organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4Z)-2-Phenyl-1-{(E)-[4-(propan-2-yl)benzyl­idene]amino}-4-[(thiophen-2-yl)methyl­idene]-1H-imidazol-5(4H)-one

aSchool of Physics, Shri Mata Vaishno Devi University, Katra 182 320, J&K, India, bDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, D.K., Mangalore, India, cDepartment of Industrial Chemistry, Mangalore University, Mangalagangothri 574 199, D.K., Mangalore, India, and dX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 March 2016; accepted 8 April 2016; online 12 April 2016)

In the title mol­ecule, C24H21N3OS, the imidazole ring subtends dihedral angles of 4.6 (1) and 20.2 (1)° with the thio­phene and iso-propyl­benzene rings, respectively. The plane of the imidazole ring forms a dihedral angle of 39.9 (1)° with the phenyl ring. An intra­molecular C—H⋯N hydrogen bond closes an S(6) ring. In the crystal, pairs of C—H⋯O hydrogen bonds link mol­ecules into inversion dimers featuring R22(10) graph-set motifs. Aromatic ππ stacking inter­actions are observed between the thio­phene and imidazole rings [centroid–centroid distance = 3.570 (2) Å] and thio­phene and benzene rings [centroid–centroid distance = 3.889 (2) Å]. Weak C—H⋯π inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazolo­nes are nitro­gen analogues of azlactones bearing an exocyclic double bond at the fourth position, usually called unsaturated 2,4-disubstituted 2-imidazolin-5-ones. Compounds containing imidazolone as well as imine moieties exhibit a range of pharmaceutical activities, such as anti­microbial (Suthakaran et al. 2008[Suthakaran, R., Kavimani, S., Venkaiaiah, P. & Suganthi, K. (2008). Rasayan J. Chem. 1, 22-29.]; Patel et al. 2006[Patel, A., Bari, S., Talele, G., Patel, J. & Sarangapani, M. (2006). Iran. J. Pharm. Res. 4, 249-254.]), anti-oxidant (Suhasini et al.2014[Suhasini, G. E., Nirmala, M., Varalakshmi, Giri, A., Solomon, B. & Sahitha, G. (2014). Int. J. Pharm. 4, 241-246.]) and anti­convulsant activity (Mohamed et al. 2012[Mohamed, M. S., Mahmoud, R. K., Sayad, A. I. & El-Araby, M. E. (2012). J. Med. Chem. 2, 24-29.]).

In the title compound (Fig. 1[link]), the imidazole ring subtends dihedral angles of 4.6 (1) and 20.2 (1)° with the thio­phene and benzene rings, respectively. The dihedral angle between the phenyl and imidazole rings is 39.9 (1)°. The sum of bond angles around N2 is 358.3°, which confirms that the atom N2 is in an sp2 hybridized state. The C7=O1 bond distance is 1.218 (5) Å which is somewhat longer than the standard value for a carbonyl group (1.192 Å); the lengthening of this double bond may be due to the involvement of this oxygen atom as a hydrogen-bond acceptor.

[Figure 1]
Figure 1
ORTEP view of the title mol­ecule with displacement ellipsoids drawn at the 40% probability level. Dashed lines indicate the intra­molecular hydrogen bond.

In the crystal, centrosymmetric dimeric aggregates (Fig. 2[link]) are formed by pairs of C—H⋯O hydrogen bonds (Table 1[link]), forming R22(10) ring motifs. ππ inter­actions are observed between the thio­phene and imidazole rings [centroid separation = 3.570 (2) Å, inter­planar spacing = 3.528 Å and centroid shift = 0.55 Å] and the thio­phene and benzene rings [centroid separation= 3.889 (2) Å, inter­planar spacing = 2.976 Å and centroid shift = 2.50 Å]. Weak C—H⋯π inter­actions are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N3 0.93 2.38 2.960 (5) 120
C5—H5⋯O1i 0.93 2.44 3.221 (5) 142
Symmetry code: (i) -x+1, -y+2, -z+2.
[Figure 2]
Figure 2
A dimer of mol­ecules of the title compound linked by a pair of C—H⋯O hydrogen bonds forming an R22(10) loop.

Synthesis and crystallization

A mixture of 3-hydrazinyl-3-oxo-1-(thio­phen-2-yl)prop-1-en-2-yl]benzamide (0.01 mol) in 2-propanol (30 ml) with 4-(propan-2-yl)benzaldehyde (0.01 mol) in the presence of one or two drops of sulfuric acid was heated under reflux for 8 h. The reaction mixture was then cooled to room temperature and poured on cold water; the solid mass obtained was collected by filtration, washed with cold water and recrystallized at room temperature from a mixture of methanol and N,N-dimethyl formamide (1:1 v/v) giving yellow block-like crystals [m.p. 449 K]

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H21N3OS
Mr 399.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 15.8392 (13), 12.9075 (10), 10.3997 (8)
β (°) 103.354 (8)
V3) 2068.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]
Tmin, Tmax 0.636, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8085, 4053, 2412
Rint 0.033
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.247, 1.05
No. of reflections 4053
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.34
Computer programs: CrysAlis PRO (Oxford Diffraction,2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Imidazolones are nitrogen analogues of azlactones bearing an exocyclic double bond at the fourth position usually called unsaturated 2,4-disubtituted 2-imidazolin-5-ones. Compounds containing imidazolone as well as imine moieties exhibit a range of pharmaceutical activities, such as antimicrobial (Suthakaran et al. 2008 & Patel et al. 2006), antioxidant (Suhasini et al.2014) and anticonvulsant activity (Mohamed et al. 2012).

In the title compound, the imidazole ring subtends dihedral angles of 4.6 (1) and 20.2 (1)° with the thiophene and benzene rings, respectively. The dihedral angle between the phenyl ring and imidazole ring is 39.9 (1)°. The sum of bond angles around N2 is 360° which confirms that the atom N2 is in sp2 hybridized state. The C7=O1 bond distance is 1.218 (5)Å which is somewhat longer than the standard value for carbonyl group [1.192Å] and lengthening of this double bond may be due to the involvement of this oxygen atom as a hydrogen-bond acceptor. In the crystal, centrosymmetric dimeric aggregates are formed by pairs of C—H···O hydrogen bonds forming R22(10) ring motifs. In the crystal, π-π interactions are observed between the thiophene and imidazole rings [centroid separation = 3.570 (2) Å, interplanar spacing = 3.528 Å and centroid shift = 0.55 Å] and thiophene and benzene rings [Centroid separation= 3.889 (2) Å, interplanar spacing = 2.976 Å and centroid shift = 2.50Å]. Weak C—H···π interactions are also observed.

Experimental top

A mixture of 3-hydrazinyl-3-oxo-1-(thiophen-2-yl)prop-1-en-2-yl]benzamide (0.01 mol) in 2-propanol (30 ml) with 4-(propan-2-yl)benzaldehyde (0.01 mol) in the presence of one or two drops of sulfuric acid was heated under reflux for 8 h. The reaction mixture was then cooled to room temperature and poured on cold water; the solid mass obtained was collected by filtration, washed with cold water and recrystallized at room temperature from a mixture of methanol and N,N-dimethyl formamide (1:1 v/v) in the form of yellow blocks [m.p. 449 K]

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 A; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Structure description top

Imidazolones are nitrogen analogues of azlactones bearing an exocyclic double bond at the fourth position, usually called unsaturated 2,4-disubstituted 2-imidazolin-5-ones. Compounds containing imidazolone as well as imine moieties exhibit a range of pharmaceutical activities, such as antimicrobial (Suthakaran et al. 2008; Patel et al. 2006), anti-oxidant (Suhasini et al.2014) and anticonvulsant activity (Mohamed et al. 2012).

In the title compound (Fig. 1), the imidazole ring subtends dihedral angles of 4.6 (1) and 20.2 (1)° with the thiophene and benzene rings, respectively. The dihedral angle between the phenyl and imidazole rings is 39.9 (1)°. The sum of bond angles around N2 is 358.3°, which confirms that the atom N2 is in an sp2 hybridized state. The C7O1 bond distance is 1.218 (5) Å which is somewhat longer than the standard value for a carbonyl group (1.192 Å); the lengthening of this double bond may be due to the involvement of this oxygen atom as a hydrogen-bond acceptor.

In the crystal, centrosymmetric dimeric aggregates (Fig. 2) are formed by pairs of C—H···O hydrogen bonds (Table 1), forming R22(10) ring motifs. ππ interactions are observed between the thiophene and imidazole rings [centroid separation = 3.570 (2) Å, interplanar spacing = 3.528 Å and centroid shift = 0.55 Å] and the thiophene and benzene rings [centroid separation= 3.889 (2) Å, interplanar spacing = 2.976 Å and centroid shift = 2.50 Å]. Weak C—H···π interactions are also observed.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction,2010); cell refinement: CrysAlis PRO (Oxford Diffraction,2010); data reduction: CrysAlis PRO (Oxford Diffraction,2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule with displacement ellipsoids drawn at the 40% probability level. Dashed lines indicate the intramolecular hydrogen bond.
[Figure 2] Fig. 2. A dimer of molecules of the title compound linked by a pair of C—H···O hydrogen bonds forming an R22(10) loop.
(4Z)-2-Phenyl-1-{(E)-[4-(propan-2-yl)benzylidene]amino}-4-[(thiophen-2-yl)methylidene]-1H-imidazol-5(4H)-one top
Crystal data top
C24H21N3OSF(000) = 840
Mr = 399.50Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1816 reflections
a = 15.8392 (13) Åθ = 4.1–25.6°
b = 12.9075 (10) ŵ = 0.18 mm1
c = 10.3997 (8) ÅT = 293 K
β = 103.354 (8)°Block, yellow
V = 2068.7 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
4053 independent reflections
Radiation source: fine-focus sealed tube2412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010
k = 1515
Tmin = 0.636, Tmax = 1.000l = 1012
8085 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.247H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1066P)2 + 1.5103P]
where P = (Fo2 + 2Fc2)/3
4053 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C24H21N3OSV = 2068.7 (3) Å3
Mr = 399.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.8392 (13) ŵ = 0.18 mm1
b = 12.9075 (10) ÅT = 293 K
c = 10.3997 (8) Å0.30 × 0.20 × 0.20 mm
β = 103.354 (8)°
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
4053 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010
2412 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 1.000Rint = 0.033
8085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.247H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
4053 reflectionsΔρmin = 0.34 e Å3
264 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48932 (8)0.61536 (9)0.93165 (13)0.0810 (5)
N30.2515 (2)0.9237 (3)1.1960 (3)0.0596 (8)
N10.37039 (19)0.7338 (2)1.0619 (3)0.0565 (8)
N20.31414 (19)0.8713 (2)1.1460 (3)0.0586 (8)
O10.3822 (2)1.0076 (2)1.0621 (3)0.0852 (10)
C90.2618 (2)0.6909 (3)1.1846 (4)0.0521 (9)
C170.1300 (3)1.0434 (3)1.2985 (4)0.0661 (11)
H170.10790.98511.24970.079*
C80.3151 (2)0.7636 (3)1.1301 (4)0.0535 (9)
C50.4681 (2)0.8271 (3)0.9533 (4)0.0639 (10)
H50.48670.89300.93630.077*
C160.2157 (2)1.0712 (3)1.3090 (4)0.0557 (9)
C60.4073 (2)0.8230 (3)1.0243 (4)0.0601 (10)
C140.2251 (3)0.7125 (3)1.2905 (4)0.0634 (10)
H140.22930.77891.32630.076*
C40.5077 (2)0.7429 (3)0.9007 (4)0.0602 (10)
C150.2759 (3)1.0096 (3)1.2529 (4)0.0606 (10)
H150.33221.03311.25880.073*
C190.1081 (3)1.1886 (4)1.4336 (5)0.0773 (13)
C70.3709 (3)0.9153 (3)1.0755 (4)0.0646 (11)
C130.1821 (3)0.6353 (4)1.3432 (4)0.0736 (12)
H130.15910.64961.41580.088*
C100.2515 (3)0.5916 (3)1.1311 (5)0.0702 (12)
H100.27440.57631.05870.084*
C210.2456 (3)1.1606 (3)1.3806 (4)0.0687 (11)
H210.30251.18221.38740.082*
C180.0771 (3)1.1004 (4)1.3589 (5)0.0765 (13)
H180.01971.08021.35020.092*
C30.5704 (3)0.7537 (3)0.8164 (4)0.0612 (10)
H30.59130.81530.78940.073*
C200.1924 (3)1.2173 (3)1.4413 (5)0.0796 (14)
H200.21401.27651.48860.096*
C10.5561 (3)0.5752 (4)0.8383 (5)0.0809 (13)
H10.56690.50560.82490.097*
C110.2084 (3)0.5161 (4)1.1823 (5)0.0862 (15)
H110.20280.45011.14550.103*
C20.5925 (3)0.6525 (4)0.7848 (5)0.0877 (15)
H20.63020.64030.73000.105*
C220.0515 (4)1.2478 (4)1.5091 (7)0.112 (2)
H220.09631.27421.58320.135*
C120.1736 (3)0.5381 (4)1.2884 (5)0.0834 (14)
H120.14410.48701.32330.100*
C230.0029 (5)1.1847 (5)1.5790 (6)0.137 (3)
H23A0.02271.22761.63520.206*
H23B0.04081.13501.63180.206*
H23C0.04211.14921.51690.206*
C240.0168 (5)1.3427 (5)1.4508 (7)0.138 (3)
H24A0.02881.32861.37440.207*
H24B0.06171.38181.42510.207*
H24C0.00601.38181.51360.207*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0782 (8)0.0620 (8)0.1081 (10)0.0024 (6)0.0322 (7)0.0085 (6)
N30.0539 (18)0.0530 (19)0.076 (2)0.0012 (15)0.0237 (16)0.0084 (16)
N10.0487 (17)0.0492 (18)0.074 (2)0.0024 (14)0.0204 (16)0.0050 (16)
N20.0534 (18)0.0491 (19)0.079 (2)0.0051 (14)0.0273 (16)0.0111 (16)
O10.085 (2)0.0509 (19)0.135 (3)0.0133 (15)0.056 (2)0.0143 (18)
C90.0396 (18)0.053 (2)0.062 (2)0.0018 (16)0.0080 (16)0.0053 (18)
C170.060 (2)0.055 (2)0.085 (3)0.0010 (19)0.020 (2)0.009 (2)
C80.0459 (19)0.051 (2)0.063 (2)0.0013 (16)0.0104 (17)0.0071 (18)
C50.056 (2)0.054 (2)0.085 (3)0.0081 (18)0.025 (2)0.007 (2)
C160.057 (2)0.048 (2)0.065 (2)0.0024 (17)0.0205 (18)0.0003 (18)
C60.048 (2)0.057 (2)0.077 (3)0.0055 (18)0.0181 (19)0.010 (2)
C140.066 (2)0.057 (2)0.069 (2)0.0005 (19)0.019 (2)0.0049 (19)
C40.054 (2)0.057 (2)0.071 (2)0.0005 (18)0.0173 (19)0.002 (2)
C150.055 (2)0.052 (2)0.080 (3)0.0061 (18)0.025 (2)0.009 (2)
C190.089 (3)0.057 (3)0.099 (3)0.016 (2)0.049 (3)0.010 (2)
C70.056 (2)0.054 (3)0.087 (3)0.0052 (18)0.024 (2)0.009 (2)
C130.064 (3)0.082 (3)0.081 (3)0.002 (2)0.029 (2)0.009 (3)
C100.065 (3)0.060 (3)0.089 (3)0.007 (2)0.025 (2)0.014 (2)
C210.068 (3)0.055 (2)0.089 (3)0.008 (2)0.031 (2)0.009 (2)
C180.057 (2)0.072 (3)0.107 (3)0.005 (2)0.033 (2)0.004 (3)
C30.068 (2)0.048 (2)0.073 (2)0.0073 (19)0.026 (2)0.0071 (19)
C200.099 (4)0.052 (3)0.101 (3)0.000 (2)0.050 (3)0.010 (2)
C10.087 (3)0.067 (3)0.093 (3)0.008 (3)0.027 (3)0.017 (3)
C110.085 (3)0.056 (3)0.126 (4)0.017 (2)0.044 (3)0.012 (3)
C20.085 (3)0.101 (4)0.085 (3)0.005 (3)0.037 (3)0.000 (3)
C220.131 (5)0.075 (4)0.160 (5)0.017 (3)0.094 (5)0.000 (4)
C120.068 (3)0.072 (3)0.115 (4)0.011 (2)0.031 (3)0.014 (3)
C230.188 (7)0.120 (5)0.145 (5)0.066 (5)0.123 (5)0.049 (4)
C240.196 (7)0.094 (4)0.164 (6)0.077 (5)0.126 (6)0.050 (4)
Geometric parameters (Å, º) top
S1—C11.675 (5)C19—C221.526 (6)
S1—C41.715 (4)C13—C121.372 (7)
N3—C151.274 (5)C13—H130.9300
N3—N21.397 (4)C10—C111.366 (6)
N1—C81.306 (4)C10—H100.9300
N1—C61.388 (5)C21—C201.376 (6)
N2—C81.400 (5)C21—H210.9300
N2—C71.405 (5)C18—H180.9300
O1—C71.218 (5)C3—C21.410 (6)
C9—C141.387 (5)C3—H30.9300
C9—C101.392 (5)C20—H200.9300
C9—C81.461 (5)C1—C21.336 (7)
C17—C181.372 (6)C1—H10.9300
C17—C161.384 (5)C11—C121.372 (7)
C17—H170.9300C11—H110.9300
C5—C61.343 (5)C2—H20.9300
C5—C41.426 (6)C22—C241.419 (7)
C5—H50.9300C22—C231.429 (7)
C16—C211.395 (5)C22—H220.9800
C16—C151.463 (5)C12—H120.9300
C6—C71.476 (6)C23—H23A0.9600
C14—C131.389 (6)C23—H23B0.9600
C14—H140.9300C23—H23C0.9600
C4—C31.474 (5)C24—H24A0.9600
C15—H150.9300C24—H24B0.9600
C19—C201.369 (6)C24—H24C0.9600
C19—C181.402 (6)
C1—S1—C491.8 (2)C9—C10—H10119.2
C15—N3—N2115.4 (3)C20—C21—C16121.1 (4)
C8—N1—C6106.8 (3)C20—C21—H21119.5
N3—N2—C8123.5 (3)C16—C21—H21119.5
N3—N2—C7126.4 (3)C17—C18—C19121.1 (4)
C8—N2—C7108.4 (3)C17—C18—H18119.4
C14—C9—C10118.1 (4)C19—C18—H18119.4
C14—C9—C8124.3 (4)C2—C3—C4106.8 (4)
C10—C9—C8117.5 (3)C2—C3—H3126.6
C18—C17—C16121.1 (4)C4—C3—H3126.6
C18—C17—H17119.5C19—C20—C21121.4 (4)
C16—C17—H17119.5C19—C20—H20119.3
N1—C8—N2112.5 (3)C21—C20—H20119.3
N1—C8—C9122.8 (3)C2—C1—S1113.6 (4)
N2—C8—C9124.7 (3)C2—C1—H1123.2
C6—C5—C4128.0 (4)S1—C1—H1123.2
C6—C5—H5116.0C10—C11—C12119.7 (5)
C4—C5—H5116.0C10—C11—H11120.2
C17—C16—C21117.6 (3)C12—C11—H11120.2
C17—C16—C15123.0 (4)C1—C2—C3116.1 (4)
C21—C16—C15119.4 (3)C1—C2—H2121.9
C5—C6—N1126.2 (4)C3—C2—H2121.9
C5—C6—C7123.8 (4)C24—C22—C23120.5 (5)
N1—C6—C7110.0 (3)C24—C22—C19115.4 (5)
C9—C14—C13120.1 (4)C23—C22—C19115.2 (5)
C9—C14—H14119.9C24—C22—H22100.1
C13—C14—H14119.9C23—C22—H22100.1
C5—C4—C3124.9 (4)C19—C22—H22100.1
C5—C4—S1123.4 (3)C13—C12—C11120.3 (4)
C3—C4—S1111.6 (3)C13—C12—H12119.9
N3—C15—C16120.2 (3)C11—C12—H12119.9
N3—C15—H15119.9C22—C23—H23A109.5
C16—C15—H15119.9C22—C23—H23B109.5
C20—C19—C18117.7 (4)H23A—C23—H23B109.5
C20—C19—C22121.0 (5)C22—C23—H23C109.5
C18—C19—C22121.3 (5)H23A—C23—H23C109.5
O1—C7—N2125.8 (4)H23B—C23—H23C109.5
O1—C7—C6132.0 (4)C22—C24—H24A109.5
N2—C7—C6102.2 (3)C22—C24—H24B109.5
C12—C13—C14120.2 (4)H24A—C24—H24B109.5
C12—C13—H13119.9C22—C24—H24C109.5
C14—C13—H13119.9H24A—C24—H24C109.5
C11—C10—C9121.6 (4)H24B—C24—H24C109.5
C11—C10—H10119.2
C15—N3—N2—C8153.1 (4)N3—N2—C7—C6168.3 (3)
C15—N3—N2—C743.6 (5)C8—N2—C7—C62.9 (4)
C6—N1—C8—N22.2 (4)C5—C6—C7—O13.8 (8)
C6—N1—C8—C9178.7 (3)N1—C6—C7—O1176.9 (5)
N3—N2—C8—N1169.3 (3)C5—C6—C7—N2177.6 (4)
C7—N2—C8—N13.4 (4)N1—C6—C7—N21.7 (4)
N3—N2—C8—C911.6 (6)C9—C14—C13—C121.9 (6)
C7—N2—C8—C9177.6 (4)C14—C9—C10—C111.6 (6)
C14—C9—C8—N1157.6 (4)C8—C9—C10—C11174.9 (4)
C10—C9—C8—N118.7 (5)C17—C16—C21—C201.6 (6)
C14—C9—C8—N221.4 (6)C15—C16—C21—C20176.2 (4)
C10—C9—C8—N2162.3 (4)C16—C17—C18—C190.2 (7)
C18—C17—C16—C211.5 (6)C20—C19—C18—C171.7 (7)
C18—C17—C16—C15176.3 (4)C22—C19—C18—C17175.6 (5)
C4—C5—C6—N10.3 (7)C5—C4—C3—C2179.2 (4)
C4—C5—C6—C7179.4 (4)S1—C4—C3—C22.1 (4)
C8—N1—C6—C5179.5 (4)C18—C19—C20—C211.5 (7)
C8—N1—C6—C70.3 (4)C22—C19—C20—C21175.8 (5)
C10—C9—C14—C132.2 (6)C16—C21—C20—C190.2 (7)
C8—C9—C14—C13174.1 (4)C4—S1—C1—C20.4 (4)
C6—C5—C4—C3176.0 (4)C9—C10—C11—C120.6 (7)
C6—C5—C4—S15.4 (6)S1—C1—C2—C30.9 (6)
C1—S1—C4—C5179.8 (4)C4—C3—C2—C11.9 (6)
C1—S1—C4—C31.4 (3)C20—C19—C22—C2478.6 (8)
N2—N3—C15—C16180.0 (3)C18—C19—C22—C24104.2 (7)
C17—C16—C15—N33.1 (6)C20—C19—C22—C23133.9 (6)
C21—C16—C15—N3174.6 (4)C18—C19—C22—C2343.3 (8)
N3—N2—C7—O110.4 (7)C14—C13—C12—C110.9 (7)
C8—N2—C7—O1175.8 (4)C10—C11—C12—C130.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N30.932.382.960 (5)120
C5—H5···O1i0.932.443.221 (5)142
C3—H3···O1i0.932.743.349 (5)124
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N30.932.382.960 (5)120
C5—H5···O1i0.932.443.221 (5)142
C3—H3···O1i0.932.743.349 (5)124
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC24H21N3OS
Mr399.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.8392 (13), 12.9075 (10), 10.3997 (8)
β (°) 103.354 (8)
V3)2068.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur, Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010
Tmin, Tmax0.636, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8085, 4053, 2412
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.247, 1.05
No. of reflections4053
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction,2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

RK acknowledges the Indian Council of Medical Research, New Delhi, for financial support under Research Project No. BIC/12 (14)/2012. K is thankful to the UGC for funding under Project No. MRP-MAJOR-PHYS-2013–26952 (RP-88). SNK acknowledges the Department of Chemistry, ShriMadhwaVadiraja Institute of Technology, Bantakal (VTU Belgam), for providing research facilities.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, M. S., Mahmoud, R. K., Sayad, A. I. & El-Araby, M. E. (2012). J. Med. Chem. 2, 24–29.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPatel, A., Bari, S., Talele, G., Patel, J. & Sarangapani, M. (2006). Iran. J. Pharm. Res. 4, 249–254.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuhasini, G. E., Nirmala, M., Varalakshmi, Giri, A., Solomon, B. & Sahitha, G. (2014). Int. J. Pharm. 4, 241–246.  Google Scholar
First citationSuthakaran, R., Kavimani, S., Venkaiaiah, P. & Suganthi, K. (2008). Rasayan J. Chem. 1, 22–29.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds