metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(tert-Butyl isocyanide-κC)tri­chlorido­gallium(III)

aDepartment of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
*Correspondence e-mail: jbourqu5@uwo.ca

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 March 2016; accepted 7 March 2016; online 11 March 2016)

The crystal structure of (tert-butyl isocyanide-κC)tri­chlorido­gallium(III), [GaCl3(C5H9N)], features the first reported isocyanide–gallium trihalide complex. The Ga—C—N—C fragment is essentially linear. The methyl fragments of the tert-butyl group are eclipsed with the chloride ligands on the Ga atom. The mol­ecule does not, however, exhibit threefold crystallographic symmetry, as it crystallizes within the P21/c space group.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The Ga—C—N—C fragment deviates only slightly from linearity with N1—C1—Ga1 and C1—N1—C2 angles of 179.26 (16) and 179.35 (18)°, respectively (Fig. 1[link]). The angle between the Cl1—Ga1—C1 and N1—C2—C3 planes of 1.5 (2)° indicates a nearly perfect eclipsed conformation between the –C(CH3)3 and –GaCl3 groups. In the crystal, there are no notable inter­actions between neighbouring mol­ecules (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.

The synthesis of tri­alkyl­gallium–isocyanide complexes was reported by Kingsley et al. (2012[Kingsley, N. B., Kirschbaum, K., Teprovich, J. A. Jr, Flowers, R. A. II & Mason, M. R. (2012). Inorg. Chem. 51, 2494-2502.]). For adducts of isocyanides with other main group elements, see: Bertani et al. (2001[Bertani, R., Crociani, L., D'Arcangelo, G., Rossetto, G., Traldi, P. & Zanella, P. (2001). J. Organomet. Chem. 626, 11-15.]); Casanova et al. (1965[Casanova, J. Jr, Kiefer, H. R., Kuwada, D. & Boulton, A. H. (1965). Tetrahedron Lett. 6, 703-714.]); Fisher et al. (1994[Fisher, J. D., Wei, M.-Y., Willett, R. & Shapiro, P. J. (1994). Organometallics, 13, 3324-3329.]); Green et al. (1987[Green, I. G., Hudson, R. L. & Roberts, B. P. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1773-1779.]); Meller & Batka (1969[Meller, A. & Batka, H. (1969). Monatsh. Chem. 100, 1823-1828.], 1970[Meller, A. & Batka, H. (1970). Monatsh. Chem. 101, 627-628.]); Uhl et al. (1998[Uhl, W., Hannemann, F. & Wartchow, R. (1998). Organometallics, 17, 3822-3825.]). For an extensive theoretical study on main group element–isocyanide adducts, see: Timoshkin & Schaefer (2003[Timoshkin, A. Y. & Schaefer, H. F. III (2003). J. Am. Chem. Soc. 125, 9998-10011.]).

Synthesis and crystallization

The title compound was obtained serendipitously from an attempted trapping experiment, involving the reaction of tert-butyl­isocyanide and tetra­mesityldisilene. GaCl3 was added to act as a Lewis acid. X-ray quality single crystals were obtained from a solution of diethyl ether cooled to 253 K.

Refinement

Crystal data, data collection and refinement details are shown in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [GaCl3(C5H9N)]
Mr 259.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 110
a, b, c (Å) 6.5170 (12), 19.393 (3), 8.5991 (16)
β (°) 102.287 (5)
V3) 1061.9 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 10.00
Crystal size (mm) 0.23 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker–Nonius KappaCCD APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.557, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 10964, 1876, 1791
Rint 0.024
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.11
No. of reflections 1876
No. of parameters 127
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.33, −0.31
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), cif2tables.py (Boyle, 2008[Boyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/]).

Structural data


Experimental top

The title compound was obtained serendipitously from an attempted trapping experiment, involving the reaction of tert-butylisocyanide and tetramesityldisilene. GaCl3 was added to act as a Lewis acid. X-ray quality single crystals were obtained from a solution of diethyl ether cooled to 253 K.

Refinement top

Crystal data, data collection and refinement details are shown in Table 1.

Structure description top

The Ga—C—N—C fragment deviates only slightly from linearity with N1—C1—Ga1 and C1—N1—C2 angles of 179.26 (16) and 179.35 (18)°, respectively (Fig. 1). The angle between the Cl1—Ga1—C1 and N1—C2—C3 planes of 1.5 (2)° indicates a nearly perfect eclipsed conformation between the –C(CH3)3 and –GaCl3 groups. There are no notable interactions between neighbouring molecules (Fig. 2).

The synthesis of trialkylgallium–isocyanide complexes was reported by Kingsley et al. (2012). For adducts of isocyanides with other main group elements, see: Bertani et al. (2001); Casanova et al. (1965); Fisher et al. (1994); Green et al. (1987); Meller & Batka (1969, 1970); Uhl et al. (1998). For an extensive theoretical study on main group element–isocyanide adducts, see: Timoshkin & Schaefer (2003).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: cif2tables.py (Boyle, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.
(tert-Butyl isocyanide-κC)trichloridogallium(III) top
Crystal data top
[GaCl3(C5H9N)]F(000) = 512
Mr = 259.20Dx = 1.621 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 6.5170 (12) ÅCell parameters from 6667 reflections
b = 19.393 (3) Åθ = 4.6–66.7°
c = 8.5991 (16) ŵ = 10.00 mm1
β = 102.287 (5)°T = 110 K
V = 1061.9 (3) Å3Needle, orange
Z = 40.23 × 0.17 × 0.11 mm
Data collection top
Bruker–Nonius KappaCCD APEXII
diffractometer
1791 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.024
phi and ω scansθmax = 66.7°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 77
Tmin = 0.557, Tmax = 0.753k = 2222
10964 measured reflectionsl = 1010
1876 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: difference Fourier map
wR(F2) = 0.055All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.031P)2 + 0.275P]
where P = (Fo2 + 2Fc2)/3
1876 reflections(Δ/σ)max = 0.002
127 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[GaCl3(C5H9N)]V = 1061.9 (3) Å3
Mr = 259.20Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.5170 (12) ŵ = 10.00 mm1
b = 19.393 (3) ÅT = 110 K
c = 8.5991 (16) Å0.23 × 0.17 × 0.11 mm
β = 102.287 (5)°
Data collection top
Bruker–Nonius KappaCCD APEXII
diffractometer
1876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1791 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.753Rint = 0.024
10964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.055All H-atom parameters refined
S = 1.11Δρmax = 0.33 e Å3
1876 reflectionsΔρmin = 0.31 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.57250 (3)0.61614 (2)0.63792 (2)0.02511 (9)
Cl10.53074 (7)0.70861 (2)0.76750 (5)0.03418 (12)
Cl20.87880 (7)0.60850 (3)0.58522 (6)0.03958 (13)
Cl30.48498 (7)0.52514 (2)0.75065 (5)0.03701 (12)
C10.3619 (3)0.62469 (9)0.4270 (2)0.0275 (4)
N10.2429 (2)0.62920 (7)0.31030 (16)0.0247 (3)
C20.0869 (3)0.63437 (10)0.1590 (2)0.0295 (4)
C30.0287 (4)0.70142 (13)0.1670 (3)0.0529 (6)
H3A0.133 (5)0.7048 (15)0.071 (4)0.070 (8)*
H3B0.102 (5)0.6985 (18)0.241 (4)0.082 (11)*
H3C0.064 (4)0.7425 (16)0.171 (4)0.065 (8)*
C40.2098 (4)0.63342 (14)0.0282 (2)0.0452 (5)
H4A0.114 (4)0.6379 (13)0.068 (3)0.047 (6)*
H4B0.314 (4)0.6705 (13)0.038 (3)0.048 (7)*
H4C0.286 (5)0.5912 (16)0.029 (3)0.058 (8)*
C50.0554 (4)0.57180 (13)0.1521 (3)0.0450 (5)
H5A0.160 (4)0.5739 (13)0.054 (3)0.048 (6)*
H5B0.017 (5)0.5279 (16)0.152 (3)0.060 (8)*
H5C0.124 (5)0.5744 (15)0.238 (4)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.02527 (14)0.02897 (14)0.01932 (13)0.00094 (7)0.00074 (9)0.00039 (7)
Cl10.0395 (2)0.0326 (2)0.0306 (2)0.00260 (17)0.00762 (18)0.00620 (16)
Cl20.0283 (2)0.0564 (3)0.0345 (2)0.00090 (18)0.00752 (18)0.00601 (19)
Cl30.0428 (3)0.0308 (2)0.0380 (2)0.00061 (17)0.00984 (19)0.00590 (17)
C10.0281 (9)0.0294 (8)0.0244 (9)0.0006 (6)0.0044 (7)0.0010 (6)
N10.0253 (7)0.0278 (7)0.0207 (7)0.0002 (5)0.0040 (6)0.0019 (5)
C20.0278 (9)0.0374 (9)0.0196 (8)0.0015 (7)0.0028 (7)0.0012 (7)
C30.0491 (13)0.0528 (14)0.0459 (13)0.0199 (11)0.0142 (11)0.0072 (11)
C40.0473 (12)0.0664 (15)0.0206 (9)0.0050 (11)0.0045 (9)0.0018 (9)
C50.0424 (11)0.0575 (14)0.0308 (10)0.0171 (10)0.0016 (9)0.0067 (9)
Geometric parameters (Å, º) top
Ga1—C12.0351 (18)C3—H3A0.95 (3)
Ga1—Cl22.1441 (6)C3—H3B0.88 (4)
Ga1—Cl32.1481 (5)C3—H3C1.00 (3)
Ga1—Cl12.1589 (5)C4—H4A0.92 (3)
C1—N11.133 (2)C4—H4B0.98 (3)
N1—C21.474 (2)C4—H4C0.96 (3)
C2—C31.512 (3)C5—H5A0.96 (3)
C2—C41.513 (3)C5—H5B0.97 (3)
C2—C51.521 (3)C5—H5C0.94 (3)
C1—Ga1—Cl2107.40 (5)H3A—C3—H3B103 (3)
C1—Ga1—Cl3106.00 (5)C2—C3—H3C112.6 (17)
Cl2—Ga1—Cl3112.78 (2)H3A—C3—H3C107 (2)
C1—Ga1—Cl1104.90 (5)H3B—C3—H3C117 (3)
Cl2—Ga1—Cl1113.07 (2)C2—C4—H4A107.3 (16)
Cl3—Ga1—Cl1112.01 (2)C2—C4—H4B113.1 (14)
N1—C1—Ga1179.26 (16)H4A—C4—H4B109 (2)
C1—N1—C2179.35 (18)C2—C4—H4C111.2 (17)
N1—C2—C3105.96 (15)H4A—C4—H4C110 (2)
N1—C2—C4106.28 (15)H4B—C4—H4C106 (2)
C3—C2—C4113.1 (2)C2—C5—H5A108.1 (15)
N1—C2—C5106.27 (15)C2—C5—H5B114.0 (17)
C3—C2—C5112.49 (19)H5A—C5—H5B107 (2)
C4—C2—C5112.12 (18)C2—C5—H5C108.3 (18)
C2—C3—H3A106.9 (18)H5A—C5—H5C109 (2)
C2—C3—H3B109 (2)H5B—C5—H5C111 (2)

Experimental details

Crystal data
Chemical formula[GaCl3(C5H9N)]
Mr259.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)6.5170 (12), 19.393 (3), 8.5991 (16)
β (°) 102.287 (5)
V3)1061.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)10.00
Crystal size (mm)0.23 × 0.17 × 0.11
Data collection
DiffractometerBruker–Nonius KappaCCD APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.557, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
10964, 1876, 1791
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.11
No. of reflections1876
No. of parameters127
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP (Sheldrick, 2008), cif2tables.py (Boyle, 2008).

 

Acknowledgements

We thank NSERC (Canada), the NSERC CGS program for a scholarship to JLB, the King Abdul Aziz University (Saudi Arabia) for a scholarship to NYT and the University of Western Ontario for financial support. We also thank Dr Paul D. Boyle for aid in the structure refinement.

References

First citationBertani, R., Crociani, L., D'Arcangelo, G., Rossetto, G., Traldi, P. & Zanella, P. (2001). J. Organomet. Chem. 626, 11–15.  Web of Science CrossRef CAS Google Scholar
First citationBoyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasanova, J. Jr, Kiefer, H. R., Kuwada, D. & Boulton, A. H. (1965). Tetrahedron Lett. 6, 703–714.  CrossRef Google Scholar
First citationFisher, J. D., Wei, M.-Y., Willett, R. & Shapiro, P. J. (1994). Organometallics, 13, 3324–3329.  CSD CrossRef CAS Web of Science Google Scholar
First citationGreen, I. G., Hudson, R. L. & Roberts, B. P. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1773–1779.  CrossRef Web of Science Google Scholar
First citationKingsley, N. B., Kirschbaum, K., Teprovich, J. A. Jr, Flowers, R. A. II & Mason, M. R. (2012). Inorg. Chem. 51, 2494–2502.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeller, A. & Batka, H. (1969). Monatsh. Chem. 100, 1823–1828.  CrossRef CAS Web of Science Google Scholar
First citationMeller, A. & Batka, H. (1970). Monatsh. Chem. 101, 627–628.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTimoshkin, A. Y. & Schaefer, H. F. III (2003). J. Am. Chem. Soc. 125, 9998–10011.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUhl, W., Hannemann, F. & Wartchow, R. (1998). Organometallics, 17, 3822–3825.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds