organic compounds
Tetramethylammonium trifluoromethanesulfonate
aDepartment of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
*Correspondence e-mail: jbourqu5@uwo.ca
The structure of tetramethylammonium trifluoromethanesulfonate, C4H12N+·CF3SO3−, was determined at 110 K in the monoclinic P21/m. The salt, which contains two cations and two anions in the has a network structure displaying C—H⋯O hydrogen bonding. Both the cation and the anion lie on special positions (mirror planes).
Keywords: crystal structure; tetraalkylammonium salts; three-dimensional hydrogen bonding; trifluoromethanesulfonate salts.
CCDC reference: 1456956
Structure description
Despite the report of the synthesis of the title compound in the literature (Sarria Toro et al., 2014; and others), no structural data has been presented. The title compound has been used in various applications, such as an electrolyte for electrochemical studies and syntheses (Bond et al., 1983; Ferraris et al., 1998; Li et al., 2002; Loveday et al., 1997; Ue et al., 1994), as a reagent in traditional synthesis (den Hartog et al., 2014; Lei et al., 2014; Sagl & Martin, 1988; Zhang et al., 2014), as well as other studies (i.e. Bartoli & Roelens, 2002). For structures of other trifluoromethanesulfonate salts of tetraalkylammonium and ammonium cations, see: [NBu4][O3SCF3]: Blake et al. (1993); [NBu4][O3SCF3] co-crystals: Leclercq et al. (2007, 2008, 2012) and [NH4][O3SCF3]: Gänswein & Brauer (1975).
The bonding within the individual ions is as expected. The ), with all four of the ions being positioned along a crystallographic mirror plane that is perpendicular to the [010] layer. Individual ions are connected by a three-dimensional network of hydrogen bonds (Table 1 and Fig. 2). The strongest interactions are found between C3 and O4 and C6 and O2. These generate the alternating ion types along the [010] layer. The ions are also connected by hydrogen bonds perpendicular to the [010] layer, in both the [100] and the [001] directions. These hold the ions of the together along the crystallographic mirror plane. These hydrogen bonds are between C1 and O4, C1 and O3 and C6 and O4. In addition, other short contacts were discerned in the three-dimensional structure, however, it is unclear as to their nature.
is composed of two formula units (Fig. 1Synthesis and crystallization
The title compound was synthesized according to literature procedures (Sarria Toro et al., 2014). Single crystals suitable for a diffraction study were serendipitously obtained from an attempted reaction. A mixture of a [Ga2X2(cryptand-222)]2+ dication (Bourque et al., 2015) with mixed tetrahalogallate and trifluoromethanesulfonate anions and an excess of the title compound was dissolved in acetonitrile (5 ml) and cooled to −20°C. Single crystals of the title compound were obtained after several days.
Refinement
Crystal data, data collection and .
details are shown in Table 2
|
Structural data
CCDC reference: 1456956
10.1107/S2414314616003709/zq4003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616003709/zq4003Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616003709/zq4003Isup3.cml
The title compound was synthesized according to literature procedures (Sarria Toro et al., 2014). Single crystals suitable for a diffraction study were serendipitously obtained from an attempted
reaction. A mixture of a [Ga2X2(cryptand-222)]2+ dication (Bourque et al., 2015) with mixed tetrahalogallate and trifluoromethanesulfonate anions and an excess of the title compound was dissolved in acetonitrile (5 ml) and cooled to −20°C. Single crystals of the title compound were obtained after several days.Despite the report of the synthesis of the title compound in the literature (Sarria Toro et al., 2014; and others), no structural data has been presented. The title compound has been used in various applications, such as an electrolyte for electrochemical studies and syntheses (Bond et al., 1983; Ferraris et al., 1998; Li et al., 2002; Loveday et al., 1997; Ue et al., 1994), as a reagent in traditional syntheses (den Hartog et al., 2014; Lei et al., 2014; Sagl & Martin, 1988; Zhang et al., 2014), as well as other studies (i.e. Bartoli & Roelens, 2002). For structures of other trifluoromethanesulfonate salts of tetraalkylammonium and ammonium cations, see: [NBu4][O3SCF3]: Blake et al. (1993); [NBu4][O3SCF3] co-crystals: Leclercq et al. (2007, 2008, 2012) and [NH4][O3SCF3]: Gänswein & Brauer (1975).
The bonding within the individual ions is as expected. The
is composed of two formula units (Fig. 1), with all four of the ions being positioned along a crystallographic mirror plane that is perpendicular to the [010] layer. Individual ions are connected by a three-dimensional network of hydrogen bonds (Table 1 and Fig. 2). The strongest interactions are found between C3 and O4 and C6 and O2. These generate the alternating ion types along the [010] layer. The ions are also connected by hydrogen bonds perpendicular to the [010] layer, in both the [100] and the [001] directions. These hold the ions of the together along the crystallographic mirror plane. These hydrogen bonds are between C1 and O4, C1 and O3 and C6 and O4. In addition, other short contacts were shown in the three-dimensional structure, however, it is unclear as to their nature.Data collection: APEX2 (Bruker, 2013); cell
CELL_NOW (Bruker, 2008); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: cif2tables.py (Boyle, 2008).Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. | |
Fig. 2. Crystal packing of the title compound viewed along the c axis. H atoms have been omitted for clarity. |
C4H12N+·CF3O3S− | F(000) = 464 |
Mr = 223.22 | Dx = 1.523 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 10.216 (3) Å | Cell parameters from 7184 reflections |
b = 8.507 (2) Å | θ = 3.1–35.8° |
c = 11.445 (4) Å | µ = 0.36 mm−1 |
β = 101.807 (17)° | T = 110 K |
V = 973.6 (5) Å3 | Plate, colourless |
Z = 4 | 0.22 × 0.16 × 0.07 mm |
Bruker Kappa-axis APEXII diffractometer | 4962 independent reflections |
Radiation source: sealed tube | 3766 reflections with I > 2σ(I) |
phi and ω scans | θmax = 36.4°, θmin = 2.4° |
Absorption correction: multi-scan (TWINABS; Bruker, 2012) | h = −17→16 |
Tmin = 0.225, Tmax = 0.438 | k = 0→14 |
4962 measured reflections | l = 0→19 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0519P)2 + 0.1452P] where P = (Fo2 + 2Fc2)/3 |
4962 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
C4H12N+·CF3O3S− | V = 973.6 (5) Å3 |
Mr = 223.22 | Z = 4 |
Monoclinic, P21/m | Mo Kα radiation |
a = 10.216 (3) Å | µ = 0.36 mm−1 |
b = 8.507 (2) Å | T = 110 K |
c = 11.445 (4) Å | 0.22 × 0.16 × 0.07 mm |
β = 101.807 (17)° |
Bruker Kappa-axis APEXII diffractometer | 4962 measured reflections |
Absorption correction: multi-scan (TWINABS; Bruker, 2012) | 4962 independent reflections |
Tmin = 0.225, Tmax = 0.438 | 3766 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.42 e Å−3 |
4962 reflections | Δρmin = −0.54 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The structural model was fit to the data using full matrix least-squares based on F2. The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The initial indexing indicated the sample crystal was a non-merohedral twin. The twin law was determined to be: Twin Law, Sample 1 of 1 Transforms h1.1(1)->h1.2(2) 0.08833 − 0.00004 0.90535 0.00561 − 0.99998 0.00058 1.09590 0.00873 − 0.08833 which corresponds to an approximately −179.7° rotation about the [101] vector in reciprocal space. The data demonstrated that the minor component refined to a normalized occupancy value of 0.02379 (22). Due to the small size of the secondary domain, the larger R1 value obtained when including all the data, and increased levels of noise observed in the difference map, the structural model was refined using only data from the dominant component of the twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | −0.16040 (11) | 0.7500 | 0.59284 (10) | 0.01428 (19) | |
C1 | −0.22304 (11) | 0.60593 (11) | 0.53007 (10) | 0.02051 (19) | |
H1A | −0.3190 | 0.6053 | 0.5302 | 0.031* | |
H1B | −0.1811 | 0.5122 | 0.5714 | 0.031* | |
H1C | −0.2101 | 0.6060 | 0.4476 | 0.031* | |
C2 | −0.01370 (14) | 0.7500 | 0.59337 (15) | 0.0225 (3) | |
H2A | 0.0293 | 0.6627 | 0.6426 | 0.034* | 0.5 |
H2B | 0.0257 | 0.8496 | 0.6264 | 0.034* | 0.5 |
H2C | −0.0001 | 0.7377 | 0.5116 | 0.034* | 0.5 |
C3 | −0.17984 (16) | 0.7500 | 0.71906 (13) | 0.0205 (3) | |
H3A | −0.1312 | 0.6613 | 0.7623 | 0.031* | 0.5 |
H3B | −0.2753 | 0.7400 | 0.7195 | 0.031* | 0.5 |
H3C | −0.1458 | 0.8487 | 0.7580 | 0.031* | 0.5 |
C4 | 0.35549 (17) | 0.7500 | 0.79047 (14) | 0.0233 (3) | |
F1 | 0.46663 (13) | 0.7500 | 0.87653 (9) | 0.0399 (3) | |
F2 | 0.28477 (9) | 0.62388 (10) | 0.80708 (7) | 0.0381 (2) | |
S1 | 0.39742 (3) | 0.7500 | 0.64268 (3) | 0.01368 (7) | |
O1 | 0.26921 (11) | 0.7500 | 0.56276 (10) | 0.0209 (2) | |
O2 | 0.47442 (8) | 0.89272 (9) | 0.64345 (8) | 0.02385 (16) | |
N2 | 0.40095 (11) | 0.7500 | 0.20271 (10) | 0.01435 (19) | |
C5 | 0.37919 (15) | 0.7500 | 0.32830 (12) | 0.0183 (2) | |
H5A | 0.4104 | 0.6501 | 0.3668 | 0.027* | 0.5 |
H5B | 0.2837 | 0.7630 | 0.3275 | 0.027* | 0.5 |
H5C | 0.4293 | 0.8369 | 0.3727 | 0.027* | 0.5 |
C6 | 0.33803 (11) | 0.60648 (11) | 0.13956 (9) | 0.01936 (18) | |
H6A | 0.2419 | 0.6067 | 0.1388 | 0.029* | |
H6B | 0.3789 | 0.5124 | 0.1812 | 0.029* | |
H6C | 0.3520 | 0.6062 | 0.0574 | 0.029* | |
C7 | 0.54785 (14) | 0.7500 | 0.20474 (15) | 0.0210 (3) | |
H7A | 0.5885 | 0.6554 | 0.2457 | 0.032* | 0.5 |
H7B | 0.5888 | 0.8435 | 0.2471 | 0.032* | 0.5 |
H7C | 0.5624 | 0.7511 | 0.1227 | 0.032* | 0.5 |
S2 | 0.96358 (3) | 0.7500 | 0.22288 (3) | 0.01601 (7) | |
O3 | 0.84541 (13) | 0.7500 | 0.27165 (12) | 0.0369 (3) | |
O4 | 1.04184 (10) | 0.89119 (11) | 0.24164 (9) | 0.0366 (2) | |
C8 | 0.89895 (18) | 0.7500 | 0.06244 (15) | 0.0276 (3) | |
F3 | 0.99738 (16) | 0.7500 | 0.00278 (12) | 0.0579 (4) | |
F4 | 0.82365 (12) | 0.62540 (14) | 0.02824 (9) | 0.0650 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0133 (4) | 0.0133 (4) | 0.0159 (5) | 0.000 | 0.0022 (4) | 0.000 |
C1 | 0.0234 (5) | 0.0161 (4) | 0.0210 (5) | −0.0036 (3) | 0.0023 (4) | −0.0028 (3) |
C2 | 0.0132 (6) | 0.0275 (7) | 0.0273 (7) | 0.000 | 0.0054 (5) | 0.000 |
C3 | 0.0237 (7) | 0.0212 (6) | 0.0169 (6) | 0.000 | 0.0045 (5) | 0.000 |
C4 | 0.0288 (7) | 0.0256 (7) | 0.0167 (6) | 0.000 | 0.0075 (5) | 0.000 |
F1 | 0.0435 (7) | 0.0592 (8) | 0.0139 (5) | 0.000 | −0.0017 (4) | 0.000 |
F2 | 0.0503 (5) | 0.0366 (4) | 0.0330 (4) | −0.0112 (4) | 0.0219 (4) | 0.0064 (3) |
S1 | 0.01419 (13) | 0.01330 (13) | 0.01369 (14) | 0.000 | 0.00323 (10) | 0.000 |
O1 | 0.0156 (4) | 0.0273 (5) | 0.0183 (5) | 0.000 | 0.0000 (4) | 0.000 |
O2 | 0.0249 (4) | 0.0208 (3) | 0.0263 (4) | −0.0082 (3) | 0.0063 (3) | −0.0009 (3) |
N2 | 0.0138 (5) | 0.0143 (4) | 0.0147 (5) | 0.000 | 0.0023 (4) | 0.000 |
C5 | 0.0220 (6) | 0.0191 (6) | 0.0142 (6) | 0.000 | 0.0047 (5) | 0.000 |
C6 | 0.0224 (4) | 0.0160 (4) | 0.0189 (4) | −0.0023 (3) | 0.0025 (3) | −0.0032 (3) |
C7 | 0.0137 (5) | 0.0242 (6) | 0.0258 (7) | 0.000 | 0.0054 (5) | 0.000 |
S2 | 0.01404 (14) | 0.01859 (15) | 0.01491 (15) | 0.000 | 0.00181 (11) | 0.000 |
O3 | 0.0216 (6) | 0.0640 (9) | 0.0276 (6) | 0.000 | 0.0107 (5) | 0.000 |
O4 | 0.0382 (5) | 0.0324 (5) | 0.0368 (5) | −0.0163 (4) | 0.0019 (4) | −0.0090 (4) |
C8 | 0.0267 (8) | 0.0349 (8) | 0.0180 (7) | 0.000 | −0.0027 (6) | 0.000 |
F3 | 0.0515 (8) | 0.1044 (12) | 0.0205 (5) | 0.000 | 0.0138 (5) | 0.000 |
F4 | 0.0755 (8) | 0.0681 (7) | 0.0412 (6) | −0.0331 (6) | −0.0116 (5) | −0.0202 (5) |
N1—C1 | 1.4965 (12) | N2—C6i | 1.4953 (12) |
N1—C1i | 1.4965 (12) | N2—C6 | 1.4954 (12) |
N1—C2 | 1.4974 (18) | N2—C7 | 1.4960 (18) |
N1—C3 | 1.4979 (19) | N2—C5 | 1.4988 (18) |
C1—H1A | 0.9800 | C5—H5A | 0.9800 |
C1—H1B | 0.9800 | C5—H5B | 0.9800 |
C1—H1C | 0.9800 | C5—H5C | 0.9800 |
C2—H2A | 0.9800 | C6—H6A | 0.9800 |
C2—H2B | 0.9800 | C6—H6B | 0.9800 |
C2—H2C | 0.9800 | C6—H6C | 0.9800 |
C3—H3A | 0.9800 | C7—H7A | 0.9800 |
C3—H3B | 0.9800 | C7—H7B | 0.9800 |
C3—H3C | 0.9800 | C7—H7C | 0.9800 |
C4—F2i | 1.3286 (12) | S2—O3 | 1.4299 (13) |
C4—F2 | 1.3286 (12) | S2—O4i | 1.4344 (9) |
C4—F1 | 1.342 (2) | S2—O4 | 1.4344 (9) |
C4—S1 | 1.8279 (16) | S2—C8 | 1.8198 (18) |
S1—O1 | 1.4360 (12) | C8—F4 | 1.3210 (14) |
S1—O2i | 1.4457 (8) | C8—F4i | 1.3210 (14) |
S1—O2 | 1.4457 (8) | C8—F3 | 1.326 (2) |
C1—N1—C1i | 109.96 (11) | C6i—N2—C6 | 109.47 (11) |
C1—N1—C2 | 109.34 (7) | C6i—N2—C7 | 109.76 (7) |
C1i—N1—C2 | 109.35 (7) | C6—N2—C7 | 109.76 (7) |
C1—N1—C3 | 109.57 (7) | C6i—N2—C5 | 109.27 (7) |
C1i—N1—C3 | 109.57 (7) | C6—N2—C5 | 109.27 (7) |
C2—N1—C3 | 109.03 (12) | C7—N2—C5 | 109.29 (11) |
N1—C1—H1A | 109.5 | N2—C5—H5A | 109.5 |
N1—C1—H1B | 109.5 | N2—C5—H5B | 109.5 |
H1A—C1—H1B | 109.5 | H5A—C5—H5B | 109.5 |
N1—C1—H1C | 109.5 | N2—C5—H5C | 109.5 |
H1A—C1—H1C | 109.5 | H5A—C5—H5C | 109.5 |
H1B—C1—H1C | 109.5 | H5B—C5—H5C | 109.5 |
N1—C2—H2A | 109.5 | N2—C6—H6A | 109.5 |
N1—C2—H2B | 109.5 | N2—C6—H6B | 109.5 |
H2A—C2—H2B | 109.5 | H6A—C6—H6B | 109.5 |
N1—C2—H2C | 109.5 | N2—C6—H6C | 109.5 |
H2A—C2—H2C | 109.5 | H6A—C6—H6C | 109.5 |
H2B—C2—H2C | 109.5 | H6B—C6—H6C | 109.5 |
N1—C3—H3A | 109.5 | N2—C7—H7A | 109.5 |
N1—C3—H3B | 109.5 | N2—C7—H7B | 109.5 |
H3A—C3—H3B | 109.5 | H7A—C7—H7B | 109.5 |
N1—C3—H3C | 109.5 | N2—C7—H7C | 109.5 |
H3A—C3—H3C | 109.5 | H7A—C7—H7C | 109.5 |
H3B—C3—H3C | 109.5 | H7B—C7—H7C | 109.5 |
F2i—C4—F2 | 107.70 (14) | O3—S2—O4i | 115.51 (5) |
F2i—C4—F1 | 107.34 (9) | O3—S2—O4 | 115.51 (5) |
F2—C4—F1 | 107.34 (9) | O4i—S2—O4 | 113.72 (9) |
F2i—C4—S1 | 111.69 (8) | O3—S2—C8 | 103.47 (9) |
F2—C4—S1 | 111.69 (8) | O4i—S2—C8 | 103.13 (5) |
F1—C4—S1 | 110.85 (11) | O4—S2—C8 | 103.13 (5) |
O1—S1—O2i | 115.35 (4) | F4—C8—F4i | 106.70 (16) |
O1—S1—O2 | 115.35 (4) | F4—C8—F3 | 107.72 (11) |
O2i—S1—O2 | 114.24 (7) | F4i—C8—F3 | 107.72 (11) |
O1—S1—C4 | 103.51 (7) | F4—C8—S2 | 111.60 (10) |
O2i—S1—C4 | 102.98 (5) | F4i—C8—S2 | 111.60 (10) |
O2—S1—C4 | 102.98 (5) | F3—C8—S2 | 111.27 (13) |
F2i—C4—S1—O1 | −60.35 (10) | O3—S2—C8—F4 | −59.64 (11) |
F2—C4—S1—O1 | 60.35 (10) | O4i—S2—C8—F4 | 61.06 (13) |
F1—C4—S1—O1 | 180.000 (1) | O4—S2—C8—F4 | 179.65 (11) |
F2i—C4—S1—O2i | 179.18 (9) | O3—S2—C8—F4i | 59.64 (11) |
F2—C4—S1—O2i | −60.13 (11) | O4i—S2—C8—F4i | −179.65 (11) |
F1—C4—S1—O2i | 59.52 (4) | O4—S2—C8—F4i | −61.06 (13) |
F2i—C4—S1—O2 | 60.13 (12) | O3—S2—C8—F3 | 180.0 |
F2—C4—S1—O2 | −179.18 (9) | O4i—S2—C8—F3 | −59.29 (5) |
F1—C4—S1—O2 | −59.52 (4) | O4—S2—C8—F3 | 59.29 (5) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O4ii | 0.98 | 2.53 | 3.4075 (16) | 149 |
C1—H1C···O3iii | 0.98 | 2.52 | 3.4038 (18) | 150 |
C3—H3A···O4ii | 0.98 | 2.48 | 3.3536 (13) | 149 |
C3—H3C···O4iv | 0.98 | 2.45 | 3.3536 (13) | 152 |
C5—H5A···O2ii | 0.98 | 2.50 | 3.3734 (12) | 148 |
C5—H5C···O2iv | 0.98 | 2.52 | 3.3734 (12) | 145 |
C6—H6A···O4v | 0.98 | 2.56 | 3.4594 (17) | 153 |
C6—H6B···O2ii | 0.98 | 2.47 | 3.3463 (15) | 149 |
Symmetry codes: (ii) −x+1, y−1/2, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+2, −z+1; (v) x−1, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O4i | 0.98 | 2.53 | 3.4075 (16) | 148.5 |
C1—H1C···O3ii | 0.98 | 2.52 | 3.4038 (18) | 150.2 |
C3—H3A···O4i | 0.98 | 2.48 | 3.3536 (13) | 148.8 |
C3—H3C···O4iii | 0.98 | 2.45 | 3.3536 (13) | 152.4 |
C5—H5A···O2i | 0.98 | 2.50 | 3.3734 (12) | 148.3 |
C5—H5C···O2iii | 0.98 | 2.52 | 3.3734 (12) | 145.0 |
C6—H6A···O4iv | 0.98 | 2.56 | 3.4594 (17) | 152.7 |
C6—H6B···O2i | 0.98 | 2.47 | 3.3463 (15) | 149.4 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) x−1, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | C4H12N+·CF3O3S− |
Mr | 223.22 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 110 |
a, b, c (Å) | 10.216 (3), 8.507 (2), 11.445 (4) |
β (°) | 101.807 (17) |
V (Å3) | 973.6 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.22 × 0.16 × 0.07 |
Data collection | |
Diffractometer | Bruker Kappa-axis APEXII |
Absorption correction | Multi-scan (TWINABS; Bruker, 2012) |
Tmin, Tmax | 0.225, 0.438 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4962, 4962, 3766 |
Rint | ? |
(sin θ/λ)max (Å−1) | 0.835 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.106, 1.06 |
No. of reflections | 4962 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.54 |
Computer programs: APEX2 (Bruker, 2013), CELL_NOW (Bruker, 2008), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008), cif2tables.py (Boyle, 2008).
Acknowledgements
We thank the NSERC (Canada), the NSERC CGS program for a scholarship to JLB, and the University of Western Ontario for financial support. We also thank Dr Paul D. Boyle for aid in the structure refinement.
References
Bartoli, S. & Roelens, S. (2002). J. Am. Chem. Soc. 124, 8307–8315. Web of Science CrossRef PubMed CAS Google Scholar
Blake, A. J., Radek, C. & Schröder, M. (1993). Acta Cryst. C49, 1652–1654. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bond, A. M., Lawrance, G. A., Lay, P. A. & Sargeson, A. M. (1983). Inorg. Chem. 22, 2010–2021. CrossRef CAS Web of Science Google Scholar
Bourque, J. L., Boyle, P. D. & Baines, K. M. (2015). Chem. Eur. J. 21, 9790–9796. Web of Science CSD CrossRef CAS PubMed Google Scholar
Boyle, P. D. (2008). https://www.xray.ncsu .edu/PyCIFUtils/ Google Scholar
Bruker (2008). CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
den Hartog, T., Sarria Toro, J. M., Couzijn, E. P. A. & Chen, P. (2014). Chem. Commun. 50, 10604–10607. Web of Science CrossRef CAS Google Scholar
Ferraris, J. P., Eissa, M. M., Brotherston, I. D., Loveday, D. C. & Moxey, A. A. (1998). J. Electroanal. Chem. 459, 57–69. Web of Science CrossRef CAS Google Scholar
Gänswein, B. & Brauer, G. (1975). Z. Anorg. Allg. Chem. 415, 125–132. Google Scholar
Leclercq, L., Suisse, I., Nowogrocki, G. & Agbossou-Niedercorn, F. (2007). Green Chem. 9, 1097–1103. Web of Science CSD CrossRef CAS Google Scholar
Leclercq, L., Suisse, I., Nowogrocki, G. & Agbossou-Niedercorn, F. (2008). J. Mol. Struct. 892, 433–437. Web of Science CSD CrossRef CAS Google Scholar
Leclercq, L., Suisse, I., Roussel, P. & Agbossou-Niedercorn, F. (2012). J. Mol. Struct. 1010, 152–157. Web of Science CSD CrossRef CAS Google Scholar
Lei, Y., Zhang, R., Wu, Q., Mei, H., Xiao, B. & Li, G. (2014). J. Mol. Catal. A Chem. 381, 120–125. Web of Science CrossRef CAS Google Scholar
Li, L., Loveday, D. C., Mudigonda, D. S. K. & Ferraris, J. P. (2002). J. Electrochem. Soc. 149, A1201–A1207. Web of Science CrossRef CAS Google Scholar
Loveday, D. C., Hmyene, M. & Ferraris, J. P. (1997). Synth. Met. 84, 245–246. CrossRef CAS Web of Science Google Scholar
Sagl, D. J. & Martin, J. C. (1988). J. Am. Chem. Soc. 110, 5827–5833. CrossRef CAS Web of Science Google Scholar
Sarria Toro, J. M., den Hartog, T. & Chen, P. (2014). Chem. Commun. 50, 10608–10610. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Ue, M., Ida, K. & Mori, S. (1994). J. Electrochem. Soc. 141, 2989–2996. CrossRef CAS Web of Science Google Scholar
Zhang, J., Zou, F., Yu, X., Huang, X. & Qu, Y. (2014). Colloid Polym. Sci. 292, 2549–2554. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.