organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 3-({[(4-methyl­phen­yl)carbamo­yl]meth­yl}sulfan­yl)-5,6-di­phenyl­pyridazine-4-carboxyl­ate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 11 March 2016; accepted 21 March 2016; online 31 March 2016)

The packing in the crystal of the title mol­ecule, C28H25N3O3S, is aided by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, the ethyl group of the ester is disordered over two sets of sites with refined occupancies of 0.760 (8) and 0.240 (8).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The broad spectrum of biological activities associated with many pyridazine derivatives are well known. Some of them are reported to exhibit anti­viral, anti­cancer, anti­tuberculosis and anti­microbial activity (Butnariu & Mangalagiu, 2009[Butnariu, R. M. & Mangalagiu, I. I. (2009). Bioorg. Med. Chem. 17, 2823-2829.]). Others reported to possess promising pharmacological activity for use as anti-hypertensive, cardiotonic and anti­nociceptive agents as well as coagulants (Alonazy et al., 2009[Alonazy, H. S., AL-Hazimi, H. M. A. & Korraa, M. M. S. (2009). Arab. J. Chem. 2, 101-108.]). As part of our studies in this area, we undertook the synthesis of the title compound (Fig. 1[link]) and determine its crystal structure.

[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids.

The phenyl rings C17–C22 and C23–C28 make dihedral angles of 77.09 (11) and 45.86 (12)°, respectively, with the pyridazine ring. All geometric parameters are within normal ranges.

In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link] and Fig. 3[link]). No ππ stacking inter­actions are observed but C—H⋯π inter­actions help to consolidate the packing (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the pyridazine (N1/N2/C1–C4), 4-methyl­phenyl (C7–C12) and phenyl (C23–C28) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.87 2.21 3.073 (3) 174
C5—H5B⋯O2i 0.99 2.36 3.220 (4) 144
C11—H11⋯O2ii 0.95 2.43 3.263 (4) 146
C20—H20⋯Cg4iii 0.95 2.61 3.495 (3) 155
C26—H26⋯Cg1iv 0.95 2.80 3.556 (3) 137
C28—H28⋯Cg2v 0.95 2.66 3.484 (3) 146
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x-1, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing viewed down the a axis with N—H⋯O and C—H⋯O hydrogen bonds shown, respectively, as blue and orange dotted lines.
[Figure 3]
Figure 3
Packing viewed down the c axis with N—H⋯O and C—H⋯O hydrogen bonds shown, respectively, as blue and orange dotted lines.

Synthesis and crystallization

A mixture of ethyl 2,3-di­hydro-5,6-diphenyl-3-thioxopyridazine-4-carboxyl­ate (1.68 g, 5 mmol), sodium acetate trihydrate (0.68 g, 5 mmol) and chloro-N-(4-methyl-phen­yl)acetamide (0.92 g, 5 mmol) in ethanol (30 ml) was heated under reflux for 2 h. The product which separated on cooling was collected and recrystallized from ethanol to give colorless crystals of the title compound. Yield: 2.10 g (87%), m.p. 433–434 K. IR (KBr) ν = 3300 (NH), 1720 (C=O, ester), 1670 (C=O, carbamo­yl), 1H NMR (CDCl3): δ 9.0 (s, 1H, NH), 6.9–7.6 (m, 14H, Ar—H), 4.1–4.4 (q, 2H, OCH2), 4.0 (s, 2H, SCH2), 2.2 (s, 3H, CH3), 1.0–1.3 (t, 3H, CH3 of ester). Elemental analysis calculated for C28H25N3O3S (%): C, 69.54; H, 5.21; N, 8.69; S, 6.63. Found (%): C, 69.19; H, 5.14; N, 8.61; S, 6.70.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The eth­oxy group of the ester is disordered over two sets of sites with an occupancy ratio of 0.760 (8):0.240 (8) and these were modeled with restraints that their geometries be comparable. In the disorder model, atoms O3 and O3A were kept in the same position using EXYZ and EADP commands.

Table 2
Experimental details

Crystal data
Chemical formula C28H25N3O3S
Mr 483.57
Crystal system, space group Monoclinic, Cc
Temperature (K) 150
a, b, c (Å) 10.2254 (3), 26.6695 (9), 9.9210 (3)
β (°) 110.718 (1)
V3) 2530.56 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.41
Crystal size (mm) 0.19 × 0.19 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.81, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 13580, 3992, 3898
Rint 0.029
(sin θ/λ)max−1) 0.593
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.04
No. of reflections 3992
No. of parameters 326
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.15
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1791 Friedel pairs
Absolute structure parameter 0.032 (17)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

A mixture of ethyl 2,3-dihydro-5,6-diphenyl-3-thioxopyridazine-4-carboxylate (1.68 g, 5 mmol), sodium acetate trihydrate (0.68 g, 5 mmol) and chloro-N-(4-methyl-phenyl)acetamide (0.92 g, 5 mmol) in ethanol (30 ml) was heated under reflux for 2 h. The product which separated on cooling was collected and recrystallized from ethanol to give colorless crystals of the title compound. Yield: 2.10 g (87%), m.p. 433–434 K. IR (KBr) ν = 3300 (NH), 1720 (CO, ester), 1670 (CO, carbamoyl), 1H NMR (CDCl3): δ 9.0 (s, 1H, NH), 6.9–7.6 (m, 14H, Ar—H), 4.1–4.4 (q, 2H, OCH2), 4.0 (s, 2H, SCH2), 2.2 (s, 3H, CH3), 1.0–1.3 (t, 3H, CH3 of ester). Elemental analysis calculated for C28H25N3O3S (%): C, 69.54; H, 5.21; N, 8.69; S, 6.63. Found (%): C, 69.19; H, 5.14; N, 8.61; S, 6.70.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The ethoxy group of the ester is disordered over two sets of sites with an occupancy ratio of 0.760 (8):0.240 (8) and these were modeled with restraints that their geometries be comparable. In the disorder model, atom O3 was kept in the same position using EXYZ and EADP commands.

Structure description top

The broad spectrum of biological activities associated with many pyridazine derivatives are well known. Some of them are reported to exhibit antiviral, anticancer, antituberculosis and antimicrobial activity (Butnariu & Mangalagiu, 2009). Others reported to possess promising pharmacological activity for use as anti-hypertensive, cardiotonic and antinociceptive agents as well as coagulants (Alonazy et al., 2009). In view of the above findings, we undertook the synthesis of the title compound (Fig. 1) and determine its crystal structure.

The phenyl rings C17–C22 and C23–C28 make dihedral angles of 77.09 (11) and 45.86 (12)°, respectively, with the pyridazine ring. All geometric parameters are within normal ranges.

In the crystal, molecules are linked by N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2 and Fig. 3). No ππ stacking interactions are observed but C—H···π interactions help to stabilize the crystal structure (Table 1).

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the a axis with N—H···O and C—H···O hydrogen bonds shown, respectively, as blue and orange dotted lines.
[Figure 3] Fig. 3. Packing viewed down the c axis with N—H···O and C—H···O hydrogen bonds shown, respectively, as blue and orange dotted lines.
Ethyl 3-({[(4-methylphenyl)carbamoyl]methyl}sulfanyl)-5,6-diphenylpyridazine-4-carboxylate top
Crystal data top
C28H25N3O3SF(000) = 1016
Mr = 483.57Dx = 1.269 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54178 Å
a = 10.2254 (3) ÅCell parameters from 9986 reflections
b = 26.6695 (9) Åθ = 3.3–66.2°
c = 9.9210 (3) ŵ = 1.41 mm1
β = 110.718 (1)°T = 150 K
V = 2530.56 (14) Å3Plate, colourless
Z = 40.19 × 0.19 × 0.10 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3992 independent reflections
Radiation source: INCOATEC IµS micro–focus source3898 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 66.2°, θmin = 3.3°
ω scansh = 1210
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 3131
Tmin = 0.81, Tmax = 0.88l = 1111
13580 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.5908P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.30 e Å3
3992 reflectionsΔρmin = 0.15 e Å3
326 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.00168 (17)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1791 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.032 (17)
Crystal data top
C28H25N3O3SV = 2530.56 (14) Å3
Mr = 483.57Z = 4
Monoclinic, CcCu Kα radiation
a = 10.2254 (3) ŵ = 1.41 mm1
b = 26.6695 (9) ÅT = 150 K
c = 9.9210 (3) Å0.19 × 0.19 × 0.10 mm
β = 110.718 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3992 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
3898 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.88Rint = 0.029
13580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.15 e Å3
3992 reflectionsAbsolute structure: Flack (1983), 1791 Friedel pairs
326 parametersAbsolute structure parameter: 0.032 (17)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.74550 (6)0.46021 (2)0.76373 (6)0.03062 (16)
O10.48527 (18)0.52387 (7)0.63741 (18)0.0330 (4)
O20.8388 (2)0.41894 (9)0.4697 (3)0.0524 (6)
N10.5118 (2)0.40599 (7)0.6734 (2)0.0279 (4)
N20.4255 (2)0.37053 (7)0.5934 (2)0.0267 (4)
N30.4189 (2)0.52041 (8)0.8345 (2)0.0306 (5)
H30.44000.50570.91770.037*
C10.6375 (2)0.41215 (8)0.6639 (2)0.0242 (5)
C20.6853 (3)0.38241 (9)0.5729 (2)0.0249 (5)
C30.5952 (2)0.34723 (9)0.4866 (2)0.0246 (5)
C40.4638 (2)0.34225 (9)0.5020 (2)0.0255 (5)
C50.6394 (3)0.48489 (9)0.8579 (3)0.0291 (5)
H5A0.61280.45710.90900.035*
H5B0.69600.50890.93150.035*
C60.5068 (3)0.51128 (8)0.7625 (3)0.0272 (5)
C70.2813 (2)0.54069 (9)0.7795 (3)0.0292 (6)
C80.2266 (3)0.56605 (9)0.6500 (3)0.0336 (6)
H80.28200.57160.59210.040*
C90.0888 (3)0.58348 (10)0.6052 (3)0.0358 (6)
H90.05130.60060.51570.043*
C100.0053 (3)0.57657 (10)0.6875 (3)0.0339 (6)
C110.0634 (3)0.55100 (10)0.8176 (3)0.0365 (6)
H110.00800.54540.87550.044*
C120.1995 (3)0.53361 (9)0.8645 (3)0.0326 (6)
H120.23730.51680.95460.039*
C130.1412 (3)0.59740 (11)0.6421 (3)0.0434 (7)
H13A0.20410.57180.65560.065*
H13B0.17250.60710.54030.065*
H13C0.14190.62680.70090.065*
C140.8249 (3)0.39184 (9)0.5604 (3)0.0273 (5)
O3_a0.92581 (19)0.36604 (8)0.6547 (2)0.0412 (5)0.760 (8)
C15_a1.0650 (10)0.3697 (8)0.6450 (15)0.0487 (9)0.760 (8)
H15A_a1.05570.36960.54220.058*0.760 (8)
H15B_a1.12050.33990.69140.058*0.760 (8)
C16_a1.1403 (5)0.4156 (2)0.7147 (5)0.0548 (14)0.760 (8)
H16A_a1.23220.41650.70470.082*0.760 (8)
H16B_a1.15220.41540.81720.082*0.760 (8)
H16C_a1.08630.44520.66840.082*0.760 (8)
O3A_b0.92581 (19)0.36604 (8)0.6547 (2)0.0412 (5)0.240 (8)
C15A_b1.064 (3)0.368 (3)0.635 (4)0.0487 (9)0.240 (8)
H15C_b1.09040.33410.61200.058*0.240 (8)
H15D_b1.05940.39080.55480.058*0.240 (8)
C16A_b1.1697 (16)0.3864 (8)0.7724 (17)0.0548 (14)0.240 (8)
H16D_b1.26160.38810.76250.082*0.240 (8)
H16E_b1.17410.36340.85080.082*0.240 (8)
H16F_b1.14280.41990.79410.082*0.240 (8)
C170.6349 (3)0.31765 (9)0.3795 (3)0.0285 (5)
C180.7382 (3)0.28145 (10)0.4234 (3)0.0365 (6)
H180.78550.27520.52320.044*
C190.7725 (3)0.25428 (12)0.3210 (4)0.0445 (7)
H190.84210.22890.35080.053*
C200.7055 (3)0.26401 (12)0.1760 (3)0.0466 (8)
H200.72930.24540.10630.056*
C210.6050 (3)0.30046 (13)0.1328 (3)0.0459 (7)
H210.56030.30750.03300.055*
C220.5680 (3)0.32730 (11)0.2339 (3)0.0391 (6)
H220.49700.35220.20340.047*
C230.3571 (3)0.30472 (9)0.4227 (2)0.0267 (5)
C240.3919 (3)0.25438 (10)0.4137 (3)0.0315 (5)
H240.48690.24400.45220.038*
C250.2879 (3)0.21976 (10)0.3485 (3)0.0380 (6)
H250.31160.18550.34360.046*
C260.1498 (3)0.23462 (11)0.2908 (3)0.0414 (7)
H260.07890.21060.24680.050*
C270.1147 (3)0.28431 (11)0.2969 (3)0.0392 (6)
H270.01990.29460.25550.047*
C280.2182 (3)0.31937 (10)0.3637 (3)0.0319 (5)
H280.19370.35350.36890.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0250 (3)0.0342 (3)0.0338 (3)0.0036 (3)0.0117 (2)0.0090 (2)
O10.0343 (10)0.0380 (9)0.0290 (9)0.0020 (8)0.0142 (7)0.0001 (7)
O20.0378 (12)0.0637 (13)0.0644 (14)0.0072 (10)0.0289 (10)0.0290 (11)
N10.0260 (11)0.0286 (10)0.0308 (10)0.0014 (8)0.0123 (8)0.0026 (8)
N20.0257 (11)0.0271 (10)0.0286 (10)0.0012 (8)0.0113 (8)0.0025 (8)
N30.0303 (12)0.0351 (11)0.0273 (10)0.0063 (9)0.0115 (9)0.0015 (8)
C10.0235 (12)0.0254 (12)0.0242 (11)0.0005 (9)0.0090 (9)0.0008 (9)
C20.0266 (12)0.0254 (11)0.0237 (11)0.0024 (9)0.0099 (9)0.0031 (9)
C30.0257 (12)0.0254 (11)0.0240 (11)0.0035 (9)0.0105 (9)0.0023 (9)
C40.0272 (13)0.0261 (11)0.0246 (11)0.0028 (9)0.0109 (9)0.0043 (9)
C50.0287 (13)0.0333 (13)0.0265 (12)0.0007 (10)0.0111 (10)0.0088 (10)
C60.0285 (13)0.0261 (12)0.0271 (13)0.0027 (10)0.0098 (9)0.0063 (10)
C70.0291 (15)0.0275 (11)0.0314 (13)0.0015 (10)0.0113 (11)0.0063 (9)
C80.0349 (15)0.0375 (13)0.0295 (13)0.0028 (11)0.0127 (10)0.0018 (10)
C90.0350 (15)0.0402 (15)0.0290 (13)0.0062 (11)0.0076 (11)0.0020 (10)
C100.0293 (14)0.0333 (13)0.0376 (14)0.0013 (11)0.0100 (10)0.0107 (11)
C110.0352 (15)0.0376 (14)0.0408 (14)0.0017 (12)0.0186 (12)0.0071 (11)
C120.0341 (15)0.0341 (13)0.0317 (13)0.0025 (11)0.0142 (11)0.0005 (10)
C130.0308 (15)0.0493 (16)0.0464 (16)0.0056 (12)0.0091 (12)0.0076 (13)
C140.0275 (13)0.0271 (12)0.0293 (12)0.0015 (10)0.0124 (10)0.0020 (10)
O3_a0.0258 (10)0.0542 (12)0.0453 (11)0.0064 (8)0.0147 (8)0.0137 (9)
C15_a0.0270 (15)0.061 (2)0.062 (3)0.0052 (14)0.0203 (15)0.0056 (18)
C16_a0.037 (2)0.088 (4)0.043 (3)0.019 (2)0.0196 (19)0.015 (2)
O3A_b0.0258 (10)0.0542 (12)0.0453 (11)0.0064 (8)0.0147 (8)0.0137 (9)
C15A_b0.0270 (15)0.061 (2)0.062 (3)0.0052 (14)0.0203 (15)0.0056 (18)
C16A_b0.037 (2)0.088 (4)0.043 (3)0.019 (2)0.0196 (19)0.015 (2)
C170.0275 (12)0.0308 (12)0.0312 (12)0.0044 (10)0.0155 (10)0.0072 (10)
C180.0347 (15)0.0396 (14)0.0382 (14)0.0010 (12)0.0168 (11)0.0071 (11)
C190.0386 (16)0.0438 (16)0.0581 (18)0.0013 (13)0.0258 (14)0.0138 (13)
C200.0488 (18)0.0528 (17)0.0504 (18)0.0160 (15)0.0326 (15)0.0261 (14)
C210.0483 (18)0.0602 (19)0.0327 (14)0.0096 (15)0.0188 (12)0.0128 (13)
C220.0397 (16)0.0488 (16)0.0315 (14)0.0035 (12)0.0161 (11)0.0059 (12)
C230.0282 (13)0.0312 (12)0.0237 (11)0.0037 (10)0.0127 (9)0.0001 (9)
C240.0345 (14)0.0318 (13)0.0315 (13)0.0021 (11)0.0158 (11)0.0042 (10)
C250.0489 (17)0.0328 (14)0.0374 (14)0.0093 (12)0.0217 (13)0.0110 (11)
C260.0442 (17)0.0499 (17)0.0316 (13)0.0202 (14)0.0151 (11)0.0118 (12)
C270.0307 (14)0.0535 (17)0.0315 (13)0.0067 (12)0.0087 (11)0.0001 (12)
C280.0311 (14)0.0373 (13)0.0279 (12)0.0020 (11)0.0112 (10)0.0024 (10)
Geometric parameters (Å, º) top
S1—C11.752 (2)C15_a—C16_a1.481 (15)
S1—C51.789 (2)C15_a—H15A_a0.9900
O1—C61.228 (3)C15_a—H15B_a0.9900
O2—C141.201 (3)C16_a—H16A_a0.9800
N1—C11.332 (3)C16_a—H16B_a0.9800
N1—N21.344 (3)C16_a—H16C_a0.9800
N2—C41.341 (3)C15A_b—C16A_b1.49 (3)
N3—C61.354 (3)C15A_b—H15C_b0.9900
N3—C71.423 (3)C15A_b—H15D_b0.9900
N3—H30.8702C16A_b—H16D_b0.9800
C1—C21.412 (3)C16A_b—H16E_b0.9800
C2—C31.380 (3)C16A_b—H16F_b0.9800
C2—C141.497 (3)C17—C181.382 (4)
C3—C41.411 (3)C17—C221.386 (4)
C3—C171.491 (3)C18—C191.390 (4)
C4—C231.484 (3)C18—H180.9500
C5—C61.523 (3)C19—C201.382 (5)
C5—H5A0.9900C19—H190.9500
C5—H5B0.9900C20—C211.369 (5)
C7—C81.383 (4)C20—H200.9500
C7—C121.395 (4)C21—C221.390 (4)
C8—C91.398 (4)C21—H210.9500
C8—H80.9500C22—H220.9500
C9—C101.387 (4)C23—C281.387 (4)
C9—H90.9500C23—C241.400 (4)
C10—C111.394 (4)C24—C251.384 (4)
C10—C131.509 (4)C24—H240.9500
C11—C121.382 (4)C25—C261.381 (4)
C11—H110.9500C25—H250.9500
C12—H120.9500C26—C271.380 (5)
C13—H13A0.9800C26—H260.9500
C13—H13B0.9800C27—C281.392 (4)
C13—H13C0.9800C27—H270.9500
C14—O3_a1.316 (3)C28—H280.9500
O3_a—C15_a1.463 (9)
C1—S1—C5100.79 (11)O3_a—C15_a—H15A_a109.1
C1—N1—N2119.57 (19)C16_a—C15_a—H15A_a109.1
C4—N2—N1120.5 (2)O3_a—C15_a—H15B_a109.1
C6—N3—C7128.1 (2)C16_a—C15_a—H15B_a109.1
C6—N3—H3115.5H15A_a—C15_a—H15B_a107.9
C7—N3—H3114.5C15_a—C16_a—H16A_a109.5
N1—C1—C2122.5 (2)C15_a—C16_a—H16B_a109.5
N1—C1—S1118.76 (17)H16A_a—C16_a—H16B_a109.5
C2—C1—S1118.76 (18)C15_a—C16_a—H16C_a109.5
C3—C2—C1118.2 (2)H16A_a—C16_a—H16C_a109.5
C3—C2—C14120.6 (2)H16B_a—C16_a—H16C_a109.5
C1—C2—C14120.9 (2)C16A_b—C15A_b—H15C_b110.2
C2—C3—C4116.7 (2)C16A_b—C15A_b—H15D_b110.2
C2—C3—C17120.8 (2)H15C_b—C15A_b—H15D_b108.5
C4—C3—C17122.5 (2)C15A_b—C16A_b—H16D_b109.5
N2—C4—C3122.5 (2)C15A_b—C16A_b—H16E_b109.5
N2—C4—C23113.7 (2)H16D_b—C16A_b—H16E_b109.5
C3—C4—C23123.8 (2)C15A_b—C16A_b—H16F_b109.5
C6—C5—S1114.61 (17)H16D_b—C16A_b—H16F_b109.5
C6—C5—H5A108.6H16E_b—C16A_b—H16F_b109.5
S1—C5—H5A108.6C18—C17—C22119.9 (2)
C6—C5—H5B108.6C18—C17—C3121.0 (2)
S1—C5—H5B108.6C22—C17—C3119.1 (2)
H5A—C5—H5B107.6C17—C18—C19119.7 (3)
O1—C6—N3124.7 (2)C17—C18—H18120.2
O1—C6—C5123.8 (2)C19—C18—H18120.2
N3—C6—C5111.5 (2)C20—C19—C18120.2 (3)
C8—C7—C12119.7 (2)C20—C19—H19119.9
C8—C7—N3124.2 (2)C18—C19—H19119.9
C12—C7—N3116.1 (2)C21—C20—C19120.0 (3)
C7—C8—C9119.2 (2)C21—C20—H20120.0
C7—C8—H8120.4C19—C20—H20120.0
C9—C8—H8120.4C20—C21—C22120.4 (3)
C10—C9—C8122.0 (2)C20—C21—H21119.8
C10—C9—H9119.0C22—C21—H21119.8
C8—C9—H9119.0C17—C22—C21119.7 (3)
C9—C10—C11117.5 (2)C17—C22—H22120.1
C9—C10—C13121.9 (3)C21—C22—H22120.1
C11—C10—C13120.6 (3)C28—C23—C24119.3 (2)
C12—C11—C10121.6 (3)C28—C23—C4119.0 (2)
C12—C11—H11119.2C24—C23—C4121.7 (2)
C10—C11—H11119.2C25—C24—C23119.9 (2)
C11—C12—C7119.9 (2)C25—C24—H24120.0
C11—C12—H12120.0C23—C24—H24120.0
C7—C12—H12120.0C26—C25—C24120.4 (3)
C10—C13—H13A109.5C26—C25—H25119.8
C10—C13—H13B109.5C24—C25—H25119.8
H13A—C13—H13B109.5C27—C26—C25120.1 (3)
C10—C13—H13C109.5C27—C26—H26120.0
H13A—C13—H13C109.5C25—C26—H26120.0
H13B—C13—H13C109.5C26—C27—C28120.0 (3)
O2—C14—O3_a125.2 (2)C26—C27—H27120.0
O2—C14—C2122.2 (2)C28—C27—H27120.0
O3_a—C14—C2112.6 (2)C23—C28—C27120.3 (3)
C14—O3_a—C15_a117.0 (9)C23—C28—H28119.9
O3_a—C15_a—C16_a112.4 (10)C27—C28—H28119.9
C1—N1—N2—C41.6 (3)C8—C7—C12—C111.4 (4)
N2—N1—C1—C20.5 (3)N3—C7—C12—C11178.4 (2)
N2—N1—C1—S1177.52 (16)C3—C2—C14—O282.4 (3)
C5—S1—C1—N12.3 (2)C1—C2—C14—O292.1 (3)
C5—S1—C1—C2179.63 (18)C3—C2—C14—O3_a95.3 (3)
N1—C1—C2—C32.8 (3)C1—C2—C14—O3_a90.2 (3)
S1—C1—C2—C3175.15 (17)O2—C14—O3_a—C15_a2.0 (7)
N1—C1—C2—C14177.4 (2)C2—C14—O3_a—C15_a175.7 (6)
S1—C1—C2—C140.6 (3)C14—O3_a—C15_a—C16_a81.2 (11)
C1—C2—C3—C43.0 (3)C2—C3—C17—C1870.0 (3)
C14—C2—C3—C4177.6 (2)C4—C3—C17—C18112.2 (3)
C1—C2—C3—C17174.9 (2)C2—C3—C17—C22109.2 (3)
C14—C2—C3—C170.3 (3)C4—C3—C17—C2268.6 (3)
N1—N2—C4—C31.3 (3)C22—C17—C18—C191.2 (4)
N1—N2—C4—C23179.63 (19)C3—C17—C18—C19179.7 (3)
C2—C3—C4—N21.1 (3)C17—C18—C19—C201.2 (4)
C17—C3—C4—N2176.7 (2)C18—C19—C20—C210.1 (5)
C2—C3—C4—C23177.1 (2)C19—C20—C21—C221.1 (5)
C17—C3—C4—C235.1 (3)C18—C17—C22—C210.0 (4)
C1—S1—C5—C667.9 (2)C3—C17—C22—C21179.2 (2)
C7—N3—C6—O17.3 (4)C20—C21—C22—C171.1 (4)
C7—N3—C6—C5174.7 (2)N2—C4—C23—C2844.8 (3)
S1—C5—C6—O113.9 (3)C3—C4—C23—C28136.9 (2)
S1—C5—C6—N3168.15 (17)N2—C4—C23—C24131.2 (2)
C6—N3—C7—C816.8 (4)C3—C4—C23—C2447.1 (3)
C6—N3—C7—C12162.9 (2)C28—C23—C24—C251.1 (4)
C12—C7—C8—C91.1 (4)C4—C23—C24—C25174.9 (2)
N3—C7—C8—C9178.7 (2)C23—C24—C25—C260.8 (4)
C7—C8—C9—C100.6 (4)C24—C25—C26—C270.4 (4)
C8—C9—C10—C110.5 (4)C25—C26—C27—C281.2 (4)
C8—C9—C10—C13177.3 (2)C24—C23—C28—C270.3 (4)
C9—C10—C11—C120.8 (4)C4—C23—C28—C27175.9 (2)
C13—C10—C11—C12177.0 (2)C26—C27—C28—C230.9 (4)
C10—C11—C12—C71.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the pyridazine (N1/N2/C1–C4), 4-methylphenyl (C7–C12) and phenyl (C23–C28) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.872.213.073 (3)174
C5—H5B···O2i0.992.363.220 (4)144
C11—H11···O2ii0.952.433.263 (4)146
C20—H20···Cg4iii0.952.613.495 (3)155
C26—H26···Cg1iv0.952.803.556 (3)137
C28—H28···Cg2v0.952.663.484 (3)146
Symmetry codes: (i) x, y+1, z+1/2; (ii) x1, y+1, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the pyridazine (N1/N2/C1–C4), 4-methylphenyl (C7–C12) and phenyl (C23–C28) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.872.213.073 (3)174
C5—H5B···O2i0.992.363.220 (4)144
C11—H11···O2ii0.952.433.263 (4)146
C20—H20···Cg4iii0.952.613.495 (3)155
C26—H26···Cg1iv0.952.803.556 (3)137
C28—H28···Cg2v0.952.663.484 (3)146
Symmetry codes: (i) x, y+1, z+1/2; (ii) x1, y+1, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC28H25N3O3S
Mr483.57
Crystal system, space groupMonoclinic, Cc
Temperature (K)150
a, b, c (Å)10.2254 (3), 26.6695 (9), 9.9210 (3)
β (°) 110.718 (1)
V3)2530.56 (14)
Z4
Radiation typeCu Kα
µ (mm1)1.41
Crystal size (mm)0.19 × 0.19 × 0.10
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.81, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
13580, 3992, 3898
Rint0.029
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.04
No. of reflections3992
No. of parameters326
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.15
Absolute structureFlack (1983), 1791 Friedel pairs
Absolute structure parameter0.032 (17)

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF–MRI Grant No.1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAlonazy, H. S., AL-Hazimi, H. M. A. & Korraa, M. M. S. (2009). Arab. J. Chem. 2, 101–108.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButnariu, R. M. & Mangalagiu, I. I. (2009). Bioorg. Med. Chem. 17, 2823–2829.  CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds