metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-di­methyl­formamide-κ4O:O-μ-tetra­hydro­furan-κ2O:O-bis­­[(tetra­hydro­furan-κO)sodium(I)] bis­­(μ-3,6-di­chloro­benzene-1,2-di­thiol­ato-κ3S,S′:S)bis­­[(3,6-di­chloro­benzene-1,2-di­thiol­ato-κ2S,S′)iron(III)]

aDepartamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain, and bLaboratorio de Difracción de Rayos X de Monocristal, Servicio Interdepartamental de Investigación, Universidad Autónoma de Madrid, 28049 Madrid, Spain
*Correspondence e-mail: josefina.perles@uam.es

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 20 March 2016; accepted 15 April 2016; online 22 April 2016)

The title compound, [Na2(C3H7NO)2(C4H8O)5][Fe2(C6H2Cl2S2)4], was synthesized and its crystal structure was solved. The ionic crystal contains a [Fe2(S2C6H2Cl2)4]2− dimeric anion and a [Na2(THF)4(μ-THF)(μ-DMF)2]2+ cation, where THF is tetra­hydro­furan and DMF is di­methyl­formamide, comprising two sodium atoms joined by one THF and two DMF mol­ecules bridging through their O atoms. The five-coordinate environment of each Na site is completed by two terminal THF mol­ecules. The asymmetric unit contains half a cationic unit (as the cation is placed on a twofold axis) and half an anion, as there is an inversion centre at the midpoint of the Fe—Fe vectors. The cationic and anionic moieties are linked by C—H⋯Cl and C—H⋯S interactions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title compound (Fig. 1[link]) the [FeIII(Cl2-bdt)2] anion (Cl2-bdt is 3,6-di­chloro-1,2-benzene­dithiol­ate) forms a centrosymmetric dimer supported by two FeIII—S bonds [Fe1—S4 = 2.4885 (16) Å] in which each iron atom shows the expected 4 + 1 square-pyramidal geometry. This is the typical coordination mode displayed by most of the iron bis­(di­thiol­ato) compounds, which is due to the strong dimerization tendency of the monoanionic [Fe(di­thiol­ate)2] species (Amo-Ochoa et al., 2013[Amo-Ochoa, P., Delgado, E., Gómez-García, C. J., Hernández, D., Hernández, E., Martin, A. & Zamora, F. (2013). Inorg. Chem. 52, 5943-5950.]; Chen et al., 2012[Chen, X., Lingam, H. K., Meyers, E. A. & Shore, S. G. (2012). J. Organomet. Chem. 721-722, 137-143.]; Sproules & Wieghardt, 2010[Sproules, S. & Wieghardt, K. (2010). Coord. Chem. Rev. 254, 1358-1382.]; Cerdeira et al., 2008[Cerdeira, A. C., Simão, D., Santos, I. C., Machado, A., Pereira, L. C. J., Waerenborgh, J. C., Henriques, R. T. & Almeida, M. (2008). Inorg. Chim. Acta, 361, 3836-3841.]). The basal Fe—S bond lengths [Fe1—S1 = 2.2219 (15), Fe1—S2 = 2.2101 (16), Fe1—S3 = 2.2256 (15) and Fe1—S4 = 2.2296 (15) Å] are shorter than the axial one, 2.4885 (16) Å. On the other hand, the two sodium atoms in the cation [Na2(THF)4(μ-THF)(μ-DMF)2]2+ are bridged by one THF and two DMF mol­ecules. To complete the penta­coordination sphere (Fig. 2[link]), each sodium atom is additionally bonded to two terminal THF mol­ecules, at normal distances (Benmansour et al., 2015[Benmansour, S., Delgado, E., Gómez-García, C. J., Hernández, D., Hernández, E., Martin, A., Perles, J. & Zamora, F. (2015). Inorg. Chem. 54, 2243-2252.]; Raja et al., 2014[Raja, D.-S., Luo, J.-H., Yeh, C.-T., Jiang, Y.-C., Hsu, K.-F. & Lin, C.-H. (2014). CrystEngComm, 16, 1985-1994.]; Thirumurugan et al., 2010[Thirumurugan, A., Tan, J.-C. & Cheetham, A. K. (2010). Cryst. Growth Des. 10, 1736-1741.]).

[Figure 1]
Figure 1
Ellipsoid plot (at 50% probability) of the [Fe2(S2C6H2Cl2)4]2− anion with atoms labelled.
[Figure 2]
Figure 2
Ellipsoid plot (at 50% probability) of the [Na2(THF)4(μ-THF)(μ-DMF)2]2+ cation with non-hydrogen atoms labelled.

In the crystal, the supra­molecular packing is determined by C—H⋯Cl and C—H⋯S inter­actions between anionic and cationic species (Table 1[link]), yielding a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl2i 0.95 2.86 3.645 (6) 141
C16—H16A⋯Cl3ii 0.99 2.96 3.836 (15) 148
C23—H23⋯Cl2iii 0.95 2.92 3.787 (7) 152
C25—H25B⋯S4iv 0.98 2.79 3.744 (6) 165
C25—H25C⋯S3iii 0.98 2.98 3.711 (7) 132
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+1, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x, -y+1, -z.

Synthesis and crystallization

An amount of 1,2-HSC6H2Cl2SH (238 mg, 1.1 mmol) was treated with an aqueous solution (10 ml) of NaOH, (5% by weight). Then, FeCl3·6H2O (150 mg, 0.37 mmol) in 10 ml of ethanol/water (1:1) was slowly added. The mixture was stirred at room temperature for 30 min. The solid formed was collected by filtration and washed several times with water and n-hexane. Suitable crystals for X-ray analysis of the title compound were obtained from a solution in THF–DMF/n-hexane, at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Several C atoms from the THF mol­ecules coordinated to the Na+ cation (mainly for the bridging THF, see Fig. 2[link]) present high displacement parameters. Alternative positions for disordered C atoms could not be located.

Table 2
Experimental details

Crystal data
Chemical formula [Na2(C3H7NO)2(C4H8O)5][Fe2(C6H2Cl2S2)4]
Mr 1500.77
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 29.063 (2), 9.9393 (6), 25.645 (3)
β (°) 121.609 (3)
V3) 6309.0 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.13
Crystal size (mm) 0.19 × 0.12 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.81, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 43114, 5765, 3785
Rint 0.101
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.169, 1.04
No. of reflections 5762
No. of parameters 359
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.26, −0.46
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

An amount of 1,2-HSC6H2Cl2SH (238 mg, 1.1 mmol) was treated with an aqueous solution (10 ml) of NaOH, (5% by weight). Then, FeCl3·6H2O (150 mg, 0.37 mmol) in 10 ml of ethanol/water (1:1) was slowly added. The mixture was stirred at room temperature for 30 min. The solid formed was collected by filtration and washed several times with water and n-hexane. Suitable crystals for X-ray analysis of the title compound were obtained from a solution in THF–DMF/n-hexane, at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Several C atoms from the THF molecules coordinated to the Na+ cation (mainly for the bridging THF, see Fig. 3) present high displacement parameters. Alternative positions for disordered C atoms could not be located.

Structure description top

In the title compound (Fig. 1) the [FeIII(Cl2-bdt)2]- anion (Cl2-bdt is 3,6-dichloro-1,2-benzenedithiolate) forms a centrosymmetric dimer supported by two FeIII—S bonds [Fe1—S4 = 2.4885 (16) Å] in which each iron atom shows the expected 4 + 1 square-pyramidal geometry. This is the typical coordination mode displayed by most of the iron bis(dithiolato) compounds, which is due to the strong dimerization tendency of the monoanionic [Fe(dithiolate)2]- species (Amo-Ochoa et al., 2013; Chen et al., 2012; Sproules & Wieghardt, 2010; Cerdeira et al., 2008). The basal Fe—S bond lengths [Fe1—S1 = 2.2219 (15), Fe1—S2 = 2.2101 (16), Fe1—S3 = 2.2256 (15) and Fe1—S4 = 2.2296 (15) Å] are shorter than the axial one, 2.4885 (16) Å (Fig. 2). On the other hand, the two sodium atoms in the cation [Na2(THF)4(µ-THF)(µ-DMF)2]2+ are bridged by one THF and two DMF molecules. To complete the pentacoordination sphere (Fig. 3), each sodium atom is additionally bonded to two terminal THF molecules, at normal distances (Benmansour et al., 2015; Raja et al., 2014; Thirumurugan et al., 2010).

In the crystal, the supramolecular packing is determined by C—H···Cl and C—H···S interactions between anionic and cationic species (Table 1).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot (at 50% probability) of the [Fe2(S2C6H2Cl2)4]2- anion with atoms labelled.
[Figure 2] Fig. 2. Ellipsoid plot (at 50% probability) of the [Na2(THF)4(µ-THF)(µ-DMF)2]2+ cation with non-hydrogen atoms labelled.
Di-µ-dimethylformamide-κ4O:O-µ-tetrahydrofuran-κ2O:O-bis[(tetrahydrofuran-κO)sodium(I)] bis(µ-3,6-dichlorobenzene-1,2-dithiolato-κ3S,S':S)bis[(3,6-dichlorobenzene-1,2-dithiolato-κ2S,S')iron(III)] top
Crystal data top
[Na2(C3H7NO)2(C4H8O)5][Fe2(C6H2Cl2S2)4]F(000) = 3080
Mr = 1500.77Dx = 1.580 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.063 (2) ÅCell parameters from 3584 reflections
b = 9.9393 (6) Åθ = 2.2–22.1°
c = 25.645 (3) ŵ = 1.13 mm1
β = 121.609 (3)°T = 100 K
V = 6309.0 (9) Å3Prismatic, deep purple
Z = 40.19 × 0.12 × 0.02 mm
Data collection top
Bruker Kappa APEXII
diffractometer
3785 reflections with I > 2σ(I)
Radiation source: molybdenum, x-ray tubeRint = 0.101
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
θ and φ scansh = 3434
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.81, Tmax = 0.98l = 3030
43114 measured reflections5765 standard reflections every 908 min
5765 independent reflections intensity decay: 0.0 (2)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0854P)2 + 20.9273P]
where P = (Fo2 + 2Fc2)/3
5762 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 1.26 e Å3
2 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Na2(C3H7NO)2(C4H8O)5][Fe2(C6H2Cl2S2)4]V = 6309.0 (9) Å3
Mr = 1500.77Z = 4
Monoclinic, C2/cMo Kα radiation
a = 29.063 (2) ŵ = 1.13 mm1
b = 9.9393 (6) ÅT = 100 K
c = 25.645 (3) Å0.19 × 0.12 × 0.02 mm
β = 121.609 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
3785 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
Rint = 0.101
Tmin = 0.81, Tmax = 0.985765 standard reflections every 908 min
43114 measured reflections intensity decay: 0.0 (2)
5765 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0622 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0854P)2 + 20.9273P]
where P = (Fo2 + 2Fc2)/3
5762 reflectionsΔρmax = 1.26 e Å3
359 parametersΔρmin = 0.46 e Å3
Special details top

Refinement. There is some disorder in atoms from the coordinated THF molecules, specially in the positions occupied by C21 and C22

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1205 (2)0.5476 (6)0.1796 (2)0.0255 (13)
C20.1666 (2)0.6228 (6)0.2206 (3)0.0324 (14)
C30.2126 (2)0.5608 (7)0.2674 (3)0.0382 (16)
H30.24370.61240.29420.046*
C40.2125 (2)0.4236 (7)0.2746 (3)0.0370 (16)
H40.24380.380.30630.044*
C50.1673 (2)0.3495 (6)0.2359 (3)0.0328 (14)
C60.1201 (2)0.4095 (6)0.1884 (2)0.0257 (13)
C70.1128 (2)0.3851 (6)0.0270 (2)0.0248 (13)
C80.1619 (2)0.3163 (6)0.0633 (3)0.0334 (14)
C90.2079 (2)0.3846 (7)0.1069 (3)0.0377 (16)
H90.24060.33630.13160.045*
C100.2067 (2)0.4793 (7)0.1147 (3)0.0387 (17)
H100.23860.4330.14370.046*
C110.1589 (2)0.4098 (6)0.0804 (3)0.0314 (14)
C120.1114 (2)0.4770 (6)0.0375 (2)0.0274 (13)
Cl10.16741 (7)0.79653 (16)0.21324 (7)0.0429 (4)
Cl20.16885 (6)0.17555 (17)0.24562 (7)0.0452 (4)
Cl30.16552 (6)0.14461 (18)0.05570 (7)0.0456 (4)
Cl40.15827 (6)0.23673 (17)0.08984 (7)0.0393 (4)
Fe10.01139 (3)0.45371 (7)0.06272 (3)0.0205 (2)
S10.06380 (5)0.62436 (14)0.11780 (6)0.0229 (3)
S20.06183 (5)0.31766 (14)0.14040 (6)0.0267 (3)
S30.05458 (5)0.30212 (14)0.02869 (6)0.0265 (3)
S40.04882 (5)0.39247 (14)0.00191 (6)0.0231 (3)
C130.0826 (5)1.1857 (10)0.3275 (6)0.105 (4)
H13A0.06711.19710.2830.126*
H13B0.05311.19290.33590.126*
C140.1240 (7)1.2872 (13)0.3620 (7)0.148 (6)
H14A0.13431.3320.33510.177*
H14B0.111.35640.37790.177*
C150.1627 (3)1.0772 (10)0.3994 (4)0.076 (3)
H15A0.191.04320.39060.091*
H15B0.16741.02870.43560.091*
C160.1703 (6)1.2210 (14)0.4120 (7)0.121 (5)
H16A0.17281.24130.45120.146*
H16B0.20391.25180.41480.146*
C170.1423 (4)0.6789 (11)0.4322 (4)0.082 (3)
H17A0.11190.62310.42690.099*
H17B0.14750.75410.46010.099*
C180.1906 (3)0.5988 (9)0.4591 (4)0.069 (2)
H18A0.18260.50410.46350.083*
H18B0.2180.6340.49990.083*
C190.2101 (4)0.6087 (10)0.4164 (4)0.081 (3)
H19A0.24720.64550.43770.098*
H19B0.21030.51880.40.098*
C200.1741 (5)0.6957 (13)0.3685 (5)0.112 (4)
H20A0.16070.65070.32860.135*
H20B0.19360.77820.36950.135*
C230.0411 (3)0.9659 (7)0.1732 (3)0.0423 (16)
H230.07860.98670.19680.051*
C240.0492 (3)0.9917 (7)0.0845 (3)0.0398 (16)
H24A0.08691.0110.11580.06*
H24B0.03391.0680.05630.06*
H24C0.04760.91090.06170.06*
C250.0394 (3)0.9425 (6)0.0737 (3)0.0408 (16)
H25A0.05770.95740.09620.061*
H25B0.04470.8490.05960.061*
H25C0.05461.00310.03830.061*
N10.0182 (2)0.9694 (5)0.1138 (2)0.0317 (12)
Na10.05894 (11)0.8688 (3)0.30354 (12)0.0485 (7)
O10.1100 (2)1.0542 (6)0.3483 (3)0.0744 (17)
O20.1294 (2)0.7314 (6)0.3744 (3)0.0757 (18)
O30.01874 (19)0.9381 (4)0.2015 (2)0.0431 (11)
O400.6850 (7)0.250.061 (2)
C210.0153 (4)0.5972 (8)0.2171 (5)0.080 (3)
H21A0.00790.61570.17270.096*
H21B0.05320.61630.22950.096*
C220.0109 (9)0.4696 (10)0.2273 (8)0.227 (11)
H22A0.04640.4240.24620.272*
H22B0.01480.4230.18860.272*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.014 (3)0.049 (4)0.010 (3)0.001 (2)0.004 (2)0.005 (2)
C20.026 (3)0.048 (4)0.021 (3)0.008 (3)0.011 (3)0.011 (3)
C30.020 (3)0.071 (5)0.021 (3)0.013 (3)0.009 (3)0.012 (3)
C40.017 (3)0.073 (5)0.011 (3)0.005 (3)0.001 (3)0.004 (3)
C50.026 (3)0.048 (4)0.021 (3)0.006 (3)0.010 (3)0.006 (3)
C60.014 (3)0.045 (4)0.012 (3)0.006 (2)0.003 (2)0.005 (2)
C70.013 (3)0.044 (3)0.015 (3)0.002 (2)0.006 (2)0.005 (2)
C80.022 (3)0.055 (4)0.022 (3)0.006 (3)0.011 (3)0.010 (3)
C90.013 (3)0.073 (5)0.019 (3)0.009 (3)0.003 (3)0.018 (3)
C100.016 (3)0.075 (5)0.014 (3)0.010 (3)0.001 (3)0.007 (3)
C110.018 (3)0.055 (4)0.018 (3)0.007 (3)0.007 (3)0.002 (3)
C120.013 (3)0.051 (4)0.016 (3)0.002 (2)0.006 (2)0.006 (3)
Cl10.0403 (9)0.0505 (10)0.0307 (9)0.0171 (7)0.0136 (7)0.0104 (7)
Cl20.0358 (9)0.0544 (10)0.0291 (9)0.0132 (8)0.0057 (7)0.0141 (7)
Cl30.0338 (9)0.0593 (11)0.0357 (9)0.0211 (8)0.0127 (8)0.0123 (8)
Cl40.0278 (8)0.0548 (10)0.0284 (9)0.0184 (7)0.0100 (7)0.0074 (7)
Fe10.0155 (4)0.0280 (4)0.0147 (4)0.0012 (3)0.0056 (3)0.0010 (3)
S10.0184 (7)0.0303 (7)0.0161 (7)0.0007 (5)0.0063 (6)0.0019 (6)
S20.0203 (7)0.0322 (7)0.0187 (7)0.0009 (6)0.0041 (6)0.0020 (6)
S30.0206 (7)0.0329 (8)0.0195 (7)0.0050 (6)0.0059 (6)0.0009 (6)
S40.0163 (7)0.0303 (8)0.0179 (7)0.0036 (5)0.0057 (6)0.0008 (6)
C130.132 (10)0.066 (7)0.118 (10)0.026 (7)0.066 (8)0.010 (6)
C140.221 (19)0.094 (10)0.165 (16)0.054 (11)0.127 (15)0.058 (10)
C150.045 (5)0.109 (8)0.082 (7)0.018 (5)0.039 (5)0.006 (6)
C160.118 (11)0.127 (12)0.143 (13)0.065 (9)0.085 (10)0.055 (10)
C170.073 (6)0.129 (9)0.046 (5)0.035 (6)0.032 (5)0.030 (5)
C180.067 (6)0.075 (6)0.054 (5)0.008 (5)0.023 (5)0.004 (4)
C190.073 (7)0.091 (7)0.061 (6)0.017 (5)0.022 (5)0.006 (5)
C200.114 (9)0.175 (12)0.091 (8)0.075 (9)0.084 (8)0.061 (8)
C230.048 (4)0.050 (4)0.027 (4)0.001 (3)0.019 (3)0.002 (3)
C240.045 (4)0.044 (4)0.040 (4)0.001 (3)0.029 (3)0.002 (3)
C250.050 (4)0.039 (4)0.036 (4)0.012 (3)0.024 (3)0.010 (3)
N10.042 (3)0.035 (3)0.028 (3)0.001 (2)0.024 (3)0.002 (2)
Na10.0597 (18)0.0594 (17)0.0355 (16)0.0062 (14)0.0313 (14)0.0059 (13)
O10.074 (4)0.073 (4)0.075 (4)0.015 (3)0.038 (4)0.007 (3)
O20.086 (4)0.097 (4)0.055 (4)0.029 (4)0.045 (3)0.030 (3)
O30.054 (3)0.054 (3)0.034 (3)0.001 (2)0.032 (2)0.003 (2)
O40.115 (7)0.047 (4)0.072 (5)00.084 (5)0
C210.129 (9)0.074 (6)0.102 (8)0.003 (6)0.105 (7)0.016 (5)
C220.55 (3)0.060 (7)0.36 (2)0.010 (12)0.44 (3)0.004 (10)
Geometric parameters (Å, º) top
C1—C61.393 (8)S4—Fe1i2.2296 (15)
C1—C21.407 (8)C13—C141.461 (16)
C1—S11.753 (5)C13—O11.477 (12)
C2—C31.388 (8)C14—C161.442 (18)
C2—Cl11.739 (7)C15—O11.419 (10)
C3—C41.376 (9)C15—C161.456 (15)
C4—C51.374 (8)C17—O21.425 (9)
C5—C61.402 (7)C17—C181.436 (11)
C5—Cl21.745 (6)C18—C191.473 (12)
C6—S21.742 (5)C19—C201.416 (12)
C7—C12i1.402 (8)C20—O21.428 (10)
C7—C81.407 (8)C23—O31.236 (7)
C7—S31.746 (5)C23—N11.303 (8)
C8—C91.390 (9)C24—N11.462 (7)
C8—Cl31.727 (7)C25—N11.458 (8)
C9—C10i1.371 (9)Na1—O12.265 (6)
C10—C9i1.372 (9)Na1—O3ii2.298 (5)
C10—C111.377 (8)Na1—O22.336 (6)
C11—C121.403 (8)Na1—O32.341 (5)
C11—Cl41.739 (7)Na1—O42.385 (6)
C12—C7i1.402 (8)Na1—Na1ii3.069 (5)
C12—S41.764 (6)O3—Na1ii2.298 (5)
Fe1—S22.2101 (16)O4—C21ii1.438 (7)
Fe1—S12.2219 (15)O4—C211.438 (7)
Fe1—S32.2256 (15)O4—Na1ii2.385 (6)
Fe1—S4i2.2296 (15)C21—C221.315 (11)
Fe1—S42.4885 (16)C22—C22ii1.593 (17)
C6—C1—C2119.2 (5)C14—C13—O1106.0 (11)
C6—C1—S1119.5 (4)C16—C14—C13108.2 (12)
C2—C1—S1121.4 (5)O1—C15—C16109.1 (9)
C3—C2—C1121.3 (6)C14—C16—C15106.8 (11)
C3—C2—Cl1118.2 (5)O2—C17—C18111.1 (7)
C1—C2—Cl1120.5 (5)C17—C18—C19105.4 (8)
C4—C3—C2119.2 (6)C20—C19—C18106.8 (8)
C5—C4—C3120.1 (6)C19—C20—O2111.0 (8)
C4—C5—C6122.0 (6)O3—C23—N1126.0 (7)
C4—C5—Cl2119.0 (5)C23—N1—C25121.0 (5)
C6—C5—Cl2119.1 (5)C23—N1—C24121.9 (6)
C1—C6—C5118.2 (5)C25—N1—C24117.0 (5)
C1—C6—S2119.3 (4)O1—Na1—O3ii98.5 (2)
C5—C6—S2122.5 (5)O1—Na1—O290.4 (3)
C12i—C7—C8117.9 (5)O3ii—Na1—O2130.9 (2)
C12i—C7—S3120.5 (4)O1—Na1—O397.9 (2)
C8—C7—S3121.6 (5)O3ii—Na1—O387.03 (19)
C9—C8—C7120.7 (6)O2—Na1—O3139.6 (2)
C9—C8—Cl3118.9 (5)O1—Na1—O4175.4 (2)
C7—C8—Cl3120.4 (5)O3ii—Na1—O479.00 (16)
C10i—C9—C8120.8 (6)O2—Na1—O494.2 (2)
C9i—C10—C11119.7 (6)O3—Na1—O478.16 (15)
C10—C11—C12120.7 (6)O1—Na1—Na1ii125.53 (17)
C10—C11—Cl4119.2 (5)O3ii—Na1—Na1ii49.18 (13)
C12—C11—Cl4120.1 (5)O2—Na1—Na1ii143.93 (18)
C11—C12—C7i120.1 (5)O3—Na1—Na1ii47.98 (13)
C11—C12—S4121.2 (5)O4—Na1—Na1ii49.97 (12)
C7i—C12—S4118.7 (4)C15—O1—C13107.9 (7)
S2—Fe1—S189.09 (6)C15—O1—Na1134.7 (6)
S2—Fe1—S388.13 (6)C13—O1—Na1116.8 (6)
S1—Fe1—S3158.23 (7)C17—O2—C20105.1 (6)
S2—Fe1—S4i163.07 (7)C17—O2—Na1132.0 (5)
S1—Fe1—S4i86.93 (6)C20—O2—Na1122.6 (5)
S3—Fe1—S4i89.48 (6)C23—O3—Na1ii147.1 (4)
S2—Fe1—S497.79 (6)C23—O3—Na1128.0 (4)
S1—Fe1—S4102.52 (6)Na1ii—O3—Na182.83 (18)
S3—Fe1—S499.25 (6)C21ii—O4—C21105.3 (8)
S4i—Fe1—S499.13 (5)C21ii—O4—Na1ii116.9 (4)
C1—S1—Fe1104.4 (2)C21—O4—Na1ii118.5 (4)
C6—S2—Fe1104.9 (2)C21ii—O4—Na1118.5 (4)
C7—S3—Fe1105.5 (2)C21—O4—Na1116.9 (4)
C12—S4—Fe1i105.7 (2)Na1ii—O4—Na180.1 (2)
C12—S4—Fe1100.46 (18)C22—C21—O4112.1 (7)
Fe1i—S4—Fe180.87 (5)C21—C22—C22ii105.3 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl2iii0.952.863.645 (6)141
C16—H16A···Cl3iv0.992.963.836 (15)148
C23—H23···Cl2v0.952.923.787 (7)152
C25—H25B···S4i0.982.793.744 (6)165
C25—H25C···S3v0.982.983.711 (7)132
Symmetry codes: (i) x, y+1, z; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z+1/2; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl2i0.952.863.645 (6)141.0
C16—H16A···Cl3ii0.992.963.836 (15)148.4
C23—H23···Cl2iii0.952.923.787 (7)152.2
C25—H25B···S4iv0.982.793.744 (6)165.3
C25—H25C···S3iii0.982.983.711 (7)132.0
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Na2(C3H7NO)2(C4H8O)5][Fe2(C6H2Cl2S2)4]
Mr1500.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)29.063 (2), 9.9393 (6), 25.645 (3)
β (°) 121.609 (3)
V3)6309.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.19 × 0.12 × 0.02
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.81, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
43114, 5765, 3785
Rint0.101
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.169, 1.04
No. of reflections5762
No. of parameters359
No. of restraints2
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0854P)2 + 20.9273P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.26, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008).

 

References

First citationAmo-Ochoa, P., Delgado, E., Gómez-García, C. J., Hernández, D., Hernández, E., Martin, A. & Zamora, F. (2013). Inorg. Chem. 52, 5943–5950.  CAS PubMed Google Scholar
First citationBenmansour, S., Delgado, E., Gómez-García, C. J., Hernández, D., Hernández, E., Martin, A., Perles, J. & Zamora, F. (2015). Inorg. Chem. 54, 2243–2252.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerdeira, A. C., Simão, D., Santos, I. C., Machado, A., Pereira, L. C. J., Waerenborgh, J. C., Henriques, R. T. & Almeida, M. (2008). Inorg. Chim. Acta, 361, 3836–3841.  CSD CrossRef CAS Google Scholar
First citationChen, X., Lingam, H. K., Meyers, E. A. & Shore, S. G. (2012). J. Organomet. Chem. 721–722, 137–143.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRaja, D.-S., Luo, J.-H., Yeh, C.-T., Jiang, Y.-C., Hsu, K.-F. & Lin, C.-H. (2014). CrystEngComm, 16, 1985–1994.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSproules, S. & Wieghardt, K. (2010). Coord. Chem. Rev. 254, 1358–1382.  CrossRef CAS Google Scholar
First citationThirumurugan, A., Tan, J.-C. & Cheetham, A. K. (2010). Cryst. Growth Des. 10, 1736–1741.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds