organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Bromo-1-octylindoline-2,3-dione

aLaboratoire de Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181. Ecole Nationale, Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France, cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014 Avenue Ibn Batoutta, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kharbachy26@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 28 February 2016; accepted 3 March 2016; online 11 March 2016)

The title compound, C16H20BrNO2, crystallizes with two mol­ecules in the asymmetric unit. The indoline ring system and the two ketone O atoms are nearly coplanar, with the largest deviations from the mean plane being 0.077 (2) and 0.055 (2) Å in the two mol­ecules. In each mol­ecule, the mean plane through the octyl chain is nearly perpendicular to the mean plane of the indoline ring system, as indicated by the dihedral angles between them of 86.6 (1) and 76.1 (1)°. In the crystal, mol­ecules are linked by week C—H⋯O hydrogen bonds, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin and 5-bromo­isatin have shown anxiolytic, sedative and anti­convulsant activities. They have proven to be good antagonists of natriuretic peptide receptors. In fact, some derivatives of isatins are already in use for the treatment of gastrointestinal stromal tumors and advanced renal cell carcinoma, while many other halogenated derivatives are in use for the treatment of cancer and leukemia. Probably the most important aspect of research surrounding isatin derivatives has evolved in the context of their anti­fungal and anti­viral activities (Sridhar et al., 2001a[Sridhar, S. K., Saravanan, M. & Ramesh, A. (2001a). Eur. J. Med. Chem. 36, 615-625.]; Sarangapani & Reddy, 1994[Sarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257-260.]; Verma et al., 2004[Verma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]; Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25-31.]; Sridhar & Sreenivasulu, 2001b[Sridhar, S. K. & Sreenivasulu, M. (2001b). Indian Drugs, 38, 531-534.]; Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]; Varma & Nobles, 1975[Varma, R. S. & Nobles, W. L. (1975). J. Pharm. Sci. 64, 881-882.]). We are concerned in developing new heteroatom-containing 5-bromoisatin derivatives and continue research work to explore other applications (Qachchachi et al., 2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.], 2014a[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o361-o362.],b[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o588.])

The asymmetric unit of the title compound is built up from two independent mol­ecules with different orientations, as shown in Fig. 1[link]. The two fused five- and six-membered ring systems in each mol­ecule are almost planar, with maximum deviation of 0.038 (2) Å for C7 in the first mol­ecule (N1/C1–C8) and -.029 (2) Å for C24 in the second mol­ecule (N2/C17–C24). The dihedral angle between the two indoline ring systems is 18.54 (6)°. Moreover, the mean plans through the octyl chains are almost perpendicular to the fused rings systems, as indicated by the torsion angles of C10—C9—N1—C5 = 86.0 (2) and C26—C25—N2—C21 = 85.3 (2)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1[link]), forming a three-dimensional network as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O4 0.99 2.59 3.572 (2) 174
C19—H19⋯O1i 0.95 2.51 3.181 (2) 128
C20—H20⋯O2i 0.95 2.56 3.457 (2) 159
C26—H26B⋯O2i 0.99 2.50 3.159 (2) 124
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2]
Figure 2
Mol­ecules linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Synthesis and crystallization

A mixture of 5-bromo­isatin (0.4 g, 1.76 mmol) and 1-bromo­octane (0.33 ml, 1.70 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. After filtering, the reaction was monitored by thin layer chromatography. Orange crystals of the title compound (m.p. = 347 K) were obtained in 69% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection (1 0 0) affected by the beamstop was removed during the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C16H20BrNO2
Mr 338.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 4.5284 (2), 13.2044 (6), 25.9133 (11)
α, β, γ (°) 96.663 (3), 90.728 (3), 95.393 (3)
V3) 1531.77 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.69
Crystal size (mm) 0.13 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.649, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32458, 7501, 6054
Rint 0.035
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.070, 1.22
No. of reflections 7501
No. of parameters 363
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.40
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

A mixture of 5-bromoisatin (0.4 g, 1.76 mmol) and 1-bromooctane (0.33 ml, 1.70 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. After filtering, the reaction was monitored by thin layer chromatography. Orange crystals of the title compound (m.p.= 347 K) were obtained in 69% yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The reflection (1 0 0) affected by the beamstop was removed during the final refinement.

Structure description top

Isatin and 5-bromoisatin have shown anxiolytic, sedative and anticonvulsant activities. They have proven to be good antagonists of natriuretic peptide receptors. In fact, some derivatives of isatins are already in use for the treatment of gastrointestinal stromal tumors and advanced renal cell carcinoma, while many other halogenated derivatives are in use for the treatment of cancer and leukemia. Probably the most demanding aspect of research surrounding isatin derivatives has evolved in the context of their antifungal and antiviral activities (Sridhar et al., 2001a; Sarangapani & Reddy, 1994; Verma et al., 2004; Pandeya et al., 1999; Sridhar & Sreenivasulu, 2001b; Aboul-Fadl et al., 2010; Varma & Nobles, 1975). We are concerned in developing new heteroatoms of 5-bromoisatin and continue research work to explore other applications (Qachchachi et al., 2013, 2014a,b)

The asymmetric unit of the title compound is built up from two independent molecules with different orientations, as shown in Fig.1. The two fused five- and six-membered ring systems in each molecule are almost planar, with maximum deviation of 0.038 (2) Å for C7 in the first molecule (N1/C1–C8) and -.029 (2) Å for C24 in the second molecule (N2/C17–C24). The dihedral angle between the two indoline ring systems is 18.54 (6)°. Moreover, the mean plans through the octyl chains are almost perpendicular to the fused rings systems, as indicated by the torsion angles of C10—C9—N1—C5 = 86.0 (2) and C26—C25—N2—C21 = 85.3 (2)°. In the crystal, molecules are linked by weak C—H···O hydrogen bonds (Table 1), forming a three-dimensional network as shown in Fig.2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Molecules linked by C—H···O hydrogen bonds, forming a three-dimensional network.
5-Bromo-1-octylindoline-2,3-dione top
Crystal data top
C16H20BrNO2Z = 4
Mr = 338.24F(000) = 696
Triclinic, P1Dx = 1.467 Mg m3
a = 4.5284 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2044 (6) ÅCell parameters from 7501 reflections
c = 25.9133 (11) Åθ = 1.6–28.3°
α = 96.663 (3)°µ = 2.69 mm1
β = 90.728 (3)°T = 100 K
γ = 95.393 (3)°Irregular shape, red
V = 1531.77 (12) Å30.13 × 0.12 × 0.10 mm
Data collection top
Bruker X8 APEX
diffractometer
7501 independent reflections
Radiation source: fine-focus sealed tube6054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.649, Tmax = 0.746k = 1717
32458 measured reflectionsl = 3434
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.006
7501 reflectionsΔρmax = 0.41 e Å3
363 parametersΔρmin = 0.40 e Å3
Crystal data top
C16H20BrNO2γ = 95.393 (3)°
Mr = 338.24V = 1531.77 (12) Å3
Triclinic, P1Z = 4
a = 4.5284 (2) ÅMo Kα radiation
b = 13.2044 (6) ŵ = 2.69 mm1
c = 25.9133 (11) ÅT = 100 K
α = 96.663 (3)°0.13 × 0.12 × 0.10 mm
β = 90.728 (3)°
Data collection top
Bruker X8 APEX
diffractometer
7501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6054 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.746Rint = 0.035
32458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.22Δρmax = 0.41 e Å3
7501 reflectionsΔρmin = 0.40 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33986 (5)0.53518 (2)0.43877 (2)0.02445 (6)
Br20.95415 (5)0.09935 (2)0.08242 (2)0.02568 (7)
C10.4271 (4)0.66359 (14)0.35847 (7)0.0167 (4)
H10.29960.70660.37750.020*
C20.4956 (4)0.57285 (15)0.37545 (7)0.0175 (4)
C30.6762 (4)0.50825 (15)0.34690 (7)0.0176 (4)
H30.71460.44550.35900.021*
C40.8007 (4)0.53444 (15)0.30092 (7)0.0168 (4)
H40.92400.49060.28140.020*
C50.7395 (4)0.62592 (14)0.28468 (7)0.0138 (4)
C60.5515 (4)0.68921 (14)0.31275 (7)0.0142 (4)
C70.5225 (4)0.77703 (14)0.28406 (7)0.0152 (4)
C80.7297 (4)0.76111 (15)0.23685 (7)0.0164 (4)
C91.0208 (4)0.62114 (14)0.19977 (7)0.0154 (4)
H9A1.15470.57710.21520.018*
H9B1.14510.67420.18370.018*
C100.8240 (4)0.55667 (14)0.15815 (7)0.0158 (4)
H10B0.69730.60160.14170.019*
H10A0.69210.50630.17470.019*
C110.9994 (4)0.49967 (14)0.11622 (7)0.0160 (4)
H11B1.13890.54960.10090.019*
H11A1.11790.45180.13230.019*
C120.7999 (4)0.43955 (14)0.07312 (7)0.0156 (4)
H12B0.64980.39390.08890.019*
H12A0.69330.48820.05530.019*
C130.9682 (4)0.37547 (15)0.03312 (7)0.0166 (4)
H13B1.11010.42160.01590.020*
H13A1.08430.32970.05120.020*
C140.7673 (4)0.31093 (15)0.00806 (7)0.0181 (4)
H14B0.64750.35660.02550.022*
H14A0.62890.26360.00910.022*
C150.9363 (4)0.24857 (15)0.04907 (7)0.0211 (4)
H15B1.07090.29590.06700.025*
H15A1.06000.20410.03160.025*
C160.7334 (5)0.18244 (17)0.08919 (8)0.0283 (5)
H16A0.60890.13210.07210.042*
H16C0.85330.14670.11540.042*
H16B0.60690.22580.10610.042*
C170.6291 (4)0.21003 (15)0.15971 (7)0.0168 (4)
H170.69440.26910.14380.020*
C180.7167 (4)0.11479 (15)0.14196 (7)0.0170 (4)
C190.6272 (4)0.02868 (15)0.16610 (7)0.0169 (4)
H190.69490.03540.15360.020*
C200.4396 (4)0.03486 (14)0.20842 (7)0.0153 (4)
H200.37710.02390.22490.018*
C210.3485 (4)0.12914 (14)0.22545 (7)0.0136 (4)
C220.4430 (4)0.21578 (14)0.20151 (7)0.0149 (4)
C230.3020 (4)0.30251 (15)0.22828 (7)0.0170 (4)
C240.1096 (4)0.25545 (15)0.27056 (7)0.0176 (4)
C250.0036 (4)0.08215 (14)0.29796 (7)0.0148 (4)
H25A0.05440.01700.27570.018*
H25B0.18060.11000.31100.018*
C260.1880 (4)0.05958 (14)0.34417 (7)0.0126 (4)
H26A0.25130.12430.36640.015*
H26B0.36820.02840.33160.015*
C270.0073 (4)0.01333 (14)0.37592 (7)0.0142 (4)
H27B0.15450.02290.39270.017*
H27A0.08550.07190.35200.017*
C280.1859 (4)0.05445 (14)0.41761 (7)0.0133 (4)
H28B0.28070.00390.44150.016*
H28A0.34560.09190.40090.016*
C290.0021 (4)0.12577 (14)0.44903 (7)0.0140 (4)
H29B0.16160.08810.46560.017*
H29A0.09760.18370.42500.017*
C300.1708 (4)0.16839 (14)0.49094 (7)0.0133 (4)
H30A0.32370.20910.47420.016*
H30B0.27450.11050.51400.016*
C310.0209 (4)0.23528 (15)0.52385 (7)0.0157 (4)
H31A0.11720.29500.50110.019*
H31B0.17960.19560.53930.019*
C320.1519 (4)0.27373 (15)0.56740 (7)0.0202 (4)
H32A0.30060.31710.55240.030*
H32C0.01500.31360.58800.030*
H32B0.25130.21510.58980.030*
N10.8458 (3)0.67046 (11)0.24066 (6)0.0152 (3)
N20.1553 (3)0.15416 (12)0.26640 (6)0.0143 (3)
O10.7723 (3)0.81734 (10)0.20352 (5)0.0234 (3)
O20.3696 (3)0.84731 (10)0.29132 (5)0.0209 (3)
O30.0522 (3)0.30056 (11)0.30020 (5)0.0248 (3)
O40.3105 (3)0.39090 (10)0.22037 (5)0.0234 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03487 (14)0.02370 (12)0.01569 (10)0.00250 (9)0.00435 (8)0.00609 (8)
Br20.02694 (13)0.03326 (14)0.01880 (11)0.00805 (9)0.00766 (8)0.00649 (9)
C10.0176 (10)0.0166 (10)0.0153 (9)0.0029 (8)0.0007 (7)0.0021 (8)
C20.0215 (11)0.0202 (11)0.0105 (8)0.0005 (8)0.0008 (7)0.0028 (7)
C30.0226 (11)0.0127 (10)0.0174 (9)0.0014 (8)0.0050 (8)0.0023 (8)
C40.0185 (10)0.0151 (10)0.0165 (9)0.0033 (8)0.0004 (7)0.0011 (8)
C50.0150 (10)0.0139 (10)0.0116 (8)0.0011 (8)0.0034 (7)0.0004 (7)
C60.0168 (10)0.0127 (10)0.0123 (8)0.0016 (8)0.0028 (7)0.0017 (7)
C70.0187 (10)0.0136 (10)0.0123 (9)0.0001 (8)0.0029 (7)0.0006 (7)
C80.0202 (11)0.0144 (10)0.0145 (9)0.0026 (8)0.0010 (7)0.0004 (8)
C90.0151 (10)0.0175 (10)0.0141 (9)0.0046 (8)0.0040 (7)0.0009 (7)
C100.0147 (10)0.0184 (10)0.0140 (9)0.0019 (8)0.0023 (7)0.0006 (8)
C110.0156 (10)0.0184 (10)0.0141 (9)0.0028 (8)0.0016 (7)0.0013 (8)
C120.0158 (10)0.0182 (10)0.0135 (9)0.0027 (8)0.0020 (7)0.0034 (8)
C130.0155 (10)0.0192 (11)0.0151 (9)0.0035 (8)0.0023 (7)0.0000 (8)
C140.0182 (10)0.0209 (11)0.0152 (9)0.0042 (8)0.0007 (8)0.0004 (8)
C150.0207 (11)0.0238 (12)0.0177 (10)0.0043 (9)0.0002 (8)0.0036 (8)
C160.0269 (12)0.0343 (13)0.0211 (11)0.0053 (10)0.0007 (9)0.0096 (9)
C170.0159 (10)0.0180 (10)0.0178 (9)0.0002 (8)0.0013 (7)0.0089 (8)
C180.0140 (10)0.0253 (11)0.0125 (9)0.0030 (8)0.0006 (7)0.0046 (8)
C190.0177 (10)0.0185 (11)0.0148 (9)0.0039 (8)0.0037 (7)0.0018 (8)
C200.0174 (10)0.0139 (10)0.0149 (9)0.0014 (8)0.0040 (7)0.0035 (7)
C210.0126 (10)0.0180 (10)0.0109 (8)0.0016 (8)0.0017 (7)0.0046 (7)
C220.0169 (10)0.0131 (10)0.0150 (9)0.0019 (8)0.0022 (7)0.0035 (7)
C230.0199 (11)0.0151 (10)0.0165 (9)0.0019 (8)0.0013 (8)0.0041 (8)
C240.0223 (11)0.0162 (10)0.0148 (9)0.0028 (8)0.0021 (8)0.0037 (8)
C250.0147 (10)0.0152 (10)0.0148 (9)0.0008 (8)0.0009 (7)0.0050 (7)
C260.0122 (9)0.0146 (10)0.0115 (8)0.0026 (7)0.0009 (7)0.0028 (7)
C270.0132 (10)0.0174 (10)0.0129 (8)0.0019 (8)0.0019 (7)0.0049 (7)
C280.0126 (10)0.0153 (10)0.0123 (8)0.0008 (7)0.0006 (7)0.0033 (7)
C290.0138 (10)0.0152 (10)0.0131 (8)0.0004 (8)0.0009 (7)0.0033 (7)
C300.0123 (9)0.0154 (10)0.0126 (8)0.0008 (7)0.0012 (7)0.0036 (7)
C310.0167 (10)0.0174 (10)0.0133 (9)0.0010 (8)0.0007 (7)0.0039 (7)
C320.0222 (11)0.0204 (11)0.0188 (10)0.0001 (8)0.0001 (8)0.0073 (8)
N10.0189 (9)0.0138 (9)0.0136 (7)0.0037 (7)0.0028 (6)0.0019 (6)
N20.0171 (8)0.0146 (8)0.0124 (7)0.0025 (7)0.0017 (6)0.0054 (6)
O10.0322 (9)0.0197 (8)0.0205 (7)0.0067 (6)0.0043 (6)0.0081 (6)
O20.0287 (8)0.0161 (7)0.0191 (7)0.0089 (6)0.0019 (6)0.0016 (6)
O30.0343 (9)0.0221 (8)0.0203 (7)0.0114 (7)0.0086 (6)0.0043 (6)
O40.0317 (9)0.0141 (8)0.0259 (8)0.0045 (6)0.0014 (6)0.0071 (6)
Geometric parameters (Å, º) top
Br1—C21.8948 (19)C16—H16B0.9800
Br2—C181.8943 (18)C17—C221.380 (3)
C1—C21.384 (3)C17—C181.384 (3)
C1—C61.382 (3)C17—H170.9500
C1—H10.9500C18—C191.390 (3)
C2—C31.394 (3)C19—C201.396 (3)
C3—C41.391 (3)C19—H190.9500
C3—H30.9500C20—C211.374 (2)
C4—C51.375 (3)C20—H200.9500
C4—H40.9500C21—C221.399 (3)
C5—C61.400 (2)C21—N21.413 (2)
C5—N11.413 (2)C22—C231.471 (3)
C6—C71.463 (3)C23—O41.205 (2)
C7—O21.208 (2)C23—C241.558 (3)
C7—C81.558 (3)C24—O31.213 (2)
C8—O11.208 (2)C24—N21.365 (2)
C8—N11.365 (2)C25—N21.455 (2)
C9—N11.461 (2)C25—C261.525 (2)
C9—C101.517 (2)C25—H25A0.9900
C9—H9A0.9900C25—H25B0.9900
C9—H9B0.9900C26—C271.525 (2)
C10—C111.524 (2)C26—H26A0.9900
C10—H10B0.9900C26—H26B0.9900
C10—H10A0.9900C27—C281.521 (2)
C11—C121.526 (2)C27—H27B0.9900
C11—H11B0.9900C27—H27A0.9900
C11—H11A0.9900C28—C291.523 (2)
C12—C131.520 (2)C28—H28B0.9900
C12—H12B0.9900C28—H28A0.9900
C12—H12A0.9900C29—C301.521 (2)
C13—C141.520 (3)C29—H29B0.9900
C13—H13B0.9900C29—H29A0.9900
C13—H13A0.9900C30—C311.520 (2)
C14—C151.526 (2)C30—H30A0.9900
C14—H14B0.9900C30—H30B0.9900
C14—H14A0.9900C31—C321.526 (2)
C15—C161.517 (3)C31—H31A0.9900
C15—H15B0.9900C31—H31B0.9900
C15—H15A0.9900C32—H32A0.9800
C16—H16A0.9800C32—H32C0.9800
C16—H16C0.9800C32—H32B0.9800
C2—C1—C6117.35 (17)C17—C18—C19121.35 (18)
C2—C1—H1121.3C17—C18—Br2119.87 (14)
C6—C1—H1121.3C19—C18—Br2118.76 (14)
C1—C2—C3121.45 (18)C18—C19—C20121.06 (18)
C1—C2—Br1119.35 (14)C18—C19—H19119.5
C3—C2—Br1119.20 (14)C20—C19—H19119.5
C2—C3—C4120.91 (18)C21—C20—C19117.54 (17)
C2—C3—H3119.5C21—C20—H20121.2
C4—C3—H3119.5C19—C20—H20121.2
C5—C4—C3117.75 (18)C20—C21—C22121.12 (17)
C5—C4—H4121.1C20—C21—N2128.01 (17)
C3—C4—H4121.1C22—C21—N2110.86 (16)
C4—C5—C6121.11 (17)C17—C22—C21121.52 (17)
C4—C5—N1128.32 (17)C17—C22—C23131.21 (17)
C6—C5—N1110.56 (16)C21—C22—C23107.25 (16)
C1—C6—C5121.38 (17)O4—C23—C22131.15 (18)
C1—C6—C7131.27 (17)O4—C23—C24124.06 (17)
C5—C6—C7107.35 (16)C22—C23—C24104.72 (15)
O2—C7—C6131.13 (18)O3—C24—N2127.65 (18)
O2—C7—C8123.80 (16)O3—C24—C23126.12 (17)
C6—C7—C8105.02 (15)N2—C24—C23106.21 (15)
O1—C8—N1127.77 (18)N2—C25—C26114.12 (15)
O1—C8—C7126.40 (17)N2—C25—H25A108.7
N1—C8—C7105.82 (15)C26—C25—H25A108.7
N1—C9—C10111.50 (15)N2—C25—H25B108.7
N1—C9—H9A109.3C26—C25—H25B108.7
C10—C9—H9A109.3H25A—C25—H25B107.6
N1—C9—H9B109.3C25—C26—C27110.31 (15)
C10—C9—H9B109.3C25—C26—H26A109.6
H9A—C9—H9B108.0C27—C26—H26A109.6
C9—C10—C11112.97 (15)C25—C26—H26B109.6
C9—C10—H10B109.0C27—C26—H26B109.6
C11—C10—H10B109.0H26A—C26—H26B108.1
C9—C10—H10A109.0C28—C27—C26114.35 (15)
C11—C10—H10A109.0C28—C27—H27B108.7
H10B—C10—H10A107.8C26—C27—H27B108.7
C12—C11—C10112.51 (15)C28—C27—H27A108.7
C12—C11—H11B109.1C26—C27—H27A108.7
C10—C11—H11B109.1H27B—C27—H27A107.6
C12—C11—H11A109.1C27—C28—C29112.95 (15)
C10—C11—H11A109.1C27—C28—H28B109.0
H11B—C11—H11A107.8C29—C28—H28B109.0
C13—C12—C11113.37 (15)C27—C28—H28A109.0
C13—C12—H12B108.9C29—C28—H28A109.0
C11—C12—H12B108.9H28B—C28—H28A107.8
C13—C12—H12A108.9C30—C29—C28114.15 (15)
C11—C12—H12A108.9C30—C29—H29B108.7
H12B—C12—H12A107.7C28—C29—H29B108.7
C14—C13—C12113.30 (15)C30—C29—H29A108.7
C14—C13—H13B108.9C28—C29—H29A108.7
C12—C13—H13B108.9H29B—C29—H29A107.6
C14—C13—H13A108.9C31—C30—C29113.80 (15)
C12—C13—H13A108.9C31—C30—H30A108.8
H13B—C13—H13A107.7C29—C30—H30A108.8
C13—C14—C15113.41 (15)C31—C30—H30B108.8
C13—C14—H14B108.9C29—C30—H30B108.8
C15—C14—H14B108.9H30A—C30—H30B107.7
C13—C14—H14A108.9C30—C31—C32113.48 (15)
C15—C14—H14A108.9C30—C31—H31A108.9
H14B—C14—H14A107.7C32—C31—H31A108.9
C16—C15—C14112.96 (16)C30—C31—H31B108.9
C16—C15—H15B109.0C32—C31—H31B108.9
C14—C15—H15B109.0H31A—C31—H31B107.7
C16—C15—H15A109.0C31—C32—H32A109.5
C14—C15—H15A109.0C31—C32—H32C109.5
H15B—C15—H15A107.8H32A—C32—H32C109.5
C15—C16—H16A109.5C31—C32—H32B109.5
C15—C16—H16C109.5H32A—C32—H32B109.5
H16A—C16—H16C109.5H32C—C32—H32B109.5
C15—C16—H16B109.5C8—N1—C5111.17 (15)
H16A—C16—H16B109.5C8—N1—C9122.78 (15)
H16C—C16—H16B109.5C5—N1—C9125.47 (15)
C22—C17—C18117.40 (17)C24—N2—C21110.93 (15)
C22—C17—H17121.3C24—N2—C25123.13 (16)
C18—C17—H17121.3C21—N2—C25125.78 (15)
C6—C1—C2—C31.8 (3)N2—C21—C22—C17178.74 (16)
C6—C1—C2—Br1178.44 (13)C20—C21—C22—C23178.98 (16)
C1—C2—C3—C41.8 (3)N2—C21—C22—C230.3 (2)
Br1—C2—C3—C4178.37 (14)C17—C22—C23—O40.7 (4)
C2—C3—C4—C50.0 (3)C21—C22—C23—O4177.6 (2)
C3—C4—C5—C61.7 (3)C17—C22—C23—C24177.60 (19)
C3—C4—C5—N1177.88 (17)C21—C22—C23—C240.65 (19)
C2—C1—C6—C50.0 (3)O4—C23—C24—O30.0 (3)
C2—C1—C6—C7179.01 (18)C22—C23—C24—O3177.20 (18)
C4—C5—C6—C11.8 (3)O4—C23—C24—N2178.57 (18)
N1—C5—C6—C1177.87 (16)C22—C23—C24—N21.39 (19)
C4—C5—C6—C7177.43 (16)N2—C25—C26—C27177.96 (15)
N1—C5—C6—C72.9 (2)C25—C26—C27—C28170.44 (15)
C1—C6—C7—O24.6 (3)C26—C27—C28—C29179.20 (15)
C5—C6—C7—O2174.48 (19)C27—C28—C29—C30179.83 (15)
C1—C6—C7—C8178.04 (19)C28—C29—C30—C31177.15 (16)
C5—C6—C7—C82.85 (19)C29—C30—C31—C32177.35 (15)
O2—C7—C8—O13.1 (3)O1—C8—N1—C5178.94 (19)
C6—C7—C8—O1179.34 (19)C7—C8—N1—C50.2 (2)
O2—C7—C8—N1175.73 (17)O1—C8—N1—C97.3 (3)
C6—C7—C8—N11.85 (19)C7—C8—N1—C9171.50 (15)
N1—C9—C10—C11177.08 (15)C4—C5—N1—C8178.64 (18)
C9—C10—C11—C12177.01 (16)C6—C5—N1—C81.7 (2)
C10—C11—C12—C13175.47 (16)C4—C5—N1—C97.3 (3)
C11—C12—C13—C14176.69 (16)C6—C5—N1—C9173.12 (16)
C12—C13—C14—C15178.53 (16)C10—C9—N1—C884.4 (2)
C13—C14—C15—C16178.57 (17)C10—C9—N1—C586.0 (2)
C22—C17—C18—C191.6 (3)O3—C24—N2—C21176.94 (19)
C22—C17—C18—Br2176.54 (13)C23—C24—N2—C211.61 (19)
C17—C18—C19—C201.5 (3)O3—C24—N2—C251.3 (3)
Br2—C18—C19—C20176.63 (13)C23—C24—N2—C25177.24 (15)
C18—C19—C20—C210.4 (3)C20—C21—N2—C24177.93 (17)
C19—C20—C21—C220.6 (3)C22—C21—N2—C241.3 (2)
C19—C20—C21—N2178.50 (17)C20—C21—N2—C252.4 (3)
C18—C17—C22—C210.6 (3)C22—C21—N2—C25176.75 (16)
C18—C17—C22—C23177.44 (18)C26—C25—N2—C2499.72 (19)
C20—C21—C22—C170.5 (3)C26—C25—N2—C2185.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O40.992.593.572 (2)174
C19—H19···O1i0.952.513.181 (2)128
C20—H20···O2i0.952.563.457 (2)159
C26—H26B···O2i0.992.503.159 (2)124
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O40.992.593.572 (2)173.7
C19—H19···O1i0.952.513.181 (2)128.0
C20—H20···O2i0.952.563.457 (2)158.7
C26—H26B···O2i0.992.503.159 (2)124.1
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H20BrNO2
Mr338.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.5284 (2), 13.2044 (6), 25.9133 (11)
α, β, γ (°)96.663 (3), 90.728 (3), 95.393 (3)
V3)1531.77 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.649, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
32458, 7501, 6054
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.070, 1.22
No. of reflections7501
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25–31.  CAS Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o361–o362.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o588.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationSarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257–260.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Saravanan, M. & Ramesh, A. (2001a). Eur. J. Med. Chem. 36, 615–625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSridhar, S. K. & Sreenivasulu, M. (2001b). Indian Drugs, 38, 531–534.  CAS Google Scholar
First citationVarma, R. S. & Nobles, W. L. (1975). J. Pharm. Sci. 64, 881–882.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVerma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds