organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′-(Hexane-1,6-di­yl)bis­­(indoline-2,3-dione)

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, and dLaboratoire d'Ingénierie des Matériaux et d'Environnement: Modélisation et Application (LIMEMA), Ibn Tofail University, Kénitra, Morocco
*Correspondence e-mail: hafid.zouihri@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 30 March 2016; accepted 31 March 2016; online 5 April 2016)

The mol­ecule of the title compound, C22H20N2O4, is situated on a crystallographic centre of symmetry. The two indoline-2,3-dione fragments are linked by a hexyl­ene group at each N atom. In the crystal, supra­molecular layers propagating in the ac plane are formed via C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin (1H-indole-2,3-dione) its derivatives have aroused great attention in recent years due to their wide variety of biological activities, relevant to application as insecticides and fungicides and in a broad range of drug therapies, including anti­cancer drugs, anti­biotics and anti­depressants (Bhrigu et al., 2010[Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229-235.]; Malhotra et al., 2011[Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743-751.]; Da Silva et al., 2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]; Qachchachi et al., 2014[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o588.]; Ramachandran, 2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289-294.]; Smitha et al., 2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]).

As a continuation of our research work devoted to the development of substituted isatin derivatives, we report in this paper the synthesis of a new isatin derivative obtained by the reaction of 1,6-di­bromo­hexane with indoline-2,3-dione in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide under mild conditions to furnish the title compound.

The crystallographically centrosymmetric mol­ecule of the title compound contains two indoline-2,3-dione fragments being linked by the hexyl­ene group at the N atoms (Fig. 1[link]). The sum of valence angles around N1 is 359.9, indicating an sp2 hybridization of this atom.

[Figure 1]
Figure 1
The title mol­ecule with the atomic numbering scheme. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (a) −x + 1, −y + 1, −z + 1.]

In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds (Table 1[link]), forming supra­molecular layers propagating in the ac plane (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.88 (2) 2.52 (2) 3.316 (3) 150.6 (19)
C4—H4⋯O2ii 0.91 (3) 2.51 (3) 3.349 (3) 154 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View down the b axis of the packing structure of the title compound. The dashed lines indicate inter­molecular C—H⋯O inter­actions. [Symmetry codes: (ii) x + [{1\over 2}], y, −z + [{3\over 2}]; (iii) −x + [{1\over 2}], −y + 1, z + [{1\over 2}].]
[Figure 3]
Figure 3
View of the title compound structure along the c axis, showing the layers parallel to the ac plane.

Synthesis and crystallization

To a solution of isatin (0.2 g, 1.2 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butyl­ammonium bromide (0.05 g, 0.15 mmol) in DMF (10 ml) was added dropwise 1,6-di­bromo­hexane (0.3 ml, 3 mmol) at room temperature. The mixture was stirred for 48 h. The solid obtained was removed by filtration and the filtrate concentrated under reduced pressure, leading to a residue which was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/4) as eluent. The solid that was obtained was recrystallized from ethanol solution to afford the title compound as orange crystals in 68% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two reflections, i.e. 0 0 2 and 2 0 0, were omitted from the final refinement owing to poor agreement.

Table 2
Experimental details

Crystal data
Chemical formula C22H20N2O4
Mr 376.40
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 15.1498 (3), 7.4949 (2), 16.4795 (3)
V3) 1871.19 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.48 × 0.37 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.925, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52362, 2303, 1596
Rint 0.041
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.171, 1.03
No. of reflections 2303
No. of parameters 167
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.26, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Chemical context top

Isatin, 1H-indole-2,3-dione, is a heterocyclic compound of significant importance in medicinal chemistry. It is a synthetically versatile molecule, a precursor for a large number of pharmacologically active compounds. Isatin and its derivatives have aroused great attention in recent years due to their wide variety of biological activities, relevant to application as insecticides and fungicides and in a broad range of drug therapies, including anti­cancer drugs, anti­biotics and anti­depressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Qachchachi et al., 2014; Ramachandran, 2011; Smitha et al., 2008).

As a continuation of our research work devoted to the development of substituted isatin derivatives, we report in this paper the synthesis of a new isatin derivative obtained by the reaction of 1,6-di­bromo­hexane with indoline-2,3-dione in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide under mild conditions to furnish the title compound (Scheme 1).

Structural commentary top

The crystallographically centrosymmetric molecule of the title compound contains two indoline-2,3-dione fragments being linked by the hexyl­ene group at the N atoms (Fig. 1). The sum of valence angles around N1 is 360.48, indicating an sp2 hybridization of this atom.

In the crystal packing, the molecules are linked by C—H···O hydrogen bonds, forming supra­molecular layers propagating in the ac plane (Fig. 2 and 3).

Synthesis and crystallization top

To a solution of isatin (0.2 g, 1.2 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butyl­ammonium bromide (0.05 g, 0.15 mmol) in DMF (10 ml) was added 1,6-di­bromo­hexane (0.3ml, 3 mmol). The mixture was stirred for 48 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/4) as eluent.

The solid that was obtained was recrystallized from ethanol to afford the title compound as orange crystals in 68% yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All hydrogen atoms were located in a difference Fourier map and refined without additional restraints. In the final difference Fourier map the highest peak is 1.08 Å away from O2 and the deepest hole is located 0.83 Å away from the same oxygen atom. Two reflections, i.e. 0 0 2 and 2 0 0, were omitted from the final refinement owing to poor agreement.

Experimental top

To a solution of isatin (0.2 g, 1.2 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (10 ml) was added 1,6-dibromohexane (0.3 ml, 3 mmol). The mixture was stirred for 48 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/4) as eluent.

The solid that was obtained was recrystallized from ethanol to afford the title compound as orange crystals in 68% yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. In the final difference Fourier map the highest peak is 1.08 Å away from O2 and the deepest hole is located 0.83 Å away from the same oxygen atom. Two reflections, i.e. 0 0 2 and 2 0 0, were omitted from the final refinement owing to poor agreement.

Structure description top

Isatin, 1H-indole-2,3-dione, is a heterocyclic compound of significant importance in medicinal chemistry. It is a synthetically versatile molecule, a precursor for a large number of pharmacologically active compounds. Isatin and its derivatives have aroused great attention in recent years due to their wide variety of biological activities, relevant to application as insecticides and fungicides and in a broad range of drug therapies, including anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Qachchachi et al., 2014; Ramachandran, 2011; Smitha et al., 2008).

As a continuation of our research work devoted to the development of substituted isatin derivatives, we report in this paper the synthesis of a new isatin derivative obtained by the reaction of 1,6-dibromohexane with indoline-2,3-dione in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish the title compound.

The crystallographically centrosymmetric molecule of the title compound contains two indoline-2,3-dione fragments being linked by the hexylene group at the N atoms (Fig. 1). The sum of valence angles around N1 is 359.9, indicating an sp2 hybridization of this atom.

In the crystal packing, the molecules are linked by C—H···O hydrogen bonds (Table 1), forming supramolecular layers propagating in the ac plane (Fig. 2 and 3).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (a) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. View down the b axis of the packing structure of the title compound. The dashed lines indicate intermolecular C—H···O interactions. [Symmetry codes: (ii) x + 1/2, y, -z + 3/2; (iii) -x + 1/2, -y + 1, z + 1/2.]
[Figure 3] Fig. 3. View of the title compound structure along the c axis, showing the layers parallel to the ac plane.
1,1'-(Hexane-1,6-diyl)bis(indoline-2,3-dione) top
Crystal data top
C22H20N2O4Dx = 1.336 Mg m3
Mr = 376.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9889 reflections
a = 15.1498 (3) Åθ = 2.5–23.9°
b = 7.4949 (2) ŵ = 0.09 mm1
c = 16.4795 (3) ÅT = 296 K
V = 1871.19 (7) Å3Prism, orange
Z = 40.48 × 0.37 × 0.15 mm
F(000) = 792
Data collection top
Bruker APEXII CCD
diffractometer
1596 reflections with I > 2σ(I)
φ and ω scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 28.3°, θmin = 2.8°
Tmin = 0.925, Tmax = 1.000h = 1920
52362 measured reflectionsk = 99
2303 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: difference Fourier map
wR(F2) = 0.171All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.5456P]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H20N2O4V = 1871.19 (7) Å3
Mr = 376.40Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 15.1498 (3) ŵ = 0.09 mm1
b = 7.4949 (2) ÅT = 296 K
c = 16.4795 (3) Å0.48 × 0.37 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1596 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 1.000Rint = 0.041
52362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.171All H-atom parameters refined
S = 1.03Δρmax = 0.26 e Å3
2303 reflectionsΔρmin = 0.23 e Å3
167 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34040 (11)0.4314 (2)0.77758 (10)0.0504 (4)
C20.42431 (12)0.4338 (3)0.80961 (14)0.0664 (6)
C30.43333 (15)0.4836 (3)0.88930 (14)0.0755 (6)
C40.36311 (18)0.5300 (3)0.93673 (14)0.0799 (7)
C50.27861 (16)0.5286 (3)0.90539 (13)0.0704 (6)
C60.26756 (10)0.4786 (3)0.82489 (11)0.0536 (4)
C70.18931 (12)0.4580 (3)0.77498 (14)0.0647 (5)
C80.22517 (14)0.3985 (3)0.69028 (13)0.0686 (6)
C90.3733 (2)0.3309 (3)0.63322 (14)0.0758 (6)
C100.41541 (15)0.4874 (3)0.58917 (12)0.0624 (5)
C110.47878 (17)0.4251 (3)0.52375 (13)0.0665 (5)
H20.4687 (16)0.404 (3)0.7780 (15)0.082 (7)*
H30.4932 (17)0.481 (3)0.9136 (14)0.082 (7)*
H40.3711 (18)0.562 (3)0.9892 (18)0.102 (9)*
H50.2320 (18)0.557 (4)0.9323 (17)0.092 (8)*
H9A0.3325 (14)0.264 (3)0.5976 (15)0.082 (7)*
H10A0.3714 (15)0.563 (3)0.5626 (14)0.075 (6)*
H11A0.4474 (16)0.346 (3)0.4847 (16)0.093 (8)*
H9B0.4203 (15)0.261 (3)0.6596 (15)0.084 (7)*
H10B0.4454 (15)0.560 (3)0.6282 (15)0.079 (7)*
H11B0.5246 (15)0.357 (3)0.5493 (13)0.074 (6)*
N10.31307 (11)0.3827 (2)0.69831 (9)0.0627 (5)
O10.11235 (9)0.4797 (3)0.79127 (13)0.1002 (6)
O20.17970 (13)0.3727 (3)0.63114 (11)0.1027 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (8)0.0572 (9)0.0492 (8)0.0027 (7)0.0037 (7)0.0050 (7)
C20.0424 (9)0.0803 (13)0.0766 (13)0.0013 (9)0.0044 (9)0.0121 (11)
C30.0634 (12)0.0906 (16)0.0725 (13)0.0168 (11)0.0204 (11)0.0176 (11)
C40.0950 (17)0.0897 (16)0.0552 (12)0.0218 (13)0.0126 (11)0.0024 (11)
C50.0754 (13)0.0762 (13)0.0597 (11)0.0055 (11)0.0187 (10)0.0037 (10)
C60.0416 (9)0.0593 (10)0.0600 (10)0.0032 (7)0.0049 (7)0.0015 (8)
C70.0445 (9)0.0663 (12)0.0833 (13)0.0033 (8)0.0028 (9)0.0049 (10)
C80.0733 (13)0.0610 (11)0.0715 (12)0.0109 (9)0.0263 (10)0.0044 (9)
C90.1044 (17)0.0660 (13)0.0571 (11)0.0016 (13)0.0252 (11)0.0030 (10)
C100.0753 (12)0.0591 (11)0.0529 (10)0.0048 (10)0.0100 (9)0.0021 (9)
C110.0846 (14)0.0597 (11)0.0551 (10)0.0080 (10)0.0166 (10)0.0002 (9)
N10.0684 (10)0.0705 (10)0.0491 (8)0.0028 (8)0.0072 (7)0.0026 (7)
O10.0392 (7)0.1247 (14)0.1366 (17)0.0028 (8)0.0011 (8)0.0002 (12)
O20.1175 (14)0.1024 (13)0.0881 (12)0.0207 (11)0.0450 (11)0.0030 (10)
Geometric parameters (Å, º) top
C1—C21.377 (3)C7—C81.563 (3)
C1—C61.397 (2)C8—O21.209 (2)
C1—N11.418 (2)C8—N11.343 (3)
C2—C31.372 (3)C9—N11.461 (3)
C2—H20.88 (2)C9—C101.520 (3)
C3—C41.365 (4)C9—H9A0.99 (2)
C3—H30.99 (3)C9—H9B0.98 (2)
C4—C51.380 (3)C10—C111.517 (3)
C4—H40.91 (3)C10—H10A0.98 (2)
C5—C61.389 (3)C10—H10B0.96 (3)
C5—H50.86 (3)C11—C11i1.512 (4)
C6—C71.451 (3)C11—H11A1.00 (3)
C7—O11.207 (2)C11—H11B0.96 (2)
C2—C1—C6120.82 (18)N1—C8—C7106.35 (15)
C2—C1—N1128.77 (17)N1—C9—C10114.06 (18)
C6—C1—N1110.40 (15)N1—C9—H9A100.3 (14)
C3—C2—C1117.55 (19)C10—C9—H9A111.8 (14)
C3—C2—H2124.1 (16)N1—C9—H9B105.6 (14)
C1—C2—H2118.4 (16)C10—C9—H9B108.4 (14)
C4—C3—C2122.7 (2)H9A—C9—H9B116 (2)
C4—C3—H3119.1 (14)C11—C10—C9111.55 (17)
C2—C3—H3118.2 (14)C11—C10—H10A107.0 (13)
C3—C4—C5120.4 (2)C9—C10—H10A112.1 (13)
C3—C4—H4120.7 (18)C11—C10—H10B110.7 (14)
C5—C4—H4118.9 (18)C9—C10—H10B108.6 (14)
C4—C5—C6118.1 (2)H10A—C10—H10B106.9 (19)
C4—C5—H5124.6 (18)C11i—C11—C10114.1 (2)
C6—C5—H5117.3 (18)C11i—C11—H11A108.0 (15)
C5—C6—C1120.41 (17)C10—C11—H11A109.9 (14)
C5—C6—C7131.97 (18)C11i—C11—H11B108.3 (13)
C1—C6—C7107.59 (17)C10—C11—H11B108.1 (13)
O1—C7—C6130.4 (2)H11A—C11—H11B108.3 (19)
O1—C7—C8124.9 (2)C8—N1—C1110.96 (16)
C6—C7—C8104.63 (15)C8—N1—C9124.76 (19)
O2—C8—N1129.1 (2)C1—N1—C9124.22 (18)
O2—C8—C7124.6 (2)
C6—C1—C2—C30.2 (3)C6—C7—C8—O2177.7 (2)
N1—C1—C2—C3178.8 (2)O1—C7—C8—N1177.4 (2)
C1—C2—C3—C40.1 (3)C6—C7—C8—N12.6 (2)
C2—C3—C4—C50.1 (4)N1—C9—C10—C11178.6 (2)
C3—C4—C5—C60.2 (4)C9—C10—C11—C11i178.6 (3)
C4—C5—C6—C10.0 (3)O2—C8—N1—C1178.1 (2)
C4—C5—C6—C7177.8 (2)C7—C8—N1—C12.2 (2)
C2—C1—C6—C50.1 (3)O2—C8—N1—C90.9 (4)
N1—C1—C6—C5179.06 (18)C7—C8—N1—C9179.46 (18)
C2—C1—C6—C7178.48 (18)C2—C1—N1—C8179.8 (2)
N1—C1—C6—C70.7 (2)C6—C1—N1—C81.1 (2)
C5—C6—C7—O10.0 (4)C2—C1—N1—C92.6 (3)
C1—C6—C7—O1178.1 (2)C6—C1—N1—C9178.33 (17)
C5—C6—C7—C8180.0 (2)C10—C9—N1—C895.2 (3)
C1—C6—C7—C81.9 (2)C10—C9—N1—C181.6 (3)
O1—C7—C8—O22.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1ii0.88 (2)2.52 (2)3.316 (3)150.6 (19)
C4—H4···O2iii0.91 (3)2.51 (3)3.349 (3)154 (2)
C9—H9A···O20.99 (2)2.52 (2)2.950 (4)106.3 (16)
Symmetry codes: (ii) x+1/2, y, z+3/2; (iii) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.88 (2)2.52 (2)3.316 (3)150.6 (19)
C4—H4···O2ii0.91 (3)2.51 (3)3.349 (3)154 (2)
C9—H9A···O20.99 (2)2.52 (2)2.950 (4)106.3 (16)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H20N2O4
Mr376.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)15.1498 (3), 7.4949 (2), 16.4795 (3)
V3)1871.19 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.37 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.925, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
52362, 2303, 1596
Rint0.041
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.171, 1.03
No. of reflections2303
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

References

First citationBhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229–235.  CAS Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMalhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751.  Web of Science CrossRef CAS Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o588.  CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds