.8293 (5)0.3937 (4)0.0628 (13)
H11.34220.80050.32590.075*
C21.4022 (7)0.8582 (6)0.4588 (6)0.095 (2)
H2A1.49330.84780.43550.114*
C31.3562 (10)0.9028 (7)0.5590 (7)0.113 (3)
H3A1.41640.92500.60140.135*
C41.2255 (11)0.9141 (7)0.5950 (6)0.108 (3)
H41.19560.94280.66290.130*
C51.1354 (7)0.8837 (5)0.5322 (4)0.0733 (16)
H51.04500.89020.55840.088*
C61.1786 (5)0.8436 (4)0.4307 (4)0.0489 (11)
C71.0757 (5)0.8122 (4)0.3660 (3)0.0468 (10)
C81.0946 (4)0.8329 (4)0.2412 (3)0.0411 (9)
C91.1633 (4)0.9123 (3)0.1602 (3)0.0371 (9)
C101.2376 (4)1.0098 (3)0.1792 (3)0.0371 (9)
C111.1791 (4)1.0927 (4)0.2482 (4)0.0447 (10)
H111.09041.08990.27870.054*
C121.2497 (5)1.1790 (4)0.2724 (4)0.0512 (11)
H121.21061.23280.32090.061*
C131.3789 (5)1.1843 (4)0.2239 (4)0.0488 (11)
C141.4384 (4)1.1073 (4)0.1515 (4)0.0542 (12)
H141.52511.11410.11740.065*
C151.3672 (4)1.0191 (4)0.1300 (4)0.0469 (10)
H151.40700.96540.08180.056*
C161.1427 (4)0.8859 (4)0.0530 (3)0.0381 (9)
C171.1864 (4)0.9507 (4)0.0557 (4)0.0416 (9)
C181.0622 (4)0.7921 (3)0.0716 (3)0.0388 (9)
C191.0173 (4)0.7268 (4)0.0071 (3)0.0419 (9)
C201.0932 (4)0.6838 (4)0.0978 (4)0.0477 (10)
H201.18010.70020.12410.057*
C210.8990 (4)0.6092 (3)0.0842 (3)0.0404 (9)
C220.7946 (5)0.5478 (4)0.0975 (4)0.0499 (11)
H220.80370.49750.15220.060*
C230.6783 (5)0.5625 (4)0.0288 (4)0.0531 (11)
H230.60700.52150.03590.064*
C240.6658 (4)0.6400 (4)0.0532 (4)0.0508 (11)
C250.7696 (4)0.6980 (4)0.0706 (4)0.0440 (10)
H250.75990.74730.12620.053*
C260.8895 (4)0.6812 (3)0.0028 (3)0.0391 (9)
C270.6901 (7)0.4510 (7)0.3716 (7)0.109 (2)
H27A0.66120.46230.29720.163*
H27B0.61360.45200.42770.163*
H27C0.74420.37430.38560.163*
C280.8199 (9)0.5262 (8)0.5162 (6)0.112 (2)
H28A0.87220.58270.53580.168*
H28B0.86890.44660.52400.168*
H28C0.73800.52390.56600.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0520 (4)0.0853 (5)0.1107 (6)0.0224 (3)0.0108 (3)0.0413 (4)
S0.0833 (10)0.0708 (9)0.0873 (11)0.0297 (8)0.0217 (8)0.0221 (8)
N10.067 (3)0.058 (3)0.077 (3)0.020 (2)0.022 (2)0.017 (2)
N20.047 (2)0.0433 (19)0.0414 (19)0.0205 (15)0.0028 (15)0.0062 (15)
N30.052 (2)0.053 (2)0.042 (2)0.0118 (17)0.0029 (17)0.0191 (16)
N40.070 (3)0.061 (2)0.047 (2)0.019 (2)0.002 (2)0.0079 (19)
O10.094 (3)0.094 (3)0.114 (3)0.028 (2)0.013 (3)0.060 (3)
O20.067 (3)0.085 (3)0.121 (3)0.038 (2)0.017 (2)0.026 (2)
O30.077 (2)0.086 (2)0.0494 (19)0.043 (2)0.0096 (17)0.0105 (17)
O40.076 (2)0.0576 (19)0.0553 (19)0.0289 (17)0.0117 (17)0.0198 (15)
C10.071 (3)0.065 (3)0.054 (3)0.016 (3)0.016 (3)0.001 (2)
C20.092 (5)0.098 (5)0.098 (5)0.037 (4)0.047 (4)0.022 (4)
C30.151 (8)0.111 (6)0.095 (6)0.057 (6)0.080 (6)0.013 (4)
C40.183 (9)0.097 (5)0.063 (4)0.040 (6)0.048 (5)0.017 (3)
C50.107 (5)0.073 (4)0.043 (3)0.012 (3)0.014 (3)0.014 (2)
C60.067 (3)0.042 (2)0.040 (2)0.014 (2)0.008 (2)0.0062 (18)
C70.058 (3)0.041 (2)0.042 (2)0.011 (2)0.005 (2)0.0112 (18)
C80.046 (2)0.043 (2)0.038 (2)0.0145 (18)0.0021 (18)0.0089 (17)
C90.038 (2)0.041 (2)0.036 (2)0.0107 (17)0.0035 (17)0.0111 (16)
C100.044 (2)0.038 (2)0.032 (2)0.0122 (17)0.0060 (17)0.0037 (16)
C110.042 (2)0.046 (2)0.049 (2)0.0124 (18)0.0027 (18)0.0144 (19)
C120.060 (3)0.044 (2)0.054 (3)0.008 (2)0.008 (2)0.017 (2)
C130.052 (3)0.048 (2)0.053 (3)0.020 (2)0.016 (2)0.008 (2)
C140.040 (2)0.063 (3)0.064 (3)0.020 (2)0.000 (2)0.016 (2)
C150.045 (2)0.052 (2)0.049 (2)0.0155 (19)0.0021 (19)0.019 (2)
C160.034 (2)0.045 (2)0.038 (2)0.0084 (17)0.0005 (16)0.0110 (17)
C170.043 (2)0.041 (2)0.044 (2)0.0109 (18)0.0043 (19)0.0113 (19)
C180.039 (2)0.039 (2)0.041 (2)0.0092 (17)0.0037 (17)0.0108 (17)
C190.047 (2)0.038 (2)0.045 (2)0.0165 (18)0.0060 (18)0.0084 (17)
C200.048 (2)0.054 (3)0.045 (2)0.015 (2)0.001 (2)0.0125 (19)
C210.047 (2)0.036 (2)0.041 (2)0.0082 (18)0.0084 (19)0.0080 (17)
C220.056 (3)0.043 (2)0.057 (3)0.008 (2)0.015 (2)0.016 (2)
C230.045 (3)0.049 (3)0.072 (3)0.014 (2)0.016 (2)0.016 (2)
C240.048 (3)0.046 (2)0.063 (3)0.016 (2)0.006 (2)0.012 (2)
C250.048 (2)0.039 (2)0.048 (2)0.0117 (18)0.004 (2)0.0129 (18)
C260.046 (2)0.033 (2)0.041 (2)0.0109 (17)0.0111 (18)0.0047 (16)
C270.102 (5)0.107 (5)0.124 (6)0.063 (4)0.004 (4)0.001 (4)
C280.139 (7)0.119 (6)0.081 (5)0.034 (5)0.004 (4)0.021 (4)
Geometric parameters (Å, º) top
C1—C21.382 (8)C18—C191.447 (5)
C1—H10.9300C19—C201.374 (6)
C2—C31.388 (11)C20—H200.9300
C2—H2A0.9300C21—C221.382 (6)
C3—H3A0.9300C22—H220.9300
C4—C31.340 (12)C23—C221.359 (6)
C4—H40.9300C23—C241.412 (6)
C5—C41.372 (9)C23—H230.9300
C5—H50.9300C25—C241.369 (6)
C6—C11.373 (7)C25—C261.386 (6)
C6—C51.375 (7)C25—H250.9300
C7—O31.216 (5)C26—C211.419 (5)
C7—C61.495 (6)C26—C191.443 (5)
C8—C71.466 (6)S—C271.782 (6)
C9—C81.382 (5)C27—H27A0.9600
C9—C161.421 (5)C27—H27B0.9600
C10—C151.382 (6)C27—H27C0.9600
C10—C111.383 (6)S—O41.486 (4)
C10—C91.477 (5)S—C281.693 (7)
C11—C121.373 (6)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C12—H120.9300C28—H28C0.9600
C13—C121.370 (6)N1—O11.199 (6)
C13—C141.367 (6)N1—O21.225 (6)
C14—H140.9300N2—C181.354 (5)
C13—N11.468 (6)N2—C81.373 (5)
C15—C141.380 (6)N2—H20.8600
C15—H150.9300N3—C201.357 (5)
C17—N41.141 (5)N3—C211.363 (5)
C17—C161.423 (6)N3—H30.8600
C18—C161.389 (5)Br1—C241.896 (5)
C18—N2—C8110.7 (3)C13—C12—H12120.6
C18—N2—H2124.7C11—C12—H12120.6
C8—N2—H2124.7O3—C7—C8120.1 (4)
C15—C10—C11118.7 (4)O3—C7—C6120.1 (4)
C15—C10—C9120.9 (4)C8—C7—C6119.8 (4)
C11—C10—C9120.4 (4)C1—C6—C5120.2 (5)
C8—C9—C16106.1 (3)C1—C6—C7122.2 (4)
C8—C9—C10127.7 (3)C5—C6—C7117.6 (5)
C16—C9—C10126.2 (3)C25—C24—C23122.3 (4)
C24—C25—C26118.0 (4)C25—C24—Br1119.4 (3)
C24—C25—H25121.0C23—C24—Br1118.3 (3)
C26—C25—H25121.0C18—C16—C9108.4 (3)
C14—C15—C10120.8 (4)C18—C16—C17125.1 (3)
C14—C15—H15119.6C9—C16—C17126.3 (3)
C10—C15—H15119.6N3—C20—C19110.0 (4)
C20—N3—C21109.5 (3)N3—C20—H20125.0
C20—N3—H3125.2C19—C20—H20125.0
C21—N3—H3125.2C23—C22—C21118.6 (4)
C25—C26—C21119.4 (4)C23—C22—H22120.7
C25—C26—C19134.7 (4)C21—C22—H22120.7
C21—C26—C19105.8 (4)C4—C5—C6120.1 (7)
N4—C17—C16178.7 (4)C4—C5—H5119.9
C12—C11—C10121.0 (4)C6—C5—H5119.9
C12—C11—H11119.5C6—C1—C2119.1 (6)
C10—C11—H11119.5C6—C1—H1120.5
C14—C13—C12121.9 (4)C2—C1—H1120.5
C14—C13—N1118.9 (4)C3—C4—C5120.4 (7)
C12—C13—N1119.2 (4)C3—C4—H4119.8
C22—C23—C24120.0 (4)C5—C4—H4119.8
C22—C23—H23120.0C1—C2—C3119.8 (7)
C24—C23—H23120.0C1—C2—H2A120.1
C13—C14—C15118.8 (4)C3—C2—H2A120.1
C13—C14—H14120.6C4—C3—C2120.4 (6)
C15—C14—H14120.6C4—C3—H3A119.8
N2—C8—C9108.1 (3)C2—C3—H3A119.8
N2—C8—C7118.1 (3)O4—S—C28110.9 (3)
C9—C8—C7133.8 (4)O4—S—C27104.9 (3)
N2—C18—C16106.8 (3)C28—S—C2798.1 (4)
N2—C18—C19122.1 (3)S—C28—H28A109.5
C16—C18—C19131.1 (4)S—C28—H28B109.5
C20—C19—C26106.5 (3)H28A—C28—H28B109.5
C20—C19—C18126.5 (4)S—C28—H28C109.5
C26—C19—C18126.6 (4)H28A—C28—H28C109.5
N3—C21—C22130.4 (4)H28B—C28—H28C109.5
N3—C21—C26108.1 (3)S—C27—H27A109.5
C22—C21—C26121.5 (4)S—C27—H27B109.5
O1—N1—O2123.6 (4)H27A—C27—H27B109.5
O1—N1—C13118.7 (5)S—C27—H27C109.5
O2—N1—C13117.7 (4)H27A—C27—H27C109.5
C13—C12—C11118.8 (4)H27B—C27—H27C109.5
C15—C10—C9—C8129.3 (5)C12—C13—N1—O2172.1 (4)
C11—C10—C9—C849.7 (6)C14—C13—C12—C110.7 (7)
C15—C10—C9—C1654.2 (6)N1—C13—C12—C11178.8 (4)
C11—C10—C9—C16126.7 (4)C10—C11—C12—C132.1 (7)
C11—C10—C15—C141.7 (6)N2—C8—C7—O323.4 (6)
C9—C10—C15—C14177.4 (4)C9—C8—C7—O3155.8 (5)
C24—C25—C26—C212.5 (6)N2—C8—C7—C6154.5 (4)
C24—C25—C26—C19178.4 (4)C9—C8—C7—C626.3 (7)
C15—C10—C11—C123.2 (6)O3—C7—C6—C1142.4 (5)
C9—C10—C11—C12175.8 (4)C8—C7—C6—C135.4 (6)
C12—C13—C14—C152.2 (7)O3—C7—C6—C535.1 (6)
N1—C13—C14—C15179.7 (4)C8—C7—C6—C5147.0 (4)
C10—C15—C14—C131.0 (7)C26—C25—C24—C231.4 (7)
C18—N2—C8—C91.5 (5)C26—C25—C24—Br1176.7 (3)
C18—N2—C8—C7179.1 (4)C22—C23—C24—C253.0 (7)
C16—C9—C8—N21.0 (5)C22—C23—C24—Br1175.2 (3)
C10—C9—C8—N2176.0 (4)N2—C18—C16—C90.7 (5)
C16—C9—C8—C7179.7 (5)C19—C18—C16—C9176.3 (4)
C10—C9—C8—C73.3 (8)N2—C18—C16—C17174.3 (4)
C8—N2—C18—C161.4 (5)C19—C18—C16—C178.7 (7)
C8—N2—C18—C19175.9 (4)C8—C9—C16—C180.2 (5)
C25—C26—C19—C20175.0 (4)C10—C9—C16—C18176.9 (4)
C21—C26—C19—C201.3 (4)C8—C9—C16—C17175.1 (4)
C25—C26—C19—C1812.0 (7)C10—C9—C16—C172.0 (7)
C21—C26—C19—C18171.7 (4)C21—N3—C20—C190.0 (5)
N2—C18—C19—C20133.1 (5)C26—C19—C20—N30.9 (5)
C16—C18—C19—C2043.5 (7)C18—C19—C20—N3172.2 (4)
N2—C18—C19—C2638.6 (6)C24—C23—C22—C210.5 (7)
C16—C18—C19—C26144.8 (5)N3—C21—C22—C23177.4 (4)
C20—N3—C21—C22178.4 (4)C26—C21—C22—C233.4 (6)
C20—N3—C21—C260.8 (5)C1—C6—C5—C42.6 (8)
C25—C26—C21—N3175.7 (4)C7—C6—C5—C4179.9 (5)
C19—C26—C21—N31.3 (4)C5—C6—C1—C21.4 (7)
C25—C26—C21—C225.0 (6)C7—C6—C1—C2178.9 (5)
C19—C26—C21—C22178.0 (4)C6—C5—C4—C31.3 (10)
C14—C13—N1—O1173.5 (5)C6—C1—C2—C31.0 (9)
C12—C13—N1—O18.4 (7)C5—C4—C3—C21.1 (12)
C14—C13—N1—O26.0 (7)C1—C2—C3—C42.3 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.022.842 (5)161
C4—H4···N4ii0.932.623.485 (8)155
C28—H28C···O1iii0.962.483.245 (9)137
N2—H2···O40.862.032.876 (4)166
C28—H28A···O30.962.573.289 (8)132
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z+1; (iii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.022.842 (5)160.5
C4—H4···N4ii0.932.623.485 (8)155.2
C28—H28C···O1iii0.962.483.245 (9)137.1
N2—H2···O40.862.032.876 (4)166.2
C28—H28A···O30.962.573.289 (8)131.9
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z+1; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H15BrN4O3·C2H6OS
Mr589.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.1721 (3), 11.2475 (3), 12.0154 (4)
α, β, γ (°)79.638 (2), 82.454 (2), 82.371 (2)
V3)1332.14 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.712, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
24122, 4694, 3272
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.186, 1.04
No. of reflections4694
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.66

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationAndreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250–258.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇoruh, U., Tümer, F., Vázquez-López, E. M. & Demir, Ü. (2005). Acta Cryst. E61, o1680–o1682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Theor. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationKamalraja, J., Sowndarya, R. & Perumal, P. T. (2014). Synlett, 25, 2208–2212.  CAS Google Scholar
First citationKolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2699.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVimala, G., Raja, J. K., Naaz, Y. A., Preumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o335–o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds