organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­methyl­ammonium tri­fluoro­methane­sulfonate

aDepartment of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
*Correspondence e-mail: jbourqu5@uwo.ca

Edited by O. Blacque, University of Zürich, Switzerland (Received 2 March 2016; accepted 3 March 2016; online 11 March 2016)

The structure of tetra­methyl­ammonium tri­fluoro­methane­sulfonate, C4H12N+·CF3SO3, was determined at 110 K in the monoclinic space group P21/m. The salt, which contains two cations and two anions in the asymmetric unit, has a network structure displaying C—H⋯O hydrogen bonding. Both the cation and the anion lie on special positions (mirror planes).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Despite the report of the synthesis of the title compound in the literature (Sarria Toro et al., 2014[Sarria Toro, J. M., den Hartog, T. & Chen, P. (2014). Chem. Commun. 50, 10608-10610.]; and others), no structural data has been presented. The title compound has been used in various applications, such as an electrolyte for electrochemical studies and syntheses (Bond et al., 1983[Bond, A. M., Lawrance, G. A., Lay, P. A. & Sargeson, A. M. (1983). Inorg. Chem. 22, 2010-2021.]; Ferraris et al., 1998[Ferraris, J. P., Eissa, M. M., Brotherston, I. D., Loveday, D. C. & Moxey, A. A. (1998). J. Electroanal. Chem. 459, 57-69.]; Li et al., 2002[Li, L., Loveday, D. C., Mudigonda, D. S. K. & Ferraris, J. P. (2002). J. Electrochem. Soc. 149, A1201-A1207.]; Loveday et al., 1997[Loveday, D. C., Hmyene, M. & Ferraris, J. P. (1997). Synth. Met. 84, 245-246.]; Ue et al., 1994[Ue, M., Ida, K. & Mori, S. (1994). J. Electrochem. Soc. 141, 2989-2996.]), as a reagent in traditional synthesis (den Hartog et al., 2014[den Hartog, T., Sarria Toro, J. M., Couzijn, E. P. A. & Chen, P. (2014). Chem. Commun. 50, 10604-10607.]; Lei et al., 2014[Lei, Y., Zhang, R., Wu, Q., Mei, H., Xiao, B. & Li, G. (2014). J. Mol. Catal. A Chem. 381, 120-125.]; Sagl & Martin, 1988[Sagl, D. J. & Martin, J. C. (1988). J. Am. Chem. Soc. 110, 5827-5833.]; Zhang et al., 2014[Zhang, J., Zou, F., Yu, X., Huang, X. & Qu, Y. (2014). Colloid Polym. Sci. 292, 2549-2554.]), as well as other studies (i.e. Bartoli & Roelens, 2002[Bartoli, S. & Roelens, S. (2002). J. Am. Chem. Soc. 124, 8307-8315.]). For structures of other tri­fluoro­methane­sulfonate salts of tetra­alkyl­ammonium and ammonium cations, see: [NBu4][O3SCF3]: Blake et al. (1993[Blake, A. J., Radek, C. & Schröder, M. (1993). Acta Cryst. C49, 1652-1654.]); [NBu4][O3SCF3] co-crystals: Leclercq et al. (2007[Leclercq, L., Suisse, I., Nowogrocki, G. & Agbossou-Niedercorn, F. (2007). Green Chem. 9, 1097-1103.], 2008[Leclercq, L., Suisse, I., Nowogrocki, G. & Agbossou-Niedercorn, F. (2008). J. Mol. Struct. 892, 433-437.], 2012[Leclercq, L., Suisse, I., Roussel, P. & Agbossou-Niedercorn, F. (2012). J. Mol. Struct. 1010, 152-157.]) and [NH4][O3SCF3]: Gänswein & Brauer (1975[Gänswein, B. & Brauer, G. (1975). Z. Anorg. Allg. Chem. 415, 125-132.]).

The bonding within the individual ions is as expected. The asymmetric unit is composed of two formula units (Fig. 1[link]), with all four of the ions being positioned along a crystallographic mirror plane that is perpendicular to the [010] layer. Individual ions are connected by a three-dimensional network of hydrogen bonds (Table 1[link] and Fig. 2[link]). The strongest inter­actions are found between C3 and O4 and C6 and O2. These generate the alternating ion types along the [010] layer. The ions are also connected by hydrogen bonds perpendicular to the [010] layer, in both the [100] and the [001] directions. These hold the ions of the asymmetric unit together along the crystallographic mirror plane. These hydrogen bonds are between C1 and O4, C1 and O3 and C6 and O4. In addition, other short contacts were discerned in the three-dimensional structure, however, it is unclear as to their nature.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O4i 0.98 2.53 3.4075 (16) 149
C1—H1C⋯O3ii 0.98 2.52 3.4038 (18) 150
C3—H3A⋯O4i 0.98 2.48 3.3536 (13) 149
C3—H3C⋯O4iii 0.98 2.45 3.3536 (13) 152
C5—H5A⋯O2i 0.98 2.50 3.3734 (12) 148
C5—H5C⋯O2iii 0.98 2.52 3.3734 (12) 145
C6—H6A⋯O4iv 0.98 2.56 3.4594 (17) 153
C6—H6B⋯O2i 0.98 2.47 3.3463 (15) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) -x+1, -y+2, -z+1; (iv) [x-1, -y+{\script{3\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the c axis. H atoms have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized according to literature procedures (Sarria Toro et al., 2014[Sarria Toro, J. M., den Hartog, T. & Chen, P. (2014). Chem. Commun. 50, 10608-10610.]). Single crystals suitable for a diffraction study were serendipitously obtained from an attempted anion exchange reaction. A mixture of a [Ga­2X2(cryptand-222)]2+ dication (Bourque et al., 2015[Bourque, J. L., Boyle, P. D. & Baines, K. M. (2015). Chem. Eur. J. 21, 9790-9796.]) with mixed tetra­halogallate and tri­fluoro­methane­sulfonate anions and an excess of the title compound was dissolved in aceto­nitrile (5 ml) and cooled to −20°C. Single crystals of the title compound were obtained after several days.

Refinement

Crystal data, data collection and refinement details are shown in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4H12N+·CF3O3S
Mr 223.22
Crystal system, space group Monoclinic, P21/m
Temperature (K) 110
a, b, c (Å) 10.216 (3), 8.507 (2), 11.445 (4)
β (°) 101.807 (17)
V3) 973.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.22 × 0.16 × 0.07
 
Data collection
Diffractometer Bruker Kappa-axis APEXII
Absorption correction Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.225, 0.438
No. of measured, independent and observed [I > 2σ(I)] reflections 4962, 4962, 3766
(sin θ/λ)max−1) 0.835
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.06
No. of reflections 4962
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.54
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), CELL_NOW (Bruker, 2008[Bruker (2008). CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), cif2tables.py (Boyle, 2008[Boyle, P. D. (2008). https://www.xray.ncsu .edu/PyCIFUtils/]).

Structural data


Experimental top

The title compound was synthesized according to literature procedures (Sarria Toro et al., 2014). Single crystals suitable for a diffraction study were serendipitously obtained from an attempted anion exchange reaction. A mixture of a [Ga­2X2(cryptand-222)]2+ dication (Bourque et al., 2015) with mixed tetrahalogallate and trifluoromethanesulfonate anions and an excess of the title compound was dissolved in acetonitrile (5 ml) and cooled to −20°C. Single crystals of the title compound were obtained after several days.

Refinement top

Crystal data, data collection and refinement details are shown in Table 2.

Structure description top

Despite the report of the synthesis of the title compound in the literature (Sarria Toro et al., 2014; and others), no structural data has been presented. The title compound has been used in various applications, such as an electrolyte for electrochemical studies and syntheses (Bond et al., 1983; Ferraris et al., 1998; Li et al., 2002; Loveday et al., 1997; Ue et al., 1994), as a reagent in traditional syntheses (den Hartog et al., 2014; Lei et al., 2014; Sagl & Martin, 1988; Zhang et al., 2014), as well as other studies (i.e. Bartoli & Roelens, 2002). For structures of other trifluoromethanesulfonate salts of tetraalkylammonium and ammonium cations, see: [NBu4][O3SCF3]: Blake et al. (1993); [NBu4][O3SCF3] co-crystals: Leclercq et al. (2007, 2008, 2012) and [NH4][O3SCF3]: Gänswein & Brauer (1975).

The bonding within the individual ions is as expected. The asymmetric unit is composed of two formula units (Fig. 1), with all four of the ions being positioned along a crystallographic mirror plane that is perpendicular to the [010] layer. Individual ions are connected by a three-dimensional network of hydrogen bonds (Table 1 and Fig. 2). The strongest interactions are found between C3 and O4 and C6 and O2. These generate the alternating ion types along the [010] layer. The ions are also connected by hydrogen bonds perpendicular to the [010] layer, in both the [100] and the [001] directions. These hold the ions of the asymmetric unit together along the crystallographic mirror plane. These hydrogen bonds are between C1 and O4, C1 and O3 and C6 and O4. In addition, other short contacts were shown in the three-dimensional structure, however, it is unclear as to their nature.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: CELL_NOW (Bruker, 2008); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: cif2tables.py (Boyle, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis. H atoms have been omitted for clarity.
Tetramethylammonium trifluoromethanesulfonate top
Crystal data top
C4H12N+·CF3O3SF(000) = 464
Mr = 223.22Dx = 1.523 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 10.216 (3) ÅCell parameters from 7184 reflections
b = 8.507 (2) Åθ = 3.1–35.8°
c = 11.445 (4) ŵ = 0.36 mm1
β = 101.807 (17)°T = 110 K
V = 973.6 (5) Å3Plate, colourless
Z = 40.22 × 0.16 × 0.07 mm
Data collection top
Bruker Kappa-axis APEXII
diffractometer
4962 independent reflections
Radiation source: sealed tube3766 reflections with I > 2σ(I)
phi and ω scansθmax = 36.4°, θmin = 2.4°
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
h = 1716
Tmin = 0.225, Tmax = 0.438k = 014
4962 measured reflectionsl = 019
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.1452P]
where P = (Fo2 + 2Fc2)/3
4962 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C4H12N+·CF3O3SV = 973.6 (5) Å3
Mr = 223.22Z = 4
Monoclinic, P21/mMo Kα radiation
a = 10.216 (3) ŵ = 0.36 mm1
b = 8.507 (2) ÅT = 110 K
c = 11.445 (4) Å0.22 × 0.16 × 0.07 mm
β = 101.807 (17)°
Data collection top
Bruker Kappa-axis APEXII
diffractometer
4962 measured reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
4962 independent reflections
Tmin = 0.225, Tmax = 0.4383766 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
4962 reflectionsΔρmin = 0.54 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structural model was fit to the data using full matrix least-squares based on F2. The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The initial indexing indicated the sample crystal was a non-merohedral twin. The twin law was determined to be:

Twin Law,

Sample 1 of 1 Transforms h1.1(1)->h1.2(2)

0.08833 − 0.00004 0.90535

0.00561 − 0.99998 0.00058

1.09590 0.00873 − 0.08833

which corresponds to an approximately −179.7° rotation about the [101] vector in reciprocal space. The data demonstrated that the minor component refined to a normalized occupancy value of 0.02379 (22). Due to the small size of the secondary domain, the larger R1 value obtained when including all the data, and increased levels of noise observed in the difference map, the structural model was refined using only data from the dominant component of the twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.16040 (11)0.75000.59284 (10)0.01428 (19)
C10.22304 (11)0.60593 (11)0.53007 (10)0.02051 (19)
H1A0.31900.60530.53020.031*
H1B0.18110.51220.57140.031*
H1C0.21010.60600.44760.031*
C20.01370 (14)0.75000.59337 (15)0.0225 (3)
H2A0.02930.66270.64260.034*0.5
H2B0.02570.84960.62640.034*0.5
H2C0.00010.73770.51160.034*0.5
C30.17984 (16)0.75000.71906 (13)0.0205 (3)
H3A0.13120.66130.76230.031*0.5
H3B0.27530.74000.71950.031*0.5
H3C0.14580.84870.75800.031*0.5
C40.35549 (17)0.75000.79047 (14)0.0233 (3)
F10.46663 (13)0.75000.87653 (9)0.0399 (3)
F20.28477 (9)0.62388 (10)0.80708 (7)0.0381 (2)
S10.39742 (3)0.75000.64268 (3)0.01368 (7)
O10.26921 (11)0.75000.56276 (10)0.0209 (2)
O20.47442 (8)0.89272 (9)0.64345 (8)0.02385 (16)
N20.40095 (11)0.75000.20271 (10)0.01435 (19)
C50.37919 (15)0.75000.32830 (12)0.0183 (2)
H5A0.41040.65010.36680.027*0.5
H5B0.28370.76300.32750.027*0.5
H5C0.42930.83690.37270.027*0.5
C60.33803 (11)0.60648 (11)0.13956 (9)0.01936 (18)
H6A0.24190.60670.13880.029*
H6B0.37890.51240.18120.029*
H6C0.35200.60620.05740.029*
C70.54785 (14)0.75000.20474 (15)0.0210 (3)
H7A0.58850.65540.24570.032*0.5
H7B0.58880.84350.24710.032*0.5
H7C0.56240.75110.12270.032*0.5
S20.96358 (3)0.75000.22288 (3)0.01601 (7)
O30.84541 (13)0.75000.27165 (12)0.0369 (3)
O41.04184 (10)0.89119 (11)0.24164 (9)0.0366 (2)
C80.89895 (18)0.75000.06244 (15)0.0276 (3)
F30.99738 (16)0.75000.00278 (12)0.0579 (4)
F40.82365 (12)0.62540 (14)0.02824 (9)0.0650 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0133 (4)0.0133 (4)0.0159 (5)0.0000.0022 (4)0.000
C10.0234 (5)0.0161 (4)0.0210 (5)0.0036 (3)0.0023 (4)0.0028 (3)
C20.0132 (6)0.0275 (7)0.0273 (7)0.0000.0054 (5)0.000
C30.0237 (7)0.0212 (6)0.0169 (6)0.0000.0045 (5)0.000
C40.0288 (7)0.0256 (7)0.0167 (6)0.0000.0075 (5)0.000
F10.0435 (7)0.0592 (8)0.0139 (5)0.0000.0017 (4)0.000
F20.0503 (5)0.0366 (4)0.0330 (4)0.0112 (4)0.0219 (4)0.0064 (3)
S10.01419 (13)0.01330 (13)0.01369 (14)0.0000.00323 (10)0.000
O10.0156 (4)0.0273 (5)0.0183 (5)0.0000.0000 (4)0.000
O20.0249 (4)0.0208 (3)0.0263 (4)0.0082 (3)0.0063 (3)0.0009 (3)
N20.0138 (5)0.0143 (4)0.0147 (5)0.0000.0023 (4)0.000
C50.0220 (6)0.0191 (6)0.0142 (6)0.0000.0047 (5)0.000
C60.0224 (4)0.0160 (4)0.0189 (4)0.0023 (3)0.0025 (3)0.0032 (3)
C70.0137 (5)0.0242 (6)0.0258 (7)0.0000.0054 (5)0.000
S20.01404 (14)0.01859 (15)0.01491 (15)0.0000.00181 (11)0.000
O30.0216 (6)0.0640 (9)0.0276 (6)0.0000.0107 (5)0.000
O40.0382 (5)0.0324 (5)0.0368 (5)0.0163 (4)0.0019 (4)0.0090 (4)
C80.0267 (8)0.0349 (8)0.0180 (7)0.0000.0027 (6)0.000
F30.0515 (8)0.1044 (12)0.0205 (5)0.0000.0138 (5)0.000
F40.0755 (8)0.0681 (7)0.0412 (6)0.0331 (6)0.0116 (5)0.0202 (5)
Geometric parameters (Å, º) top
N1—C11.4965 (12)N2—C6i1.4953 (12)
N1—C1i1.4965 (12)N2—C61.4954 (12)
N1—C21.4974 (18)N2—C71.4960 (18)
N1—C31.4979 (19)N2—C51.4988 (18)
C1—H1A0.9800C5—H5A0.9800
C1—H1B0.9800C5—H5B0.9800
C1—H1C0.9800C5—H5C0.9800
C2—H2A0.9800C6—H6A0.9800
C2—H2B0.9800C6—H6B0.9800
C2—H2C0.9800C6—H6C0.9800
C3—H3A0.9800C7—H7A0.9800
C3—H3B0.9800C7—H7B0.9800
C3—H3C0.9800C7—H7C0.9800
C4—F2i1.3286 (12)S2—O31.4299 (13)
C4—F21.3286 (12)S2—O4i1.4344 (9)
C4—F11.342 (2)S2—O41.4344 (9)
C4—S11.8279 (16)S2—C81.8198 (18)
S1—O11.4360 (12)C8—F41.3210 (14)
S1—O2i1.4457 (8)C8—F4i1.3210 (14)
S1—O21.4457 (8)C8—F31.326 (2)
C1—N1—C1i109.96 (11)C6i—N2—C6109.47 (11)
C1—N1—C2109.34 (7)C6i—N2—C7109.76 (7)
C1i—N1—C2109.35 (7)C6—N2—C7109.76 (7)
C1—N1—C3109.57 (7)C6i—N2—C5109.27 (7)
C1i—N1—C3109.57 (7)C6—N2—C5109.27 (7)
C2—N1—C3109.03 (12)C7—N2—C5109.29 (11)
N1—C1—H1A109.5N2—C5—H5A109.5
N1—C1—H1B109.5N2—C5—H5B109.5
H1A—C1—H1B109.5H5A—C5—H5B109.5
N1—C1—H1C109.5N2—C5—H5C109.5
H1A—C1—H1C109.5H5A—C5—H5C109.5
H1B—C1—H1C109.5H5B—C5—H5C109.5
N1—C2—H2A109.5N2—C6—H6A109.5
N1—C2—H2B109.5N2—C6—H6B109.5
H2A—C2—H2B109.5H6A—C6—H6B109.5
N1—C2—H2C109.5N2—C6—H6C109.5
H2A—C2—H2C109.5H6A—C6—H6C109.5
H2B—C2—H2C109.5H6B—C6—H6C109.5
N1—C3—H3A109.5N2—C7—H7A109.5
N1—C3—H3B109.5N2—C7—H7B109.5
H3A—C3—H3B109.5H7A—C7—H7B109.5
N1—C3—H3C109.5N2—C7—H7C109.5
H3A—C3—H3C109.5H7A—C7—H7C109.5
H3B—C3—H3C109.5H7B—C7—H7C109.5
F2i—C4—F2107.70 (14)O3—S2—O4i115.51 (5)
F2i—C4—F1107.34 (9)O3—S2—O4115.51 (5)
F2—C4—F1107.34 (9)O4i—S2—O4113.72 (9)
F2i—C4—S1111.69 (8)O3—S2—C8103.47 (9)
F2—C4—S1111.69 (8)O4i—S2—C8103.13 (5)
F1—C4—S1110.85 (11)O4—S2—C8103.13 (5)
O1—S1—O2i115.35 (4)F4—C8—F4i106.70 (16)
O1—S1—O2115.35 (4)F4—C8—F3107.72 (11)
O2i—S1—O2114.24 (7)F4i—C8—F3107.72 (11)
O1—S1—C4103.51 (7)F4—C8—S2111.60 (10)
O2i—S1—C4102.98 (5)F4i—C8—S2111.60 (10)
O2—S1—C4102.98 (5)F3—C8—S2111.27 (13)
F2i—C4—S1—O160.35 (10)O3—S2—C8—F459.64 (11)
F2—C4—S1—O160.35 (10)O4i—S2—C8—F461.06 (13)
F1—C4—S1—O1180.000 (1)O4—S2—C8—F4179.65 (11)
F2i—C4—S1—O2i179.18 (9)O3—S2—C8—F4i59.64 (11)
F2—C4—S1—O2i60.13 (11)O4i—S2—C8—F4i179.65 (11)
F1—C4—S1—O2i59.52 (4)O4—S2—C8—F4i61.06 (13)
F2i—C4—S1—O260.13 (12)O3—S2—C8—F3180.0
F2—C4—S1—O2179.18 (9)O4i—S2—C8—F359.29 (5)
F1—C4—S1—O259.52 (4)O4—S2—C8—F359.29 (5)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O4ii0.982.533.4075 (16)149
C1—H1C···O3iii0.982.523.4038 (18)150
C3—H3A···O4ii0.982.483.3536 (13)149
C3—H3C···O4iv0.982.453.3536 (13)152
C5—H5A···O2ii0.982.503.3734 (12)148
C5—H5C···O2iv0.982.523.3734 (12)145
C6—H6A···O4v0.982.563.4594 (17)153
C6—H6B···O2ii0.982.473.3463 (15)149
Symmetry codes: (ii) x+1, y1/2, z+1; (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x1, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O4i0.982.533.4075 (16)148.5
C1—H1C···O3ii0.982.523.4038 (18)150.2
C3—H3A···O4i0.982.483.3536 (13)148.8
C3—H3C···O4iii0.982.453.3536 (13)152.4
C5—H5A···O2i0.982.503.3734 (12)148.3
C5—H5C···O2iii0.982.523.3734 (12)145.0
C6—H6A···O4iv0.982.563.4594 (17)152.7
C6—H6B···O2i0.982.473.3463 (15)149.4
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x1, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC4H12N+·CF3O3S
Mr223.22
Crystal system, space groupMonoclinic, P21/m
Temperature (K)110
a, b, c (Å)10.216 (3), 8.507 (2), 11.445 (4)
β (°) 101.807 (17)
V3)973.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.22 × 0.16 × 0.07
Data collection
DiffractometerBruker Kappa-axis APEXII
Absorption correctionMulti-scan
(TWINABS; Bruker, 2012)
Tmin, Tmax0.225, 0.438
No. of measured, independent and
observed [I > 2σ(I)] reflections
4962, 4962, 3766
Rint?
(sin θ/λ)max1)0.835
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.06
No. of reflections4962
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.54

Computer programs: APEX2 (Bruker, 2013), CELL_NOW (Bruker, 2008), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008), cif2tables.py (Boyle, 2008).

 

Acknowledgements

We thank the NSERC (Canada), the NSERC CGS program for a scholarship to JLB, and the University of Western Ontario for financial support. We also thank Dr Paul D. Boyle for aid in the structure refinement.

References

First citationBartoli, S. & Roelens, S. (2002). J. Am. Chem. Soc. 124, 8307–8315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlake, A. J., Radek, C. & Schröder, M. (1993). Acta Cryst. C49, 1652–1654.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBond, A. M., Lawrance, G. A., Lay, P. A. & Sargeson, A. M. (1983). Inorg. Chem. 22, 2010–2021.  CrossRef CAS Web of Science Google Scholar
First citationBourque, J. L., Boyle, P. D. & Baines, K. M. (2015). Chem. Eur. J. 21, 9790–9796.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoyle, P. D. (2008). https://www.xray.ncsu .edu/PyCIFUtils/  Google Scholar
First citationBruker (2008). CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationden Hartog, T., Sarria Toro, J. M., Couzijn, E. P. A. & Chen, P. (2014). Chem. Commun. 50, 10604–10607.  Web of Science CrossRef CAS Google Scholar
First citationFerraris, J. P., Eissa, M. M., Brotherston, I. D., Loveday, D. C. & Moxey, A. A. (1998). J. Electroanal. Chem. 459, 57–69.  Web of Science CrossRef CAS Google Scholar
First citationGänswein, B. & Brauer, G. (1975). Z. Anorg. Allg. Chem. 415, 125–132.  Google Scholar
First citationLeclercq, L., Suisse, I., Nowogrocki, G. & Agbossou-Niedercorn, F. (2007). Green Chem. 9, 1097–1103.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeclercq, L., Suisse, I., Nowogrocki, G. & Agbossou-Niedercorn, F. (2008). J. Mol. Struct. 892, 433–437.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeclercq, L., Suisse, I., Roussel, P. & Agbossou-Niedercorn, F. (2012). J. Mol. Struct. 1010, 152–157.  Web of Science CSD CrossRef CAS Google Scholar
First citationLei, Y., Zhang, R., Wu, Q., Mei, H., Xiao, B. & Li, G. (2014). J. Mol. Catal. A Chem. 381, 120–125.  Web of Science CrossRef CAS Google Scholar
First citationLi, L., Loveday, D. C., Mudigonda, D. S. K. & Ferraris, J. P. (2002). J. Electrochem. Soc. 149, A1201–A1207.  Web of Science CrossRef CAS Google Scholar
First citationLoveday, D. C., Hmyene, M. & Ferraris, J. P. (1997). Synth. Met. 84, 245–246.  CrossRef CAS Web of Science Google Scholar
First citationSagl, D. J. & Martin, J. C. (1988). J. Am. Chem. Soc. 110, 5827–5833.  CrossRef CAS Web of Science Google Scholar
First citationSarria Toro, J. M., den Hartog, T. & Chen, P. (2014). Chem. Commun. 50, 10608–10610.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUe, M., Ida, K. & Mori, S. (1994). J. Electrochem. Soc. 141, 2989–2996.  CrossRef CAS Web of Science Google Scholar
First citationZhang, J., Zou, F., Yu, X., Huang, X. & Qu, Y. (2014). Colloid Polym. Sci. 292, 2549–2554.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds