organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Benzyl-5-bromo­indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée–Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France, cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Battouta, Rabat , Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kharbachy26@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 31 March 2016; accepted 4 April 2016; online 8 April 2016)

In the title compound, C15H10BrNO2, the indoline ring system, the two ketone O atoms and the Br atom lie in a common plane, with the largest deviation from the mean plane being 0.073 (1) Å for the Br atom. The fused-ring system is nearly perpendicular to the benzyl ring, as indicated by the dihedral angle between them of 74.58 (10)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and by ππ inter­actions [inter-centroid distance = 3.625 (2) Å], forming a two-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatins and analogous compounds have been the focus of much research due to their anti­cancer, anti-oxygenic, anti­convulsant, anti­bacterial and sedative activities (Sridhar et al., 2001a[Sridhar, S. K., Saravanan, M. & Ramesh, A. (2001a). Eur. J. Med. Chem. 36, 615-625.],b[Sridhar, S. K. & Sreenivasulu, M. (2001b). Indian Drugs, 38, 531-534.]; Sarangapani et al., 1994[Sarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257-260.]; Verma et al., 2004[Verma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]; Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25-31.]; Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]). As a continuation of Qachchachi's research work devoted to the development of isatin (Qachchachi et al., 2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.], 2014a[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o361-o362.],b[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o588.]), we report in this paper the synthesis and crystal structure of 1-benzyl-5-bromo­indoline-2,3-dione.

The title compound (Fig. 1[link]) is built up from two fused five- and six-membered rings linked to two ketone atoms, a bromine atom and a benzyl group, as shown in Fig.1. The fused-ring system and the attached atoms lie in a common plane with a maximum deviation of 0.073 (1) Å for Br1. Moreover, the benzyl ring are nearly perpendicular to the indoline ring system, making a dihedral angle of 74.58 (10)°. The C10—C9—N1—C8 torsion angle is −77.3 (2) °.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1[link]) into chains running along the b axis. The chains are further connected by ππ inter­actions [inter-centroid distance = 3.625 (2) Å], forming layers in the ab plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.95 2.46 3.056 (2) 121
Symmetry code: (i) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecules linked by C—H⋯O hydrogen bonds and ππ inter­actions, forming a two-dimensional network.

Synthesis and crystallization

To a solution of 5-bromo­isatin (0.4 g, 1.76 mmol) dissolved in DMF (25 ml) was added potassium carbonate (0.6 g, 4.4 mmol), benzyl chloride (0.22 ml, 1.76 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol). The mixture was stirred for 48 h. After filtering, the reaction was monitored by thin layer chromatography. The title compound was obtained in 72% yield, m.p. = 427 K. The red crystals obtained were analysed by X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H10BrNO2
Mr 316.15
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 4.5205 (1), 13.4538 (3), 21.0436 (5)
V3) 1279.83 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.21
Crystal size (mm) 0.36 × 0.32 × 0.21
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.649, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40933, 4484, 4045
Rint 0.038
(sin θ/λ)max−1) 0.755
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.06
No. of reflections 4484
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.31
Absolute structure Flack x determined using 1538 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.111 (2)
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Comment top

Isatin derivatives have formed the nucleus of many-faceted research activities owing to the multitude of potential applications in clinical and medicinal aspects. They opened up a vista of promising prospects in synthetic organic chemistry owing to their biological and pharmacological properties. Isatins and many analogous compounds have formed a prospective avenue of research surrounding their anticancer, antioxygenic, anticonvulsant, antibacterial properties, and sedative activities (Sridhar et al., 2001a; 2001b Sarangapani et al., 1994; Varma et al., 2004; Pandeya et al., 1999; Aboul-Fadl et al., 2010). As a continuation of Qachchachi research work devoted to development of isatin (Qachchachi et al., 2013, 2014a, 2014b), we report in this paper the synthesis of 1-benzyl-5-bromoindoline-2,3-dione (Sheme 1).

The title compound is built up from two fused five and six-membered rings linked to two ketone atoms, brome atom and to a benzyl group as shown in Fig.1. The fused ring system and the attached atoms lie in a common plane with the maximum deviation of 0.073 (1) Å for Br1. Moreover, the mean planes through the phenyl ring is more or less perpendicular to the indoline ring system as indicated by the torsion angle of C10—C9—N1—C8 = -77.3 (2) °.

In the crystal, molecules are linked by weak C—H···O hydrogen bonds to chains running along the b axis. The chains are further connected by ππ interactions [inter-centroid distance = 3.625 (2)Å], forming a two-dimensional layers in the ab plane (Fig. 2).

Experimental top

To a solution of 5-bromoisatin (0.4 g, 1.76 mmol) dissolved in DMF (25 ml) was added potassium carbonate (0.6 g, 4.4 mmol), benzyl chloride (0.22 ml, 1.76 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol). The mixture was stirred for 48 h. After filtering, the reaction was monitored by thin layer chromatography. The title compound was obtained in 72% yield, m.p. = 427 K. The red crystals obtained were analysed by X-ray diffraction.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Isatins and analogous compounds have been the focus of much research due to their anticancer, anti-oxygenic, anticonvulsant, antibacterial and sedative activities (Sridhar et al., 2001a,b; Sarangapani et al., 1994; Verma et al., 2004; Pandeya et al., 1999; Aboul-Fadl et al., 2010). As a continuation of Qachchachi's research work devoted to the development of isatin (Qachchachi et al., 2013, 2014a,b), we report in this paper the synthesis of 1-benzyl-5-bromoindoline-2,3-dione.

The title compound is built up from two fused five- and six-membered rings linked to two ketone atoms, a bromine atom and a benzyl group, as shown in Fig.1. The fused-ring system and the attached atoms lie in a common plane with a maximum deviation of 0.073 (1) Å for Br1. Moreover, the mean planes through the phenyl ring are nearly perpendicular to the indoline ring system, making a dihedral angle of 74.58 (10)°. The C10—C9—N1—C8 torsion angle is -77.3 (2) °.

In the crystal, molecules are linked by weak C—H···O hydrogen bonds (Table 1) into chains running along the b axis. The chains are further connected by ππ interactions [inter-centroid distance = 3.625 (2) Å], forming layers in the ab plane (Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Molecules linked by C—H···O hydrogen bonds and ππ interactions, forming a two-dimensional network.
1-Benzyl-5-bromoindoline-2,3-dione top
Crystal data top
C15H10BrNO2Dx = 1.641 Mg m3
Mr = 316.15Melting point: 427 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 4.5205 (1) ÅCell parameters from 4483 reflections
b = 13.4538 (3) Åθ = 1.8–32.4°
c = 21.0436 (5) ŵ = 3.21 mm1
V = 1279.83 (5) Å3T = 100 K
Z = 4Block, red
F(000) = 6320.36 × 0.32 × 0.21 mm
Data collection top
Bruker X8 APEX
diffractometer
4484 independent reflections
Radiation source: fine-focus sealed tube4045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 32.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.649, Tmax = 0.746k = 1919
40933 measured reflectionsl = 3131
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.1626P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.54 e Å3
4484 reflectionsΔρmin = 0.31 e Å3
172 parametersAbsolute structure: Flack x determined using 1538 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.111 (2)
Crystal data top
C15H10BrNO2V = 1279.83 (5) Å3
Mr = 316.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.5205 (1) ŵ = 3.21 mm1
b = 13.4538 (3) ÅT = 100 K
c = 21.0436 (5) Å0.36 × 0.32 × 0.21 mm
Data collection top
Bruker X8 APEX
diffractometer
4484 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4045 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.746Rint = 0.038
40933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.058Δρmax = 0.54 e Å3
S = 1.06Δρmin = 0.31 e Å3
4484 reflectionsAbsolute structure: Flack x determined using 1538 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
172 parametersAbsolute structure parameter: 0.111 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4855 (5)0.52077 (16)0.26022 (11)0.0228 (5)
C20.2947 (6)0.53887 (15)0.32114 (11)0.0240 (5)
C30.1280 (5)0.44646 (15)0.33040 (10)0.0188 (4)
C40.0679 (6)0.41672 (15)0.37752 (10)0.0215 (4)
H40.12170.45990.41130.026*
C50.1815 (5)0.32134 (16)0.37318 (9)0.0188 (4)
C60.1060 (5)0.25767 (15)0.32387 (10)0.0193 (4)
H60.18910.19280.32240.023*
C70.0907 (5)0.28774 (14)0.27636 (9)0.0179 (4)
H70.14280.24470.24240.022*
C80.2063 (5)0.38247 (14)0.28070 (10)0.0167 (4)
C90.5340 (5)0.38185 (15)0.18194 (10)0.0203 (4)
H9A0.71860.41650.16980.024*
H9B0.58370.31150.19060.024*
C100.3180 (5)0.38661 (16)0.12731 (10)0.0191 (4)
C110.1799 (5)0.30103 (15)0.10502 (10)0.0204 (4)
H110.22250.23870.12410.024*
C120.0198 (5)0.30618 (17)0.05502 (10)0.0243 (4)
H120.11590.24770.04050.029*
C130.0785 (6)0.39639 (19)0.02647 (11)0.0301 (5)
H130.21320.39970.00810.036*
C140.0587 (7)0.48221 (18)0.04813 (11)0.0314 (5)
H140.01760.54420.02840.038*
C150.2550 (6)0.47753 (18)0.09839 (11)0.0255 (5)
H150.34750.53650.11330.031*
Br10.44066 (5)0.27424 (2)0.43746 (2)0.02327 (6)
N10.4148 (4)0.42721 (12)0.23980 (8)0.0189 (3)
O10.6580 (5)0.57789 (13)0.23682 (9)0.0341 (4)
O20.2970 (5)0.61533 (13)0.35125 (9)0.0359 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (11)0.0170 (9)0.0281 (11)0.0025 (8)0.0062 (9)0.0024 (8)
C20.0264 (11)0.0164 (10)0.0291 (11)0.0002 (9)0.0055 (10)0.0018 (8)
C30.0215 (11)0.0137 (8)0.0211 (9)0.0023 (7)0.0044 (8)0.0027 (7)
C40.0232 (10)0.0203 (9)0.0211 (9)0.0044 (9)0.0029 (10)0.0037 (7)
C50.0165 (9)0.0227 (10)0.0172 (9)0.0007 (9)0.0012 (8)0.0017 (7)
C60.0195 (10)0.0161 (9)0.0223 (9)0.0030 (7)0.0026 (8)0.0003 (7)
C70.0198 (10)0.0143 (8)0.0197 (8)0.0010 (8)0.0009 (8)0.0017 (6)
C80.0159 (9)0.0150 (9)0.0193 (9)0.0011 (8)0.0037 (8)0.0005 (7)
C90.0167 (9)0.0206 (9)0.0235 (9)0.0015 (8)0.0009 (9)0.0012 (7)
C100.0159 (9)0.0221 (10)0.0193 (9)0.0017 (8)0.0032 (8)0.0023 (8)
C110.0191 (9)0.0207 (10)0.0214 (9)0.0018 (8)0.0034 (9)0.0007 (7)
C120.0225 (10)0.0291 (10)0.0214 (10)0.0021 (8)0.0004 (9)0.0028 (8)
C130.0294 (12)0.0394 (13)0.0216 (10)0.0062 (12)0.0026 (11)0.0036 (9)
C140.0376 (12)0.0279 (11)0.0287 (11)0.0056 (12)0.0018 (11)0.0101 (9)
C150.0272 (12)0.0223 (10)0.0269 (11)0.0017 (9)0.0018 (9)0.0041 (9)
Br10.02127 (10)0.03034 (11)0.01820 (9)0.00156 (9)0.00057 (9)0.00275 (8)
N10.0196 (9)0.0146 (7)0.0224 (8)0.0003 (7)0.0014 (8)0.0011 (6)
O10.0394 (10)0.0225 (8)0.0403 (10)0.0128 (8)0.0027 (9)0.0045 (7)
O20.0460 (12)0.0182 (8)0.0434 (11)0.0034 (8)0.0027 (10)0.0095 (7)
Geometric parameters (Å, º) top
C1—O11.201 (3)C9—N11.465 (3)
C1—N11.368 (3)C9—C101.510 (3)
C1—C21.564 (3)C9—H9A0.9900
C2—O21.208 (3)C9—H9B0.9900
C2—C31.467 (3)C10—C111.391 (3)
C3—C41.388 (3)C10—C151.396 (3)
C3—C81.400 (3)C11—C121.388 (3)
C4—C51.385 (3)C11—H110.9500
C4—H40.9500C12—C131.380 (3)
C5—C61.388 (3)C12—H120.9500
C5—Br11.898 (2)C13—C141.388 (4)
C6—C71.398 (3)C13—H130.9500
C6—H60.9500C14—C151.382 (3)
C7—C81.381 (3)C14—H140.9500
C7—H70.9500C15—H150.9500
C8—N11.411 (3)
O1—C1—N1127.7 (2)C10—C9—H9A109.2
O1—C1—C2126.5 (2)N1—C9—H9B109.2
N1—C1—C2105.78 (18)C10—C9—H9B109.2
O2—C2—C3131.0 (2)H9A—C9—H9B107.9
O2—C2—C1123.9 (2)C11—C10—C15119.1 (2)
C3—C2—C1105.08 (18)C11—C10—C9120.78 (19)
C4—C3—C8121.17 (19)C15—C10—C9120.1 (2)
C4—C3—C2131.8 (2)C12—C11—C10120.4 (2)
C8—C3—C2107.0 (2)C12—C11—H11119.8
C5—C4—C3117.15 (19)C10—C11—H11119.8
C5—C4—H4121.4C13—C12—C11119.9 (2)
C3—C4—H4121.4C13—C12—H12120.0
C4—C5—C6122.0 (2)C11—C12—H12120.0
C4—C5—Br1119.41 (16)C12—C13—C14120.2 (2)
C6—C5—Br1118.58 (16)C12—C13—H13119.9
C5—C6—C7120.82 (19)C14—C13—H13119.9
C5—C6—H6119.6C15—C14—C13120.0 (2)
C7—C6—H6119.6C15—C14—H14120.0
C8—C7—C6117.44 (19)C13—C14—H14120.0
C8—C7—H7121.3C14—C15—C10120.3 (2)
C6—C7—H7121.3C14—C15—H15119.8
C7—C8—C3121.4 (2)C10—C15—H15119.8
C7—C8—N1127.32 (19)C1—N1—C8110.91 (18)
C3—C8—N1111.23 (18)C1—N1—C9123.96 (19)
N1—C9—C10112.18 (18)C8—N1—C9125.09 (17)
N1—C9—H9A109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.463.056 (2)121
Symmetry code: (i) x1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.463.056 (2)120.9
Symmetry code: (i) x1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10BrNO2
Mr316.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.5205 (1), 13.4538 (3), 21.0436 (5)
V3)1279.83 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.21
Crystal size (mm)0.36 × 0.32 × 0.21
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.649, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
40933, 4484, 4045
Rint0.038
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.06
No. of reflections4484
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.31
Absolute structureFlack x determined using 1538 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.111 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25–31.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o361–o362.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o588.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationSarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257–260.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Saravanan, M. & Ramesh, A. (2001a). Eur. J. Med. Chem. 36, 615–625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSridhar, S. K. & Sreenivasulu, M. (2001b). Indian Drugs, 38, 531–534.  CAS Google Scholar
First citationVerma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds