organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(3-Bromo­prop­yl)indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and dLaboratoire d'Ingénierie des Matériaux et d'Environnement: Modélisation et Application (LIMEMA), Ibn Tofail University, Kénitra, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 March 2016; accepted 9 April 2016; online 15 April 2016)

In the title compound, C11H10BrNO2, the indoline ring system has an r.m.s. deviation of 0.026 Å. The side chain (including the Br atom) has a trans–gauche conformation, as indicated by the N—C—C—C and C—C—C—Br torsion angles of −177.5 (3) and 68.1 (3)°, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin (1H-indole-2,3-dione) derivatives possess diverse activities such as anti­bacterial, anti­fungal, anti­viral, anti-HIV, anti-mycobacterial, anti­cancer, anti-inflammatory and anti­convulsant activities (Bhrigu et al. 2010[Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug. Res. 2, 229-235.]; Malhotra et al. 2011[Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743-751.]; Ramachandran, 2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289-294.]; Smitha et al. 2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]).

As a continuation of our work on the development of isatin deriv­atives (Mamari et al., 2010[Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410.]), we report here the synthesis of a new indoline-2,3-dione derivative obtained using 1,3-di­bromo­propane as an alkyl­ating agent.

The title mol­ecule is shown in Fig. 1[link]. The non-H atoms of the indoline core are virtually coplanar [with a maximum deviation of 0.030 (2) Å for N1]. The oxygen atoms O1 and O2 are essentially co-planar with the fused ring system, with the largest deviation from the mean plane being 0.027 (2) Å for O1. The geometric parameters of the title mol­ecule agree well with those reported for similar structures (Mamari et al., 2010[Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410.]). The sum of the angles at N1 (360.1°) is in accordance with sp2 hybridization for this atom.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

The crystal packing in the title compound is shown in Figs. 2[link] and 3[link]. The mol­ecules are linked by C—H⋯O hydrogen-bonding inter­actions (Table 1[link]), building a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.57 3.232 (3) 129
C9—H9B⋯O2ii 0.97 2.59 3.444 (4) 146
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bond inter­actions (dashed lines) in the title compound.
[Figure 3]
Figure 3
View down the a axis of the packing of the title compound. Dashed lines indicate the C—H⋯O inter­actions. [Symmetry codes: (i) x, −y + [{3\over 2}], z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].]

Synthesis and crystallization

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (20 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic qu­antity of tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol) and 1,3-di­bromo­propane (0.2 ml, 4.1 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid that was obtained was recrystallized from ethanol solution to afford the title compound as orange crystals in 74% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H10BrNO2
Mr 268.11
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.7113 (2), 8.1375 (2), 17.8089 (4)
β (°) 93.8300 (13)
V3) 1115.03 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.67
Crystal size (mm) 0.39 × 0.24 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.595, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39739, 3393, 2360
Rint 0.033
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.158, 1.04
No. of reflections 3393
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.10, −0.99
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

To a solution of isatin (0.5g, 3.4mmol) dissolved in DMF (20ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic qu­antity of tetra-n-butyl­ammonium bromide (0.1g, 0.4mmol) and 1,3-di­bromo­propane (0.2 ml, 4.1 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum.

The solid that was obtained was recrystallized from ethanol solution to afford the title compound as orange crystals in 74% yield.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Experimental top

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (20 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and 1,3-dibromopropane (0.2 ml, 4.1 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid that was obtained was recrystallized from ethanol solution to afford the title compound as orange crystals in 74% yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Isatin derivatives possess diverse activities such as antibacterial, antifungal, antiviral, anti-HIV, anti-mycobacterial, anticancer, anti-inflammatory and anticonvulsant activities (Bhrigu et al. 2010; Malhotra et al. 2011; Ramachandran, 2011; Smitha et al. 2008).

As a continuation of our research work devoted to the development of isatin derivatives (Mamari et al., 2010), we report here the synthesis of a new indoline-2,3-dione derivative obtained using 1,3-dibromopropane as alkylating agent.

The title molecule is shown in Fig. 1. The non-H atoms of the indoline core are virtually coplanar [with a maximum deviation of 0.030 (2) Å for N1]. The oxygen atoms O1 and O2 are essentially co-planar with the fused ring system, with the largest deviation from the mean plane being 0.027 (2) Å for O1 atom. The geometric parameters of the title molecule agree well with the reported similar structures (Mamari et al., 2010). The sum of the angles at N1 (360.1°) are in accordance with sp2 hybridization for this atom.

The crystal packing in the title compound is shown in Fig. 2. The molecules are linked by C—H···O hydrogen-bonding interactions (Table 1), building a three-dimensional network.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen-bond interactions (dashed lines) in the title compound.
[Figure 3] Fig. 3. View down the a axis of the packing of the title compound. Dashed lines indicate the C—H···O interactions. [Symmetry codes: (i) x, -y + 3/2, z + 1/2; (ii) -x + 1, y - 1/2, -z + 1/2.]
1-(3-Bromopropyl)indoline-2,3-dione top
Crystal data top
C11H10BrNO2F(000) = 536
Mr = 268.11Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7113 (2) ÅCell parameters from 9592 reflections
b = 8.1375 (2) Åθ = 2.3–26.6°
c = 17.8089 (4) ŵ = 3.67 mm1
β = 93.8300 (13)°T = 296 K
V = 1115.03 (5) Å3Irregular parallelepiped, orange
Z = 40.39 × 0.24 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
2360 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 30.5°, θmin = 2.7°
Tmin = 0.595, Tmax = 0.746h = 1111
39739 measured reflectionsk = 1111
3393 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0638P)2 + 1.1939P]
where P = (Fo2 + 2Fc2)/3
3393 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
C11H10BrNO2V = 1115.03 (5) Å3
Mr = 268.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7113 (2) ŵ = 3.67 mm1
b = 8.1375 (2) ÅT = 296 K
c = 17.8089 (4) Å0.39 × 0.24 × 0.24 mm
β = 93.8300 (13)°
Data collection top
Bruker APEXII CCD
diffractometer
3393 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2360 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.746Rint = 0.033
39739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.04Δρmax = 1.10 e Å3
3393 reflectionsΔρmin = 0.99 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05853 (6)0.49061 (6)0.36531 (3)0.0874 (2)
C10.5157 (3)0.7542 (3)0.46085 (14)0.0360 (5)
C20.4168 (4)0.7039 (4)0.51842 (16)0.0465 (6)
H20.31450.64460.50880.056*
C30.4765 (4)0.7455 (4)0.59154 (16)0.0529 (7)
H30.41160.71380.63130.063*
C40.6279 (5)0.8318 (4)0.60698 (15)0.0527 (7)
H40.66400.85670.65650.063*
C50.7270 (4)0.8819 (4)0.54906 (15)0.0455 (6)
H50.83020.93940.55900.055*
C60.6679 (3)0.8439 (3)0.47589 (13)0.0367 (5)
C70.7371 (3)0.8840 (3)0.40349 (15)0.0417 (5)
C80.6087 (4)0.8045 (4)0.34400 (14)0.0441 (6)
C90.3438 (4)0.6304 (4)0.34693 (17)0.0476 (6)
H9A0.31080.54620.38180.057*
H9B0.38450.57600.30290.057*
C100.1865 (4)0.7331 (4)0.32359 (18)0.0503 (7)
H10B0.21840.81420.28710.060*
H10A0.14920.79140.36720.060*
C110.0372 (4)0.6315 (5)0.28988 (18)0.0600 (8)
H11B0.07720.56410.24960.072*
H11A0.05320.70380.26860.072*
N10.4849 (3)0.7280 (3)0.38246 (12)0.0410 (5)
O10.8630 (3)0.9615 (3)0.38866 (13)0.0589 (6)
O20.6181 (3)0.8085 (3)0.27643 (11)0.0638 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0725 (3)0.0879 (4)0.1039 (4)0.0261 (2)0.0208 (2)0.0013 (2)
C10.0370 (11)0.0371 (12)0.0340 (11)0.0042 (9)0.0024 (9)0.0005 (9)
C20.0462 (14)0.0456 (14)0.0489 (15)0.0034 (12)0.0109 (11)0.0068 (12)
C30.071 (2)0.0511 (16)0.0378 (13)0.0049 (14)0.0166 (13)0.0112 (12)
C40.074 (2)0.0527 (16)0.0309 (12)0.0054 (15)0.0026 (12)0.0021 (11)
C50.0463 (14)0.0494 (15)0.0400 (13)0.0006 (12)0.0043 (11)0.0018 (11)
C60.0355 (12)0.0400 (12)0.0347 (11)0.0024 (9)0.0025 (9)0.0003 (9)
C70.0364 (12)0.0486 (14)0.0407 (12)0.0017 (11)0.0076 (10)0.0009 (11)
C80.0442 (14)0.0529 (15)0.0357 (12)0.0031 (12)0.0061 (10)0.0013 (11)
C90.0443 (14)0.0458 (15)0.0516 (15)0.0009 (11)0.0054 (11)0.0114 (12)
C100.0441 (14)0.0510 (16)0.0550 (16)0.0012 (12)0.0031 (12)0.0019 (13)
C110.0449 (16)0.080 (2)0.0541 (17)0.0068 (15)0.0019 (13)0.0093 (16)
N10.0372 (10)0.0508 (13)0.0346 (10)0.0021 (9)0.0002 (8)0.0049 (9)
O10.0470 (12)0.0733 (14)0.0581 (13)0.0128 (10)0.0155 (10)0.0002 (11)
O20.0737 (15)0.0865 (17)0.0318 (10)0.0001 (13)0.0092 (9)0.0027 (10)
Geometric parameters (Å, º) top
C11—Br11.948 (4)C7—O11.202 (3)
C1—C21.380 (4)C7—C81.543 (4)
C1—C61.393 (4)C8—O21.211 (3)
C1—N11.417 (3)C8—N11.363 (3)
C2—C31.394 (4)C9—N11.457 (3)
C2—H20.9300C9—C101.508 (4)
C3—C41.375 (5)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.385 (4)C10—C111.510 (4)
C4—H40.9300C10—H10B0.9700
C5—C61.386 (4)C10—H10A0.9700
C5—H50.9300C11—H11B0.9700
C6—C71.465 (3)C11—H11A0.9700
C2—C1—C6120.9 (2)N1—C8—C7106.6 (2)
C2—C1—N1128.5 (2)N1—C9—C10112.4 (2)
C6—C1—N1110.6 (2)N1—C9—H9A109.1
C1—C2—C3117.2 (3)C10—C9—H9A109.1
C1—C2—H2121.4N1—C9—H9B109.1
C3—C2—H2121.4C10—C9—H9B109.1
C4—C3—C2122.3 (3)H9A—C9—H9B107.9
C4—C3—H3118.9C9—C10—C11112.6 (3)
C2—C3—H3118.9C9—C10—H10B109.1
C3—C4—C5120.3 (3)C11—C10—H10B109.1
C3—C4—H4119.8C9—C10—H10A109.1
C5—C4—H4119.8C11—C10—H10A109.1
C4—C5—C6118.1 (3)H10B—C10—H10A107.8
C4—C5—H5120.9C10—C11—Br1111.2 (2)
C6—C5—H5120.9C10—C11—H11B109.4
C5—C6—C1121.1 (2)Br1—C11—H11B109.4
C5—C6—C7131.4 (2)C10—C11—H11A109.4
C1—C6—C7107.4 (2)Br1—C11—H11A109.4
O1—C7—C6131.1 (3)H11B—C11—H11A108.0
O1—C7—C8124.0 (2)C8—N1—C1110.5 (2)
C6—C7—C8104.9 (2)C8—N1—C9124.0 (2)
O2—C8—N1127.0 (3)C1—N1—C9125.6 (2)
O2—C8—C7126.4 (3)
C6—C1—C2—C30.4 (4)C6—C7—C8—O2180.0 (3)
N1—C1—C2—C3179.8 (3)O1—C7—C8—N1179.8 (3)
C1—C2—C3—C40.5 (4)C6—C7—C8—N10.7 (3)
C2—C3—C4—C50.4 (5)N1—C9—C10—C11177.5 (3)
C3—C4—C5—C60.6 (4)C9—C10—C11—Br168.1 (3)
C4—C5—C6—C11.6 (4)O2—C8—N1—C1178.6 (3)
C4—C5—C6—C7177.2 (3)C7—C8—N1—C12.1 (3)
C2—C1—C6—C51.6 (4)O2—C8—N1—C92.6 (5)
N1—C1—C6—C5178.6 (2)C7—C8—N1—C9176.7 (2)
C2—C1—C6—C7177.5 (2)C2—C1—N1—C8177.0 (3)
N1—C1—C6—C72.3 (3)C6—C1—N1—C82.8 (3)
C5—C6—C7—O10.5 (5)C2—C1—N1—C94.3 (4)
C1—C6—C7—O1178.5 (3)C6—C1—N1—C9175.9 (2)
C5—C6—C7—C8179.9 (3)C10—C9—N1—C888.0 (3)
C1—C6—C7—C80.9 (3)C10—C9—N1—C193.4 (3)
O1—C7—C8—O20.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.573.232 (3)129
C9—H9B···O2ii0.972.593.444 (4)146
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.573.232 (3)129
C9—H9B···O2ii0.972.593.444 (4)146
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10BrNO2
Mr268.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7113 (2), 8.1375 (2), 17.8089 (4)
β (°) 93.8300 (13)
V3)1115.03 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.67
Crystal size (mm)0.39 × 0.24 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.595, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
39739, 3393, 2360
Rint0.033
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.158, 1.04
No. of reflections3393
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.99

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

References

First citationBhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug. Res. 2, 229–235.  CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMalhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751.  Web of Science CrossRef CAS Google Scholar
First citationMamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds