metal-organic compounds
(tert-Butyl isocyanide-κC)trichloridogallium(III)
aDepartment of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
*Correspondence e-mail: jbourqu5@uwo.ca
The tert-butyl isocyanide-κC)trichloridogallium(III), [GaCl3(C5H9N)], features the first reported isocyanide–gallium trihalide complex. The Ga—C—N—C fragment is essentially linear. The methyl fragments of the tert-butyl group are eclipsed with the chloride ligands on the Ga atom. The molecule does not, however, exhibit threefold as it crystallizes within the P21/c space group.
of (CCDC reference: 1456425
Structure description
The Ga—C—N—C fragment deviates only slightly from linearity with N1—C1—Ga1 and C1—N1—C2 angles of 179.26 (16) and 179.35 (18)°, respectively (Fig. 1). The angle between the Cl1—Ga1—C1 and N1—C2—C3 planes of 1.5 (2)° indicates a nearly perfect eclipsed conformation between the –C(CH3)3 and –GaCl3 groups. In the crystal, there are no notable interactions between neighbouring molecules (Fig. 2).
The synthesis of trialkylgallium–isocyanide complexes was reported by Kingsley et al. (2012). For adducts of with other main group elements, see: Bertani et al. (2001); Casanova et al. (1965); Fisher et al. (1994); Green et al. (1987); Meller & Batka (1969, 1970); Uhl et al. (1998). For an extensive theoretical study on main group element–isocyanide adducts, see: Timoshkin & Schaefer (2003).
Synthesis and crystallization
The title compound was obtained serendipitously from an attempted trapping experiment, involving the reaction of tert-butylisocyanide and tetramesityldisilene. GaCl3 was added to act as a X-ray quality single crystals were obtained from a solution of diethyl ether cooled to 253 K.
Refinement
Crystal data, data collection and .
details are shown in Table 1Structural data
CCDC reference: 1456425
10.1107/S2414314616003898/wm4009sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616003898/wm4009Isup2.hkl
The title compound was obtained serendipitously from an attempted trapping experiment, involving the reaction of tert-butylisocyanide and tetramesityldisilene. GaCl3 was added to act as a
X-ray quality single crystals were obtained from a solution of diethyl ether cooled to 253 K.The Ga—C—N—C fragment deviates only slightly from linearity with N1—C1—Ga1 and C1—N1—C2 angles of 179.26 (16) and 179.35 (18)°, respectively (Fig. 1). The angle between the Cl1—Ga1—C1 and N1—C2—C3 planes of 1.5 (2)° indicates a nearly perfect eclipsed conformation between the –C(CH3)3 and –GaCl3 groups. There are no notable interactions between neighbouring molecules (Fig. 2).
The synthesis of trialkylgallium–isocyanide complexes was reported by Kingsley et al. (2012). For adducts of
with other main group elements, see: Bertani et al. (2001); Casanova et al. (1965); Fisher et al. (1994); Green et al. (1987); Meller & Batka (1969, 1970); Uhl et al. (1998). For an extensive theoretical study on main group element–isocyanide adducts, see: Timoshkin & Schaefer (2003).Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: cif2tables.py (Boyle, 2008).Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. | |
Fig. 2. Crystal packing of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity. |
[GaCl3(C5H9N)] | F(000) = 512 |
Mr = 259.20 | Dx = 1.621 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 6.5170 (12) Å | Cell parameters from 6667 reflections |
b = 19.393 (3) Å | θ = 4.6–66.7° |
c = 8.5991 (16) Å | µ = 10.00 mm−1 |
β = 102.287 (5)° | T = 110 K |
V = 1061.9 (3) Å3 | Needle, orange |
Z = 4 | 0.23 × 0.17 × 0.11 mm |
Bruker–Nonius KappaCCD APEXII diffractometer | 1791 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.024 |
phi and ω scans | θmax = 66.7°, θmin = 4.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −7→7 |
Tmin = 0.557, Tmax = 0.753 | k = −22→22 |
10964 measured reflections | l = −10→10 |
1876 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.055 | All H-atom parameters refined |
S = 1.11 | w = 1/[σ2(Fo2) + (0.031P)2 + 0.275P] where P = (Fo2 + 2Fc2)/3 |
1876 reflections | (Δ/σ)max = 0.002 |
127 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[GaCl3(C5H9N)] | V = 1061.9 (3) Å3 |
Mr = 259.20 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 6.5170 (12) Å | µ = 10.00 mm−1 |
b = 19.393 (3) Å | T = 110 K |
c = 8.5991 (16) Å | 0.23 × 0.17 × 0.11 mm |
β = 102.287 (5)° |
Bruker–Nonius KappaCCD APEXII diffractometer | 1876 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 1791 reflections with I > 2σ(I) |
Tmin = 0.557, Tmax = 0.753 | Rint = 0.024 |
10964 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.055 | All H-atom parameters refined |
S = 1.11 | Δρmax = 0.33 e Å−3 |
1876 reflections | Δρmin = −0.31 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ga1 | 0.57250 (3) | 0.61614 (2) | 0.63792 (2) | 0.02511 (9) | |
Cl1 | 0.53074 (7) | 0.70861 (2) | 0.76750 (5) | 0.03418 (12) | |
Cl2 | 0.87880 (7) | 0.60850 (3) | 0.58522 (6) | 0.03958 (13) | |
Cl3 | 0.48498 (7) | 0.52514 (2) | 0.75065 (5) | 0.03701 (12) | |
C1 | 0.3619 (3) | 0.62469 (9) | 0.4270 (2) | 0.0275 (4) | |
N1 | 0.2429 (2) | 0.62920 (7) | 0.31030 (16) | 0.0247 (3) | |
C2 | 0.0869 (3) | 0.63437 (10) | 0.1590 (2) | 0.0295 (4) | |
C3 | −0.0287 (4) | 0.70142 (13) | 0.1670 (3) | 0.0529 (6) | |
H3A | −0.133 (5) | 0.7048 (15) | 0.071 (4) | 0.070 (8)* | |
H3B | −0.102 (5) | 0.6985 (18) | 0.241 (4) | 0.082 (11)* | |
H3C | 0.064 (4) | 0.7425 (16) | 0.171 (4) | 0.065 (8)* | |
C4 | 0.2098 (4) | 0.63342 (14) | 0.0282 (2) | 0.0452 (5) | |
H4A | 0.114 (4) | 0.6379 (13) | −0.068 (3) | 0.047 (6)* | |
H4B | 0.314 (4) | 0.6705 (13) | 0.038 (3) | 0.048 (7)* | |
H4C | 0.286 (5) | 0.5912 (16) | 0.029 (3) | 0.058 (8)* | |
C5 | −0.0554 (4) | 0.57180 (13) | 0.1521 (3) | 0.0450 (5) | |
H5A | −0.160 (4) | 0.5739 (13) | 0.054 (3) | 0.048 (6)* | |
H5B | 0.017 (5) | 0.5279 (16) | 0.152 (3) | 0.060 (8)* | |
H5C | −0.124 (5) | 0.5744 (15) | 0.238 (4) | 0.062 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ga1 | 0.02527 (14) | 0.02897 (14) | 0.01932 (13) | −0.00094 (7) | 0.00074 (9) | −0.00039 (7) |
Cl1 | 0.0395 (2) | 0.0326 (2) | 0.0306 (2) | −0.00260 (17) | 0.00762 (18) | −0.00620 (16) |
Cl2 | 0.0283 (2) | 0.0564 (3) | 0.0345 (2) | −0.00090 (18) | 0.00752 (18) | −0.00601 (19) |
Cl3 | 0.0428 (3) | 0.0308 (2) | 0.0380 (2) | −0.00061 (17) | 0.00984 (19) | 0.00590 (17) |
C1 | 0.0281 (9) | 0.0294 (8) | 0.0244 (9) | −0.0006 (6) | 0.0044 (7) | −0.0010 (6) |
N1 | 0.0253 (7) | 0.0278 (7) | 0.0207 (7) | 0.0002 (5) | 0.0040 (6) | −0.0019 (5) |
C2 | 0.0278 (9) | 0.0374 (9) | 0.0196 (8) | 0.0015 (7) | −0.0028 (7) | −0.0012 (7) |
C3 | 0.0491 (13) | 0.0528 (14) | 0.0459 (13) | 0.0199 (11) | −0.0142 (11) | −0.0072 (11) |
C4 | 0.0473 (12) | 0.0664 (15) | 0.0206 (9) | −0.0050 (11) | 0.0045 (9) | 0.0018 (9) |
C5 | 0.0424 (11) | 0.0575 (14) | 0.0308 (10) | −0.0171 (10) | −0.0016 (9) | −0.0067 (9) |
Ga1—C1 | 2.0351 (18) | C3—H3A | 0.95 (3) |
Ga1—Cl2 | 2.1441 (6) | C3—H3B | 0.88 (4) |
Ga1—Cl3 | 2.1481 (5) | C3—H3C | 1.00 (3) |
Ga1—Cl1 | 2.1589 (5) | C4—H4A | 0.92 (3) |
C1—N1 | 1.133 (2) | C4—H4B | 0.98 (3) |
N1—C2 | 1.474 (2) | C4—H4C | 0.96 (3) |
C2—C3 | 1.512 (3) | C5—H5A | 0.96 (3) |
C2—C4 | 1.513 (3) | C5—H5B | 0.97 (3) |
C2—C5 | 1.521 (3) | C5—H5C | 0.94 (3) |
C1—Ga1—Cl2 | 107.40 (5) | H3A—C3—H3B | 103 (3) |
C1—Ga1—Cl3 | 106.00 (5) | C2—C3—H3C | 112.6 (17) |
Cl2—Ga1—Cl3 | 112.78 (2) | H3A—C3—H3C | 107 (2) |
C1—Ga1—Cl1 | 104.90 (5) | H3B—C3—H3C | 117 (3) |
Cl2—Ga1—Cl1 | 113.07 (2) | C2—C4—H4A | 107.3 (16) |
Cl3—Ga1—Cl1 | 112.01 (2) | C2—C4—H4B | 113.1 (14) |
N1—C1—Ga1 | 179.26 (16) | H4A—C4—H4B | 109 (2) |
C1—N1—C2 | 179.35 (18) | C2—C4—H4C | 111.2 (17) |
N1—C2—C3 | 105.96 (15) | H4A—C4—H4C | 110 (2) |
N1—C2—C4 | 106.28 (15) | H4B—C4—H4C | 106 (2) |
C3—C2—C4 | 113.1 (2) | C2—C5—H5A | 108.1 (15) |
N1—C2—C5 | 106.27 (15) | C2—C5—H5B | 114.0 (17) |
C3—C2—C5 | 112.49 (19) | H5A—C5—H5B | 107 (2) |
C4—C2—C5 | 112.12 (18) | C2—C5—H5C | 108.3 (18) |
C2—C3—H3A | 106.9 (18) | H5A—C5—H5C | 109 (2) |
C2—C3—H3B | 109 (2) | H5B—C5—H5C | 111 (2) |
Experimental details
Crystal data | |
Chemical formula | [GaCl3(C5H9N)] |
Mr | 259.20 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 110 |
a, b, c (Å) | 6.5170 (12), 19.393 (3), 8.5991 (16) |
β (°) | 102.287 (5) |
V (Å3) | 1061.9 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 10.00 |
Crystal size (mm) | 0.23 × 0.17 × 0.11 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD APEXII |
Absorption correction | Multi-scan (SADABS; Bruker, 2013) |
Tmin, Tmax | 0.557, 0.753 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10964, 1876, 1791 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.055, 1.11 |
No. of reflections | 1876 |
No. of parameters | 127 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.33, −0.31 |
Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP (Sheldrick, 2008), cif2tables.py (Boyle, 2008).
Acknowledgements
We thank NSERC (Canada), the NSERC CGS program for a scholarship to JLB, the King Abdul Aziz University (Saudi Arabia) for a scholarship to NYT and the University of Western Ontario for financial support. We also thank Dr Paul D. Boyle for aid in the structure refinement.
References
Bertani, R., Crociani, L., D'Arcangelo, G., Rossetto, G., Traldi, P. & Zanella, P. (2001). J. Organomet. Chem. 626, 11–15. Web of Science CrossRef CAS Google Scholar
Boyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/ Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casanova, J. Jr, Kiefer, H. R., Kuwada, D. & Boulton, A. H. (1965). Tetrahedron Lett. 6, 703–714. CrossRef Google Scholar
Fisher, J. D., Wei, M.-Y., Willett, R. & Shapiro, P. J. (1994). Organometallics, 13, 3324–3329. CSD CrossRef CAS Web of Science Google Scholar
Green, I. G., Hudson, R. L. & Roberts, B. P. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1773–1779. CrossRef Web of Science Google Scholar
Kingsley, N. B., Kirschbaum, K., Teprovich, J. A. Jr, Flowers, R. A. II & Mason, M. R. (2012). Inorg. Chem. 51, 2494–2502. Web of Science CSD CrossRef CAS PubMed Google Scholar
Meller, A. & Batka, H. (1969). Monatsh. Chem. 100, 1823–1828. CrossRef CAS Web of Science Google Scholar
Meller, A. & Batka, H. (1970). Monatsh. Chem. 101, 627–628. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Timoshkin, A. Y. & Schaefer, H. F. III (2003). J. Am. Chem. Soc. 125, 9998–10011. Web of Science CrossRef PubMed CAS Google Scholar
Uhl, W., Hannemann, F. & Wartchow, R. (1998). Organometallics, 17, 3822–3825. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.