organic compounds
1-(3-Bromopropyl)indoline-2,3-dione
aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and dLaboratoire d'Ingénierie des Matériaux et d'Environnement: Modélisation et Application (LIMEMA), Ibn Tofail University, Kénitra, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com
In the title compound, C11H10BrNO2, the indoline ring system has an r.m.s. deviation of 0.026 Å. The side chain (including the Br atom) has a trans–gauche conformation, as indicated by the N—C—C—C and C—C—C—Br torsion angles of −177.5 (3) and 68.1 (3)°, respectively. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional network.
Keywords: crystal structure; indoline ring; hydrogen bonds.
CCDC reference: 1473227
Structure description
Isatin (1H-indole-2,3-dione) derivatives possess diverse activities such as antibacterial, antifungal, antiviral, anti-HIV, anti-mycobacterial, anticancer, anti-inflammatory and anticonvulsant activities (Bhrigu et al. 2010; Malhotra et al. 2011; Ramachandran, 2011; Smitha et al. 2008).
As a continuation of our work on the development of isatin derivatives (Mamari et al., 2010), we report here the synthesis of a new indoline-2,3-dione derivative obtained using 1,3-dibromopropane as an alkylating agent.
The title molecule is shown in Fig. 1. The non-H atoms of the indoline core are virtually coplanar [with a maximum deviation of 0.030 (2) Å for N1]. The oxygen atoms O1 and O2 are essentially co-planar with the fused ring system, with the largest deviation from the mean plane being 0.027 (2) Å for O1. The geometric parameters of the title molecule agree well with those reported for similar structures (Mamari et al., 2010). The sum of the angles at N1 (360.1°) is in accordance with sp2 for this atom.
The crystal packing in the title compound is shown in Figs. 2 and 3. The molecules are linked by C—H⋯O hydrogen-bonding interactions (Table 1), building a three-dimensional network.
Synthesis and crystallization
To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (20 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and 1,3-dibromopropane (0.2 ml, 4.1 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer The mixture was filtered and the solvent removed under vacuum. The solid that was obtained was recrystallized from ethanol solution to afford the title compound as orange crystals in 74% yield.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1473227
10.1107/S2414314616005939/hb4036sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616005939/hb4036Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616005939/hb4036Isup3.cml
To a solution of isatin (0.5g, 3.4mmol) dissolved in DMF (20ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.1g, 0.4mmol) and 1,3-dibromopropane (0.2 ml, 4.1 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer
The mixture was filtered and the solvent removed under vacuum.The solid that was obtained was recrystallized from ethanol solution to afford the title compound as orange crystals in 74% yield.
To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (20 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and 1,3-dibromopropane (0.2 ml, 4.1 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer
The mixture was filtered and the solvent removed under vacuum. The solid that was obtained was recrystallized from ethanol solution to afford the title compound as orange crystals in 74% yield.Isatin derivatives possess diverse activities such as antibacterial, antifungal, antiviral, anti-HIV, anti-mycobacterial, anticancer, anti-inflammatory and anticonvulsant activities (Bhrigu et al. 2010; Malhotra et al. 2011; Ramachandran, 2011; Smitha et al. 2008).
As a continuation of our research work devoted to the development of isatin derivatives (Mamari et al., 2010), we report here the synthesis of a new indoline-2,3-dione derivative obtained using 1,3-dibromopropane as alkylating agent.
The title molecule is shown in Fig. 1. The non-H atoms of the indoline core are virtually coplanar [with a maximum deviation of 0.030 (2) Å for N1]. The oxygen atoms O1 and O2 are essentially co-planar with the fused ring system, with the largest deviation from the mean plane being 0.027 (2) Å for O1 atom. The geometric parameters of the title molecule agree well with the reported similar structures (Mamari et al., 2010). The sum of the angles at N1 (360.1°) are in accordance with sp2
for this atom.The crystal packing in the title compound is shown in Fig. 2. The molecules are linked by C—H···O hydrogen-bonding interactions (Table 1), building a three-dimensional network.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. Hydrogen-bond interactions (dashed lines) in the title compound. | |
Fig. 3. View down the a axis of the packing of the title compound. Dashed lines indicate the C—H···O interactions. [Symmetry codes: (i) x, -y + 3/2, z + 1/2; (ii) -x + 1, y - 1/2, -z + 1/2.] |
C11H10BrNO2 | F(000) = 536 |
Mr = 268.11 | Dx = 1.597 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7113 (2) Å | Cell parameters from 9592 reflections |
b = 8.1375 (2) Å | θ = 2.3–26.6° |
c = 17.8089 (4) Å | µ = 3.67 mm−1 |
β = 93.8300 (13)° | T = 296 K |
V = 1115.03 (5) Å3 | Irregular parallelepiped, orange |
Z = 4 | 0.39 × 0.24 × 0.24 mm |
Bruker APEXII CCD diffractometer | 2360 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.033 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 30.5°, θmin = 2.7° |
Tmin = 0.595, Tmax = 0.746 | h = −11→11 |
39739 measured reflections | k = −11→11 |
3393 independent reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0638P)2 + 1.1939P] where P = (Fo2 + 2Fc2)/3 |
3393 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 1.10 e Å−3 |
0 restraints | Δρmin = −0.99 e Å−3 |
C11H10BrNO2 | V = 1115.03 (5) Å3 |
Mr = 268.11 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7113 (2) Å | µ = 3.67 mm−1 |
b = 8.1375 (2) Å | T = 296 K |
c = 17.8089 (4) Å | 0.39 × 0.24 × 0.24 mm |
β = 93.8300 (13)° |
Bruker APEXII CCD diffractometer | 3393 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2360 reflections with I > 2σ(I) |
Tmin = 0.595, Tmax = 0.746 | Rint = 0.033 |
39739 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.10 e Å−3 |
3393 reflections | Δρmin = −0.99 e Å−3 |
136 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.05853 (6) | 0.49061 (6) | 0.36531 (3) | 0.0874 (2) | |
C1 | 0.5157 (3) | 0.7542 (3) | 0.46085 (14) | 0.0360 (5) | |
C2 | 0.4168 (4) | 0.7039 (4) | 0.51842 (16) | 0.0465 (6) | |
H2 | 0.3145 | 0.6446 | 0.5088 | 0.056* | |
C3 | 0.4765 (4) | 0.7455 (4) | 0.59154 (16) | 0.0529 (7) | |
H3 | 0.4116 | 0.7138 | 0.6313 | 0.063* | |
C4 | 0.6279 (5) | 0.8318 (4) | 0.60698 (15) | 0.0527 (7) | |
H4 | 0.6640 | 0.8567 | 0.6565 | 0.063* | |
C5 | 0.7270 (4) | 0.8819 (4) | 0.54906 (15) | 0.0455 (6) | |
H5 | 0.8302 | 0.9394 | 0.5590 | 0.055* | |
C6 | 0.6679 (3) | 0.8439 (3) | 0.47589 (13) | 0.0367 (5) | |
C7 | 0.7371 (3) | 0.8840 (3) | 0.40349 (15) | 0.0417 (5) | |
C8 | 0.6087 (4) | 0.8045 (4) | 0.34400 (14) | 0.0441 (6) | |
C9 | 0.3438 (4) | 0.6304 (4) | 0.34693 (17) | 0.0476 (6) | |
H9A | 0.3108 | 0.5462 | 0.3818 | 0.057* | |
H9B | 0.3845 | 0.5760 | 0.3029 | 0.057* | |
C10 | 0.1865 (4) | 0.7331 (4) | 0.32359 (18) | 0.0503 (7) | |
H10B | 0.2184 | 0.8142 | 0.2871 | 0.060* | |
H10A | 0.1492 | 0.7914 | 0.3672 | 0.060* | |
C11 | 0.0372 (4) | 0.6315 (5) | 0.28988 (18) | 0.0600 (8) | |
H11B | 0.0772 | 0.5641 | 0.2496 | 0.072* | |
H11A | −0.0532 | 0.7038 | 0.2686 | 0.072* | |
N1 | 0.4849 (3) | 0.7280 (3) | 0.38246 (12) | 0.0410 (5) | |
O1 | 0.8630 (3) | 0.9615 (3) | 0.38866 (13) | 0.0589 (6) | |
O2 | 0.6181 (3) | 0.8085 (3) | 0.27643 (11) | 0.0638 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0725 (3) | 0.0879 (4) | 0.1039 (4) | −0.0261 (2) | 0.0208 (2) | 0.0013 (2) |
C1 | 0.0370 (11) | 0.0371 (12) | 0.0340 (11) | 0.0042 (9) | 0.0024 (9) | 0.0005 (9) |
C2 | 0.0462 (14) | 0.0456 (14) | 0.0489 (15) | −0.0034 (12) | 0.0109 (11) | 0.0068 (12) |
C3 | 0.071 (2) | 0.0511 (16) | 0.0378 (13) | 0.0049 (14) | 0.0166 (13) | 0.0112 (12) |
C4 | 0.074 (2) | 0.0527 (16) | 0.0309 (12) | 0.0054 (15) | −0.0026 (12) | 0.0021 (11) |
C5 | 0.0463 (14) | 0.0494 (15) | 0.0400 (13) | 0.0006 (12) | −0.0043 (11) | −0.0018 (11) |
C6 | 0.0355 (12) | 0.0400 (12) | 0.0347 (11) | 0.0024 (9) | 0.0025 (9) | −0.0003 (9) |
C7 | 0.0364 (12) | 0.0486 (14) | 0.0407 (12) | 0.0017 (11) | 0.0076 (10) | −0.0009 (11) |
C8 | 0.0442 (14) | 0.0529 (15) | 0.0357 (12) | 0.0031 (12) | 0.0061 (10) | −0.0013 (11) |
C9 | 0.0443 (14) | 0.0458 (15) | 0.0516 (15) | 0.0009 (11) | −0.0054 (11) | −0.0114 (12) |
C10 | 0.0441 (14) | 0.0510 (16) | 0.0550 (16) | −0.0012 (12) | −0.0031 (12) | −0.0019 (13) |
C11 | 0.0449 (16) | 0.080 (2) | 0.0541 (17) | −0.0068 (15) | −0.0019 (13) | −0.0093 (16) |
N1 | 0.0372 (10) | 0.0508 (13) | 0.0346 (10) | −0.0021 (9) | −0.0002 (8) | −0.0049 (9) |
O1 | 0.0470 (12) | 0.0733 (14) | 0.0581 (13) | −0.0128 (10) | 0.0155 (10) | 0.0002 (11) |
O2 | 0.0737 (15) | 0.0865 (17) | 0.0318 (10) | −0.0001 (13) | 0.0092 (9) | −0.0027 (10) |
C11—Br1 | 1.948 (4) | C7—O1 | 1.202 (3) |
C1—C2 | 1.380 (4) | C7—C8 | 1.543 (4) |
C1—C6 | 1.393 (4) | C8—O2 | 1.211 (3) |
C1—N1 | 1.417 (3) | C8—N1 | 1.363 (3) |
C2—C3 | 1.394 (4) | C9—N1 | 1.457 (3) |
C2—H2 | 0.9300 | C9—C10 | 1.508 (4) |
C3—C4 | 1.375 (5) | C9—H9A | 0.9700 |
C3—H3 | 0.9300 | C9—H9B | 0.9700 |
C4—C5 | 1.385 (4) | C10—C11 | 1.510 (4) |
C4—H4 | 0.9300 | C10—H10B | 0.9700 |
C5—C6 | 1.386 (4) | C10—H10A | 0.9700 |
C5—H5 | 0.9300 | C11—H11B | 0.9700 |
C6—C7 | 1.465 (3) | C11—H11A | 0.9700 |
C2—C1—C6 | 120.9 (2) | N1—C8—C7 | 106.6 (2) |
C2—C1—N1 | 128.5 (2) | N1—C9—C10 | 112.4 (2) |
C6—C1—N1 | 110.6 (2) | N1—C9—H9A | 109.1 |
C1—C2—C3 | 117.2 (3) | C10—C9—H9A | 109.1 |
C1—C2—H2 | 121.4 | N1—C9—H9B | 109.1 |
C3—C2—H2 | 121.4 | C10—C9—H9B | 109.1 |
C4—C3—C2 | 122.3 (3) | H9A—C9—H9B | 107.9 |
C4—C3—H3 | 118.9 | C9—C10—C11 | 112.6 (3) |
C2—C3—H3 | 118.9 | C9—C10—H10B | 109.1 |
C3—C4—C5 | 120.3 (3) | C11—C10—H10B | 109.1 |
C3—C4—H4 | 119.8 | C9—C10—H10A | 109.1 |
C5—C4—H4 | 119.8 | C11—C10—H10A | 109.1 |
C4—C5—C6 | 118.1 (3) | H10B—C10—H10A | 107.8 |
C4—C5—H5 | 120.9 | C10—C11—Br1 | 111.2 (2) |
C6—C5—H5 | 120.9 | C10—C11—H11B | 109.4 |
C5—C6—C1 | 121.1 (2) | Br1—C11—H11B | 109.4 |
C5—C6—C7 | 131.4 (2) | C10—C11—H11A | 109.4 |
C1—C6—C7 | 107.4 (2) | Br1—C11—H11A | 109.4 |
O1—C7—C6 | 131.1 (3) | H11B—C11—H11A | 108.0 |
O1—C7—C8 | 124.0 (2) | C8—N1—C1 | 110.5 (2) |
C6—C7—C8 | 104.9 (2) | C8—N1—C9 | 124.0 (2) |
O2—C8—N1 | 127.0 (3) | C1—N1—C9 | 125.6 (2) |
O2—C8—C7 | 126.4 (3) | ||
C6—C1—C2—C3 | −0.4 (4) | C6—C7—C8—O2 | −180.0 (3) |
N1—C1—C2—C3 | 179.8 (3) | O1—C7—C8—N1 | 179.8 (3) |
C1—C2—C3—C4 | −0.5 (4) | C6—C7—C8—N1 | −0.7 (3) |
C2—C3—C4—C5 | 0.4 (5) | N1—C9—C10—C11 | −177.5 (3) |
C3—C4—C5—C6 | 0.6 (4) | C9—C10—C11—Br1 | 68.1 (3) |
C4—C5—C6—C1 | −1.6 (4) | O2—C8—N1—C1 | −178.6 (3) |
C4—C5—C6—C7 | 177.2 (3) | C7—C8—N1—C1 | 2.1 (3) |
C2—C1—C6—C5 | 1.6 (4) | O2—C8—N1—C9 | 2.6 (5) |
N1—C1—C6—C5 | −178.6 (2) | C7—C8—N1—C9 | −176.7 (2) |
C2—C1—C6—C7 | −177.5 (2) | C2—C1—N1—C8 | 177.0 (3) |
N1—C1—C6—C7 | 2.3 (3) | C6—C1—N1—C8 | −2.8 (3) |
C5—C6—C7—O1 | −0.5 (5) | C2—C1—N1—C9 | −4.3 (4) |
C1—C6—C7—O1 | 178.5 (3) | C6—C1—N1—C9 | 175.9 (2) |
C5—C6—C7—C8 | −179.9 (3) | C10—C9—N1—C8 | −88.0 (3) |
C1—C6—C7—C8 | −0.9 (3) | C10—C9—N1—C1 | 93.4 (3) |
O1—C7—C8—O2 | 0.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.57 | 3.232 (3) | 129 |
C9—H9B···O2ii | 0.97 | 2.59 | 3.444 (4) | 146 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.57 | 3.232 (3) | 129 |
C9—H9B···O2ii | 0.97 | 2.59 | 3.444 (4) | 146 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H10BrNO2 |
Mr | 268.11 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 7.7113 (2), 8.1375 (2), 17.8089 (4) |
β (°) | 93.8300 (13) |
V (Å3) | 1115.03 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.67 |
Crystal size (mm) | 0.39 × 0.24 × 0.24 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.595, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 39739, 3393, 2360 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.158, 1.04 |
No. of reflections | 3393 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.10, −0.99 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).
References
Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug. Res. 2, 229–235. CAS Google Scholar
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751. Web of Science CrossRef CAS Google Scholar
Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.