organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1S,3R,8R,9S,10R)-2,2-Di­chloro-3,7,7,10-tetra­methyltri­cyclo­[6.4.0.01,3]dodecan-9-yl 4-methyl­benzene-1-sulfonate

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta BP 1014 Rabat, Morocco
*Correspondence e-mail: benharref@uca.ma

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 February 2016; accepted 12 March 2016; online 5 April 2016)

The title compound, C23H31Cl2O3S, was synthesized in three steps from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from essential oil of the Atlas cedar (Cedrus atlantica). The fused six- and seven-membered rings have boat conformations: the dihedral angle between the mean planes of the rings is 88.03 (12)%. The absolute structure was established unambiguously from anomalous dispersion effects. There are no directional inter­actions in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The Atlas cedar (Cedrus atlantica), native to Morocco, is the source of essential oils made up mainly (75%) of bicyclic sesquiterpene hydro­carbons, among which is found the compound β-himachalene (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products with potential biological properties (El Jamili et al., 2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]; Zaki et al., 2014[Zaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526.]; Benharref et al., 2015[Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284-o285.]). For example, these compounds have been tested for their potential anti-fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927-932.]).

The structure of the title compound was determined as part of our ongoing studies in this area. The mol­ecule is built up from two fused six- and seven-membered rings which is linked to a three-membered ring. An additional toluensulfonic acid group system is attached to the six-membered ring (Fig. 1[link]). The six- and seven- membered rings display boat conformations, as indicated by the total puckering amplitude QT = 0.730 (2) Å and spherical polar angle θ = 88.03 (14)° with φ = −170.60 (14)° for the six-membered ring and QT = 1.134 (2) Å, θ = 88.22 (10), φ2 = −51.43 (10) and φ3 = −62.95 (3)° for the seven-membered ring. Owing to the presence of Cl and S atoms, the absolute configuration was confirmed as C1(1S, C3(R), C8(R), C9(S)and C10(R). No directional inter­actions beyond typical van der Waals contacts could be identified in the crystal.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Synthesis and crystallization

Diborane was prepared by addition at 0°C of 2.5 g (17 mmol) of boron trifluoride etherate in 0.5 g (12.6 mmol) of sodium borohydride in 30 ml of diglyme. The diborane formed was driven by a stream of dry nitro­gen in 2 g (7 mmol) of (1S,3R,8R)-2,2-di­chloro-3,7,7,10-tetra­methyl­tri­cyclo[6.4.0.01,3]dodec-9-ene (El Jamili et al., 2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]) dissolved in 20 ml of tetra­hydro­furan at 273 K. This took about 4 h, then 2 ml of sodium hydroxide 3 N was added carefully between 263 K and 273 K in 15 minutes, and then 2 ml of 30% hydrogen peroxide in the vicinity of 298 K. The reaction mixture was then extracted with diethyl ether. The organic phase was washed to neutrality and the solvent was evapor­ated under vacuum. The residue obtained was chromatographed on a column of silica gel with penta­ne–ethyl acetate (95/5), which allowed the isolation of pure (1S,3R,8R,9S,10R)-2,2-di­chloro-3,7,7,10-tetra­methyl­tosyl­tricyclo[6.4.0.01,3]dodecan-9-ol. 1 g (3.3 mmol) of the latter compound was dissolved in pyridine (10 ml). The solution was cooled to 10°C and tosyl chloride (0.6 g, 3.3 mmol) in pyridine (4 ml) was added dropwise. The reaction mixture was stirred overnight and treated with 10 ml of water and extracted with dichlormethane. The organic phase was evaporated and the residue obtained was chromatographed on a column of silica gel with hexane and ethyl acetate (97/3) as eluent to give the sesquiterpene tosyl­ate, with a yield of 87% (1.3 g, 2.8 mmol). The title compound was recrystallized from its ethyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C23H32Cl2O3S
Mr 459.44
Crystal system, space group Orthorhombic, P212121
Temperature (K) 298
a, b, c (Å) 9.410 (5), 9.667 (5), 25.285 (5)
V3) 2300.1 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.30 × 0.26 × 0.18
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.658, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 23145, 4695, 4050
Rint 0.042
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 0.97
No. of reflections 4695
No. of parameters 267
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.20
Absolute structure Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1527 Friedel pairs
Absolute structure parameter −0.02 (2)
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

Diborane was prepared by addition at 0°C of 2.5 g (17 mmol) of boron trifluoride etherate in 0.5 g (12.6 mmol) of sodium borohydride in 30 ml of diglyme. The diborane formed was driven by a stream of dry nitrogen in 2 g (7 mmol) of (1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-ene (El Jamili et al., 2002) dissolved in 20 ml of tetrahydrofuran at 273 K. This took about 4 h, then 2 ml of sodium hydroxide 3 N was added carefully between 263 K and 273 K in 15 minutes, and then 2 ml of 30% hydrogen peroxide in the vicinity of 298 K. The reaction mixture was then extracted with diethyl ether. The organic phase was washed to neutrality and the solvent was evaporated under vacuum. The residue obtained was chromatographed on a column of silica gel with pentane–ethyl acetate (95/5), which allowed the isolation of pure (1S,3R,8R,9S,10R)-2,2-dichloro-3,7,7,10-tetramethyltosyltricyclo[6.4.0.01,3]dodecan-9-ol. 1 g (3.3 mmol) of the latter compound was dissolved in pyridine (10 ml). The solution was cooled to 10°C and tosyl chloride (0.6 g, 3.3 mmol) in pyridine (4 ml) was added dropwise. The reaction mixture was stirred overnight and treated with 10 ml of water and extracted with dichlormethane. The organic phase was evaporated and the residue obtained was chromatographed on a column of silica gel with hexane and ethyl acetate (97/3) as eluent to give the sesquiterpene tosylate, with a yield of 87% (1.3 g, 2.8 mmol). The title compound was recrystallized from its ethyl acetate solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

The Atlas cedar (Cedrus atlantica), native to Morocco, is the source of essential oils made up mainly (75%) of bicyclic sesquiterpene hydrocarbons, among which is found the compound β-himachalene (El Haib et al., 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products with potential biological properties (El Jamili et al., 2002; Zaki et al., 2014; Benharref et al., 2015). For example, these compounds have been tested for their potential anti-fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004).

The structure of the title compound was determined as part of our ongoing studies in this area. The molecule is built up from two fused six- and seven-membered rings which is linked to three-membered ring. An additional toluensulfonic acid group system is also attached to the six-membered ring (Fig. 1). The six- and seven- membered rings display boat conformations, as indicated by the total puckering amplitude QT = 0.730 (2) Å and spherical polar angle θ = 88.03 (14)° with φ = -170.60 (14)° for the six-membered ring and QT = 1.134 (2) Å, θ = 88.22 (10), φ2 = -51.43 (10) and φ3 = -62.95 (3)°. Owing to the presence of Cl and S atoms, the absolute configuration was confirmed as C1(1S, C3(R), C8(R), C9(S)and C10(R). No directional interactions beyond typical van der Waals contacts could be identified in the crystal.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S,3R,8R,9S,10R)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecan-9-yl 4-methylbenzene-1-sulfonate top
Crystal data top
C23H32Cl2O3SDx = 1.327 Mg m3
Mr = 459.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4695 reflections
a = 9.410 (5) Åθ = 2.3–26.4°
b = 9.667 (5) ŵ = 0.40 mm1
c = 25.285 (5) ÅT = 298 K
V = 2300.1 (18) Å3Prism, colourless
Z = 40.30 × 0.26 × 0.18 mm
F(000) = 976
Data collection top
Bruker X8 APEX
diffractometer
4695 independent reflections
Radiation source: fine-focus sealed tube4050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1011
Tmin = 0.658, Tmax = 0.747k = 1211
23145 measured reflectionsl = 3131
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.24 e Å3
4695 reflectionsΔρmin = 0.20 e Å3
267 parametersAbsolute structure: Flack & Bernardinelli (2000), 1527 Friedel pairs
0 restraintsAbsolute structure parameter: 0.02 (2)
Crystal data top
C23H32Cl2O3SV = 2300.1 (18) Å3
Mr = 459.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.410 (5) ŵ = 0.40 mm1
b = 9.667 (5) ÅT = 298 K
c = 25.285 (5) Å0.30 × 0.26 × 0.18 mm
Data collection top
Bruker X8 APEX
diffractometer
4695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4050 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.747Rint = 0.042
23145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.24 e Å3
S = 0.97Δρmin = 0.20 e Å3
4695 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1527 Friedel pairs
267 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.30361 (7)1.09730 (7)0.32932 (3)0.04508 (18)
Cl20.09152 (7)1.01208 (7)0.49466 (2)0.04986 (19)
Cl10.13706 (9)1.18643 (9)0.52767 (3)0.0642 (2)
O30.18685 (16)1.12166 (18)0.37229 (6)0.0404 (4)
O20.2495 (2)1.1256 (2)0.27804 (8)0.0676 (7)
O10.4254 (2)1.1701 (2)0.34718 (10)0.0734 (7)
C170.3410 (2)0.9205 (3)0.33419 (9)0.0352 (5)
C90.0330 (2)1.1402 (3)0.35953 (9)0.0361 (6)
H90.02161.14480.32100.043*
C70.1280 (3)0.9254 (3)0.33748 (9)0.0413 (6)
C10.1474 (2)1.0598 (3)0.42624 (9)0.0360 (6)
C200.4280 (3)0.6460 (3)0.34090 (10)0.0432 (6)
C30.1941 (3)0.9480 (3)0.46591 (10)0.0444 (6)
C80.0504 (2)1.0149 (3)0.38083 (8)0.0331 (5)
H80.02070.95360.39670.040*
C60.2455 (3)0.8346 (3)0.36231 (11)0.0554 (8)
H6A0.31900.89630.37530.066*
H6B0.28740.78030.33410.066*
C190.3883 (3)0.7190 (3)0.38560 (10)0.0450 (6)
H190.38990.67490.41830.054*
C220.3759 (3)0.8483 (3)0.28896 (9)0.0463 (7)
H220.36960.89090.25610.056*
C210.4200 (3)0.7126 (3)0.29281 (10)0.0474 (7)
H210.44510.66500.26220.057*
C180.3464 (3)0.8555 (3)0.38292 (9)0.0419 (6)
H180.32200.90340.41350.050*
C20.0890 (3)1.0568 (3)0.48186 (9)0.0416 (6)
C120.2463 (3)1.1782 (3)0.41175 (11)0.0497 (7)
H12A0.28721.21660.44370.060*
H12B0.32341.14300.39010.060*
C150.0172 (3)0.8332 (3)0.31048 (11)0.0590 (8)
H15A0.06380.77140.28640.089*
H15B0.03280.78060.33680.089*
H15C0.04900.89000.29140.089*
C40.1418 (3)0.8026 (3)0.45579 (11)0.0528 (7)
H4A0.16280.74580.48640.063*
H4B0.03940.80460.45140.063*
C100.0069 (3)1.2782 (3)0.38320 (11)0.0448 (6)
H100.02261.27790.42040.054*
C50.2087 (4)0.7361 (3)0.40679 (12)0.0606 (8)
H5A0.14360.66690.39320.073*
H5B0.29480.68850.41750.073*
C110.1684 (3)1.2921 (3)0.38159 (12)0.0584 (8)
H11A0.19931.29080.34500.070*
H11B0.19481.38100.39640.070*
C230.4820 (4)0.5012 (3)0.34478 (13)0.0660 (8)
H23A0.58370.50130.34160.099*
H23B0.44160.44650.31690.099*
H23C0.45560.46270.37840.099*
C160.2018 (3)1.0110 (4)0.29404 (11)0.0631 (8)
H16A0.27161.07050.30980.095*
H16B0.24750.94980.26940.095*
H16C0.13251.06590.27580.095*
C130.0668 (4)1.3991 (3)0.35583 (14)0.0702 (9)
H13A0.03571.40440.31970.105*
H13B0.16791.38540.35680.105*
H13C0.04341.48360.37380.105*
C140.3432 (3)0.9518 (4)0.48932 (12)0.0682 (9)
H14A0.37331.04620.49310.102*
H14B0.34280.90780.52330.102*
H14C0.40760.90390.46620.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0336 (3)0.0400 (4)0.0617 (4)0.0032 (3)0.0093 (3)0.0097 (3)
Cl20.0466 (4)0.0585 (4)0.0445 (3)0.0001 (3)0.0142 (3)0.0013 (3)
Cl10.0760 (5)0.0677 (5)0.0489 (4)0.0035 (4)0.0103 (3)0.0171 (3)
O30.0280 (8)0.0453 (11)0.0480 (9)0.0045 (8)0.0025 (7)0.0001 (8)
O20.0667 (14)0.0767 (16)0.0595 (12)0.0271 (12)0.0190 (10)0.0305 (12)
O10.0382 (11)0.0457 (13)0.136 (2)0.0081 (10)0.0087 (12)0.0020 (13)
C170.0277 (12)0.0373 (14)0.0407 (13)0.0008 (10)0.0015 (9)0.0006 (11)
C90.0281 (12)0.0447 (16)0.0355 (12)0.0063 (11)0.0033 (9)0.0020 (11)
C70.0332 (13)0.0497 (17)0.0408 (13)0.0021 (12)0.0090 (11)0.0065 (12)
C10.0288 (12)0.0407 (15)0.0384 (12)0.0015 (11)0.0024 (10)0.0007 (10)
C200.0372 (14)0.0379 (14)0.0546 (15)0.0008 (12)0.0044 (11)0.0060 (12)
C30.0401 (14)0.0509 (16)0.0422 (13)0.0050 (13)0.0015 (11)0.0010 (12)
C80.0272 (12)0.0357 (14)0.0365 (11)0.0055 (10)0.0067 (9)0.0017 (10)
C60.0416 (15)0.069 (2)0.0560 (16)0.0130 (15)0.0076 (12)0.0125 (16)
C190.0496 (16)0.0430 (16)0.0424 (13)0.0051 (13)0.0064 (12)0.0039 (11)
C220.0462 (16)0.0580 (19)0.0347 (12)0.0003 (14)0.0031 (11)0.0024 (12)
C210.0446 (15)0.0531 (18)0.0444 (14)0.0006 (14)0.0026 (12)0.0163 (13)
C180.0443 (14)0.0465 (16)0.0349 (12)0.0080 (13)0.0053 (10)0.0051 (11)
C20.0412 (14)0.0460 (15)0.0375 (12)0.0042 (12)0.0017 (11)0.0025 (11)
C120.0356 (14)0.0618 (19)0.0516 (15)0.0159 (14)0.0021 (11)0.0013 (14)
C150.0505 (17)0.068 (2)0.0589 (17)0.0063 (16)0.0041 (14)0.0267 (16)
C40.0553 (17)0.0485 (18)0.0547 (15)0.0102 (14)0.0010 (14)0.0124 (13)
C100.0448 (15)0.0375 (15)0.0519 (15)0.0108 (12)0.0048 (12)0.0042 (12)
C50.0636 (19)0.0540 (19)0.0643 (18)0.0226 (16)0.0013 (16)0.0056 (15)
C110.0517 (18)0.0526 (18)0.0710 (18)0.0258 (15)0.0033 (14)0.0116 (15)
C230.076 (2)0.0416 (18)0.081 (2)0.0097 (16)0.0080 (17)0.0073 (15)
C160.0575 (17)0.086 (2)0.0461 (14)0.0003 (19)0.0169 (13)0.0009 (16)
C130.076 (2)0.0390 (17)0.096 (2)0.0072 (17)0.0169 (18)0.0115 (17)
C140.0506 (18)0.090 (3)0.0639 (18)0.0135 (18)0.0151 (14)0.0001 (18)
Geometric parameters (Å, º) top
S—O11.418 (2)C22—C211.379 (4)
S—O21.420 (2)C22—H220.9300
S—O31.5631 (18)C21—H210.9300
S—C171.750 (3)C18—H180.9300
Cl2—C21.782 (3)C12—C111.527 (4)
Cl1—C21.766 (3)C12—H12A0.9700
O3—C91.494 (3)C12—H12B0.9700
C17—C221.379 (3)C15—H15A0.9600
C17—C181.384 (3)C15—H15B0.9600
C9—C101.509 (4)C15—H15C0.9600
C9—C81.541 (3)C4—C51.531 (4)
C9—H90.9800C4—H4A0.9700
C7—C151.532 (4)C4—H4B0.9700
C7—C161.541 (4)C10—C131.526 (4)
C7—C61.544 (4)C10—C111.526 (4)
C7—C81.576 (3)C10—H100.9800
C1—C21.510 (3)C5—H5A0.9700
C1—C121.520 (4)C5—H5B0.9700
C1—C81.530 (3)C11—H11A0.9700
C1—C31.538 (4)C11—H11B0.9700
C20—C211.378 (4)C23—H23A0.9600
C20—C191.384 (4)C23—H23B0.9600
C20—C231.493 (4)C23—H23C0.9600
C3—C21.499 (4)C16—H16A0.9600
C3—C41.511 (4)C16—H16B0.9600
C3—C141.524 (4)C16—H16C0.9600
C8—H80.9800C13—H13A0.9600
C6—C51.514 (4)C13—H13B0.9600
C6—H6A0.9700C13—H13C0.9600
C6—H6B0.9700C14—H14A0.9600
C19—C181.379 (4)C14—H14B0.9600
C19—H190.9300C14—H14C0.9600
O1—S—O2119.02 (15)C3—C2—Cl2120.5 (2)
O1—S—O3105.77 (12)C1—C2—Cl2121.38 (17)
O2—S—O3110.71 (11)Cl1—C2—Cl2107.28 (13)
O1—S—C17107.45 (13)C1—C12—C11111.7 (2)
O2—S—C17108.93 (13)C1—C12—H12A109.3
O3—S—C17103.87 (11)C11—C12—H12A109.3
C9—O3—S123.30 (14)C1—C12—H12B109.3
C22—C17—C18120.0 (2)C11—C12—H12B109.3
C22—C17—S118.92 (19)H12A—C12—H12B107.9
C18—C17—S120.87 (19)C7—C15—H15A109.5
O3—C9—C10105.2 (2)C7—C15—H15B109.5
O3—C9—C8108.89 (18)H15A—C15—H15B109.5
C10—C9—C8115.4 (2)C7—C15—H15C109.5
O3—C9—H9109.1H15A—C15—H15C109.5
C10—C9—H9109.1H15B—C15—H15C109.5
C8—C9—H9109.1C3—C4—C5113.2 (3)
C15—C7—C16107.6 (2)C3—C4—H4A108.9
C15—C7—C6109.8 (2)C5—C4—H4A108.9
C16—C7—C6105.8 (2)C3—C4—H4B108.9
C15—C7—C8108.25 (19)C5—C4—H4B108.9
C16—C7—C8114.2 (2)H4A—C4—H4B107.8
C6—C7—C8111.2 (2)C9—C10—C13112.6 (2)
C2—C1—C12117.5 (2)C9—C10—C11108.4 (2)
C2—C1—C8118.4 (2)C13—C10—C11111.9 (2)
C12—C1—C8113.5 (2)C9—C10—H10107.9
C2—C1—C358.89 (16)C13—C10—H10107.9
C12—C1—C3120.7 (2)C11—C10—H10107.9
C8—C1—C3117.4 (2)C6—C5—C4115.5 (3)
C21—C20—C19117.9 (2)C6—C5—H5A108.4
C21—C20—C23121.0 (2)C4—C5—H5A108.4
C19—C20—C23121.1 (3)C6—C5—H5B108.4
C2—C3—C4118.9 (2)C4—C5—H5B108.4
C2—C3—C14119.1 (2)H5A—C5—H5B107.5
C4—C3—C14112.9 (3)C10—C11—C12113.6 (2)
C2—C3—C159.63 (16)C10—C11—H11A108.8
C4—C3—C1116.7 (2)C12—C11—H11A108.8
C14—C3—C1120.0 (3)C10—C11—H11B108.8
C1—C8—C9110.1 (2)C12—C11—H11B108.8
C1—C8—C7113.63 (19)H11A—C11—H11B107.7
C9—C8—C7115.13 (19)C20—C23—H23A109.5
C1—C8—H8105.7C20—C23—H23B109.5
C9—C8—H8105.7H23A—C23—H23B109.5
C7—C8—H8105.7C20—C23—H23C109.5
C5—C6—C7119.7 (2)H23A—C23—H23C109.5
C5—C6—H6A107.4H23B—C23—H23C109.5
C7—C6—H6A107.4C7—C16—H16A109.5
C5—C6—H6B107.4C7—C16—H16B109.5
C7—C6—H6B107.4H16A—C16—H16B109.5
H6A—C6—H6B106.9C7—C16—H16C109.5
C18—C19—C20121.7 (2)H16A—C16—H16C109.5
C18—C19—H19119.2H16B—C16—H16C109.5
C20—C19—H19119.2C10—C13—H13A109.5
C17—C22—C21119.6 (2)C10—C13—H13B109.5
C17—C22—H22120.2H13A—C13—H13B109.5
C21—C22—H22120.2C10—C13—H13C109.5
C20—C21—C22121.5 (2)H13A—C13—H13C109.5
C20—C21—H21119.2H13B—C13—H13C109.5
C22—C21—H21119.2C3—C14—H14A109.5
C19—C18—C17119.2 (2)C3—C14—H14B109.5
C19—C18—H18120.4H14A—C14—H14B109.5
C17—C18—H18120.4C3—C14—H14C109.5
C3—C2—C161.48 (16)H14A—C14—H14C109.5
C3—C2—Cl1120.36 (19)H14B—C14—H14C109.5
C1—C2—Cl1120.26 (18)

Experimental details

Crystal data
Chemical formulaC23H32Cl2O3S
Mr459.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.410 (5), 9.667 (5), 25.285 (5)
V3)2300.1 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.26 × 0.18
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.658, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
23145, 4695, 4050
Rint0.042
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 0.97
No. of reflections4695
No. of parameters267
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20
Absolute structureFlack & Bernardinelli (2000), 1527 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o284–o285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., Daran, J.-C. & Berraho, M. (2014). Acta Cryst. E70, o526.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds