organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Amino­benzoic acid–quinoline (1/1)

aResearch and Development Centre, Bharathiyar University, Coimbatore 641 046, India, Department of Physics, CPCL Polytechnic College, Chennai 600 068, India, bDepartment of Physics, Alagappa University, Karaikkudi 630 003, India, cDepartment of Physics, The American College, Madurai 625 002, India, and dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: israel.samuel@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 March 2016; accepted 11 April 2016; online 15 April 2016)

In the title 1:1 adduct, C9H7N·C7H7NO2, the carboxyl group is twisted at an angle of 5.42 (8) Å with respect to its attached benzene ring. In the crystal, the carb­oxy­lic acid mol­ecule is linked to the quinoline mol­ecule by an O—H⋯N hydrogen bond. The 4-amino­benzoic acid mol­ecules are linked by N—H⋯O hydrogen bonds, forming sheets propagating in (001). Weak aromatic ππ stacking [centroid-to-centroid distances = 3.758 (1) and 3.888 (1) Å] inter­actions also occur.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoline derivatives are known to exhibit pharmacological activities such as anti-viral (Font et al., 1997[Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Discov. 14, 259-272.]) and anti-inflammatory (Sloboda et al., 1991[Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855-860.]). As part of our studies in this area, we now describe the synthesis and structure of the title adduct (Fig. 1[link]), which contains one quinoline and one 4-amino­benzoic acid mol­ecule in the asymmetric unit. The quinoline ring system (N1/C8–C16) is almost planar with a maximum deviation of 0.0133 (13) Å for atom N1. In the 4-amino­benzoic acid mol­ecule, the carboxyl group is twisted at an angle of 5.42 (8) Å to the attached benzene ring. The geometric parameters are comparable with similar structures (Divya Bharathi et al., 2015[Divya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261-o262.]; Li & Chai, 2007[Li, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857-o2859.]; Song et al., 2011[Song, X.-M., Li, J.-J., Liu, X.-H., Ren, C.-X. & Shang, S.-M. (2011). Acta Cryst. E67, o179.]).

[Figure 1]
Figure 1
The mol­ecular structure, with 30% probability displacement ellipsoids for non-H atoms.

In the crystal, the 4-amino­benzoic acid mol­ecules are linked by N—H⋯O hydrogen bonds (Table 1[link]), forming zigzag sheets propagating in the (001) plane (Fig. 2[link]). The quinoline mol­ecule accepts an O—H⋯N hydrogen bond (Table 1[link]) from the 4-amino­benzoic acid mol­ecule, and lies pendant to the (001) sheets (Fig. 2[link]). The crystal structure is also influenced by weak ππ inter­actions [Cg3⋯Cg2i = 3.888 (1) Å; Cg3⋯Cg3i = 3.758 (1) Å; symmetry code: (i) 1 − x, −y, 1 − z; Cg2 and Cg3 are the centroids of the (N2/C8–C11/C16) and (C11–C16) rings, respectively].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.15 2.9855 (17) 164
N1—H1B⋯O2ii 0.86 2.28 3.1355 (17) 175
O2—H2A⋯N2iii 0.85 (1) 1.79 (1) 2.6364 (16) 174 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and C-bound H atoms have been omitted for clarity.

Synthesis and crystallization

Quinoline (1.29 g)and 4-amino­benzoic acid (1.37 g) in an equimolar ratio (1:1) were mixed in acetone and the mixture was stirred for 4 h. The solution was filtered and kept at room temperature. Colourless blocks were obtained by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H7N·C7H7NO2
Mr 266.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 7.6842 (7), 8.1013 (6), 22.0669 (16)
β (°) 90.893 (3)
V3) 1373.54 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.24 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.980, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 16394, 3616, 2427
Rint 0.025
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.03
No. of reflections 3616
No. of parameters 184
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

Quinoline (1.29 g)and 4-aminobenzoic acid (1.37 g) in an equimolar ratio (1:1) were mixed in acetone and the mixture was stirred for 4 h. The solution was filtered and kept at room temperature. Colourless blocks were obtained by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Quinoline derivatives are known to exhibit pharmacological activities such as anti-viral (Font et al., 1997) and anti-inflammatory (Sloboda et al., 1991). As part of our studies in this area, we now describe the synthesis and structure of the title adduct (Fig. 1), which contains one quinoline and one 4-aminobenzoic acid molecule in the asymmetric unit. The quinoline ring system (N1/C8–C16) is almost planar with a maximum deviation of 0.0133 (13) Å for atom N1. In the 4-aminobenzoic acid molecule, the carboxyl group is twisted at an angle of 5.42 (8) Å to the attached benzene ring. The geometric parameters are comparable with similar structures (Divya Bharathi et al., 2015; Li & Chai, 2007; Song et al., 2011).

In the crystal, the 4-aminobenzoic acid molecules are linked by N—H···O hydrogen bonds (Table 1), forming zigzag sheets propagating in the (001) plane (Fig. 2). The quinoline molecule accepts an O—H···N hydrogen bond (Table 1) from the 4-aminobenzoic acid molecule, and lies pendant to the (001) sheets (Fig. 2). The crystal structure is also influenced by weak ππ interactions [Cg3···Cg2i = 3.888 (1) Å; Cg3···Cg3i = 3.758 (1) Å; symmetry code: (i) 1 - x, -y, 1 - z; Cg2 and Cg3 are the centroids of the (N2/C8–C11/C16) and (C11–C16) rings, respectively].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.
4-Aminobenzoic acid–quinoline (1/1) top
Crystal data top
C9H7N·C7H7NO2F(000) = 560
Mr = 266.29Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4104 reflections
a = 7.6842 (7) Åθ = 2.6–25.6°
b = 8.1013 (6) ŵ = 0.09 mm1
c = 22.0669 (16) ÅT = 295 K
β = 90.893 (3)°Block, colourless
V = 1373.54 (19) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3616 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scanθmax = 28.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.980, Tmax = 0.985k = 1011
16394 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.3668P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C9H7N·C7H7NO2V = 1373.54 (19) Å3
Mr = 266.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6842 (7) ŵ = 0.09 mm1
b = 8.1013 (6) ÅT = 295 K
c = 22.0669 (16) Å0.24 × 0.20 × 0.18 mm
β = 90.893 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2427 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.025
16394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
3616 reflectionsΔρmin = 0.19 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24265 (18)0.44594 (17)0.31360 (6)0.0376 (3)
C20.09036 (18)0.41448 (19)0.28042 (6)0.0426 (3)
H20.01520.45380.29460.051*
C30.09303 (18)0.32657 (19)0.22717 (6)0.0442 (3)
H30.01020.30830.20570.053*
C40.24935 (19)0.26426 (18)0.20497 (6)0.0402 (3)
C50.40228 (18)0.29667 (18)0.23807 (6)0.0429 (3)
H50.50800.25710.22410.052*
C60.39846 (18)0.38607 (17)0.29087 (6)0.0408 (3)
H60.50200.40710.31190.049*
C70.23461 (18)0.53452 (18)0.37202 (6)0.0404 (3)
C80.7831 (2)0.3218 (2)0.46278 (8)0.0548 (4)
H80.87250.38510.47960.066*
C90.8106 (2)0.2457 (2)0.40693 (8)0.0594 (4)
H90.91570.25910.38720.071*
C100.6829 (2)0.1524 (2)0.38192 (7)0.0563 (4)
H100.70000.09990.34500.068*
C110.5234 (2)0.13473 (18)0.41201 (6)0.0445 (3)
C120.3816 (3)0.0413 (2)0.38928 (8)0.0615 (5)
H120.39130.01370.35250.074*
C130.2319 (3)0.0311 (2)0.42048 (9)0.0675 (5)
H130.13980.03160.40520.081*
C140.2149 (2)0.1137 (2)0.47528 (8)0.0610 (5)
H140.11080.10650.49610.073*
C150.3476 (2)0.2045 (2)0.49891 (7)0.0508 (4)
H150.33430.25860.53570.061*
C160.50510 (19)0.21711 (17)0.46791 (6)0.0397 (3)
N10.25232 (17)0.17624 (18)0.15233 (6)0.0558 (4)
H1A0.15730.15840.13230.067*
H1B0.34930.13860.13910.067*
N20.63746 (16)0.30866 (15)0.49269 (5)0.0464 (3)
O10.09822 (14)0.57684 (16)0.39513 (5)0.0575 (3)
O20.38721 (13)0.56351 (14)0.39791 (5)0.0494 (3)
H2A0.373 (2)0.601 (2)0.4336 (5)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (7)0.0386 (7)0.0381 (7)0.0014 (6)0.0026 (6)0.0029 (6)
C20.0330 (7)0.0511 (9)0.0437 (7)0.0013 (6)0.0006 (6)0.0017 (6)
C30.0341 (7)0.0558 (9)0.0424 (7)0.0015 (6)0.0047 (6)0.0025 (7)
C40.0412 (8)0.0427 (8)0.0367 (7)0.0022 (6)0.0017 (6)0.0037 (6)
C50.0345 (7)0.0460 (8)0.0484 (8)0.0029 (6)0.0038 (6)0.0019 (6)
C60.0339 (7)0.0420 (8)0.0462 (8)0.0017 (6)0.0056 (6)0.0036 (6)
C70.0367 (8)0.0440 (8)0.0405 (7)0.0037 (6)0.0042 (6)0.0032 (6)
C80.0449 (9)0.0584 (10)0.0608 (10)0.0089 (8)0.0043 (7)0.0052 (8)
C90.0484 (10)0.0710 (11)0.0592 (10)0.0040 (9)0.0111 (8)0.0126 (9)
C100.0646 (11)0.0587 (10)0.0458 (8)0.0125 (9)0.0051 (8)0.0006 (7)
C110.0510 (9)0.0401 (8)0.0421 (7)0.0041 (7)0.0054 (6)0.0027 (6)
C120.0739 (13)0.0531 (10)0.0569 (10)0.0033 (9)0.0150 (9)0.0105 (8)
C130.0606 (12)0.0613 (11)0.0799 (12)0.0163 (9)0.0195 (10)0.0010 (10)
C140.0435 (9)0.0697 (11)0.0698 (11)0.0090 (8)0.0025 (8)0.0098 (9)
C150.0462 (9)0.0590 (10)0.0472 (8)0.0025 (8)0.0000 (7)0.0002 (7)
C160.0406 (8)0.0388 (7)0.0394 (7)0.0010 (6)0.0060 (6)0.0045 (6)
N10.0437 (7)0.0776 (10)0.0461 (7)0.0009 (7)0.0035 (6)0.0152 (7)
N20.0425 (7)0.0499 (7)0.0465 (7)0.0051 (6)0.0051 (5)0.0010 (6)
O10.0384 (6)0.0846 (9)0.0494 (6)0.0027 (6)0.0029 (5)0.0158 (6)
O20.0383 (6)0.0654 (7)0.0444 (6)0.0057 (5)0.0045 (5)0.0092 (5)
Geometric parameters (Å, º) top
C1—C61.3924 (19)C9—H90.9300
C1—C21.3941 (19)C10—C111.410 (2)
C1—C71.4777 (19)C10—H100.9300
C2—C31.3745 (19)C11—C161.412 (2)
C2—H20.9300C11—C121.413 (2)
C3—C41.3986 (19)C12—C131.352 (3)
C3—H30.9300C12—H120.9300
C4—N11.3635 (18)C13—C141.390 (3)
C4—C51.3987 (19)C13—H130.9300
C5—C61.373 (2)C14—C151.355 (2)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—C161.403 (2)
C7—O11.2217 (17)C15—H150.9300
C7—O21.3174 (17)C16—N21.3660 (18)
C8—N21.3122 (19)N1—H1A0.8600
C8—C91.397 (2)N1—H1B0.8600
C8—H80.9300O2—H2A0.852 (9)
C9—C101.350 (2)
C6—C1—C2117.81 (13)C9—C10—C11119.72 (15)
C6—C1—C7122.09 (13)C9—C10—H10120.1
C2—C1—C7120.05 (13)C11—C10—H10120.1
C3—C2—C1121.34 (13)C10—C11—C16117.59 (14)
C3—C2—H2119.3C10—C11—C12123.95 (15)
C1—C2—H2119.3C16—C11—C12118.47 (15)
C2—C3—C4120.72 (13)C13—C12—C11120.66 (16)
C2—C3—H3119.6C13—C12—H12119.7
C4—C3—H3119.6C11—C12—H12119.7
N1—C4—C3120.86 (13)C12—C13—C14120.35 (16)
N1—C4—C5121.19 (13)C12—C13—H13119.8
C3—C4—C5117.94 (13)C14—C13—H13119.8
C6—C5—C4120.89 (13)C15—C14—C13121.07 (17)
C6—C5—H5119.6C15—C14—H14119.5
C4—C5—H5119.6C13—C14—H14119.5
C5—C6—C1121.29 (13)C14—C15—C16120.09 (15)
C5—C6—H6119.4C14—C15—H15120.0
C1—C6—H6119.4C16—C15—H15120.0
O1—C7—O2122.18 (13)N2—C16—C15119.13 (13)
O1—C7—C1123.24 (13)N2—C16—C11121.51 (14)
O2—C7—C1114.58 (12)C15—C16—C11119.36 (14)
N2—C8—C9123.36 (16)C4—N1—H1A120.0
N2—C8—H8118.3C4—N1—H1B120.0
C9—C8—H8118.3H1A—N1—H1B120.0
C10—C9—C8119.26 (16)C8—N2—C16118.56 (13)
C10—C9—H9120.4C7—O2—H2A109.7 (13)
C8—C9—H9120.4
C6—C1—C2—C30.3 (2)C9—C10—C11—C160.0 (2)
C7—C1—C2—C3177.33 (13)C9—C10—C11—C12179.34 (16)
C1—C2—C3—C40.7 (2)C10—C11—C12—C13179.45 (16)
C2—C3—C4—N1179.65 (14)C16—C11—C12—C130.1 (2)
C2—C3—C4—C51.1 (2)C11—C12—C13—C140.5 (3)
N1—C4—C5—C6179.67 (14)C12—C13—C14—C150.6 (3)
C3—C4—C5—C60.4 (2)C13—C14—C15—C160.3 (3)
C4—C5—C6—C10.7 (2)C14—C15—C16—N2179.68 (15)
C2—C1—C6—C51.0 (2)C14—C15—C16—C110.2 (2)
C7—C1—C6—C5176.59 (13)C10—C11—C16—N21.0 (2)
C6—C1—C7—O1174.12 (14)C12—C11—C16—N2179.57 (14)
C2—C1—C7—O13.5 (2)C10—C11—C16—C15179.15 (14)
C6—C1—C7—O25.29 (19)C12—C11—C16—C150.3 (2)
C2—C1—C7—O2177.13 (13)C9—C8—N2—C160.6 (2)
N2—C8—C9—C100.5 (3)C15—C16—N2—C8178.85 (14)
C8—C9—C10—C110.8 (3)C11—C16—N2—C81.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.152.9855 (17)164
N1—H1B···O2ii0.862.283.1355 (17)175
O2—H2A···N2iii0.85 (1)1.79 (1)2.6364 (16)174 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.152.9855 (17)164
N1—H1B···O2ii0.862.283.1355 (17)175
O2—H2A···N2iii0.852 (9)1.787 (10)2.6364 (16)174.2 (19)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H7N·C7H7NO2
Mr266.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.6842 (7), 8.1013 (6), 22.0669 (16)
β (°) 90.893 (3)
V3)1373.54 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
16394, 3616, 2427
Rint0.025
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.03
No. of reflections3616
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDivya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G. & Anbalagan, G. (2015). Acta Cryst. E71, o261–o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFont, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Discov. 14, 259–272.  CAS PubMed Google Scholar
First citationLi, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857–o2859.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.  PubMed CAS Web of Science Google Scholar
First citationSong, X.-M., Li, J.-J., Liu, X.-H., Ren, C.-X. & Shang, S.-M. (2011). Acta Cryst. E67, o179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds