metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

μ-Chlorido-bis­­[(di­methyl sulfoxide-κO)bis­­(tri­phenyl­phosphane-κP)silver(I)] nitrate

aCollege of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000, People's Republic of China
*Correspondence e-mail: liyunhua@lzu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 January 2016; accepted 26 February 2016; online 4 March 2016)

The asymmetric unit of the title salt, [Ag2Cl(C2H6OS)2(C18H15P)4]NO3, comprises one nitrate anion and one half of the binuclear complex cation, the other half being completed by inversion symmetry. The AgI atom has a distorted (ClOP2) coordination sphere. Weak inter­molecular C—H⋯O inter­actions between the cation and the O atoms of the nitrate counter-anion help to consolidate the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The AgI atom in the complex cation is coordinated by two P atoms from tri­phenyl­phosphine ligands, the bridging Cl atom, and the O atom from the dimethyl sulfoxide ligand in a distorted tetra­hedral environment [bond angle range 95.62 (11)–120.71 (4) °; Fig. 1[link]]. The nitrate anion does not coordinate to the metal cation and is statistically disordered about a centre of inversion. The mol­ecular configuration of the cation is stabilized by an intra­molecular hydrogen bond between a phenyl CH group (C1) and the dimethyl sulfoxide O atom (O4). Other inter­molecular C—H⋯O hydrogen-bonding inter­actions involving the phenyl and methyl H atoms of the cation and neighbouring anions (Table 1[link]) lead to the formation of a three-dimensional network structure. The crystal structures of similar silver compounds were reported by Cassel (1979[Cassel, A. (1979). Acta Cryst. B35, 174-177.]) and Bowmaker et al. (1993[Bowmaker, G. A., Effendy, Hanna, J. V., Healy, P. C., Skelton, B. W. & White, A. H. (1993). J. Chem. Soc. Dalton Trans. pp. 1387-1397.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4 0.93 2.50 3.381 (8) 159
C4—H4⋯O2i 0.93 2.45 3.14 (2) 131
C16—H16⋯O1ii 0.93 2.24 3.00 (2) 138
C37—H37A⋯O3iii 0.96 2.43 3.321 (16) 155
C38—H38A⋯O2iii 0.96 2.26 3.095 (18) 145
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structures of the cation and anion in the title structure. Displacement ellipsoids are displayed at the 50% probability level. Non-labelled symmetry-related atoms are generated by symmetry code (−x, −y, −z + 1). Only one orientation of the nitrate anion is shown.

Synthesis and crystallization

Reaction of AgNO3 (85 mg, 0.5 mmol) with PPh3 (262 mg, 1 mmol) in chloro­form/DMSO/ethanol/water (12 ml, v/v/v/v = 1:1:1:1) under ultrasonic treatment (160 W, 40 kHz, 373 K, 10 min) led to a colourless solution that was allowed to slowly evaporate at room temperature for two weeks to give colourless crystals of the title compound. Yield: ca 55% based on AgNO3.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The nitrate counter-anion (N1, O1, O2, O3) is disordered about an inversion centre and each of the atoms consequently has an occupancy of 0.5.

Table 2
Experimental details

Crystal data
Chemical formula [Ag2Cl(C2H6OS)2(C18H15P)4]NO3
Mr 1518.56
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 12.440 (3), 13.070 (3), 13.579 (3)
α, β, γ (°) 93.489 (5), 117.157 (4), 115.354 (4)
V3) 1682.6 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.83
Crystal size (mm) 0.3 × 0.15 × 0.12
 
Data collection
Diffractometer Agilent CCD Xcalibur
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.861, 0.905
No. of measured, independent and observed [I > 2σ(I)] reflections 8521, 5941, 5298
Rint 0.062
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.153, 1.12
No. of reflections 5868
No. of parameters 430
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.39, −2.12
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Synthesis and crystallization top

Reaction of AgNO3 (85 mg, 0.5 mmol) with PPh3 (262 mg, 1 mmol) in chloro­form/DMSO/ethanol/water (12 ml, v/v/v/v = 1:1:1:1) under ultrasonic treatment (160 W, 40 kHz, 373 K, 10 min) led to a colourless solution that was allowed to slowly evaporate at room temperature for two weeks to give colourless crystals of the title compound. Yield: ca55% based on AgNO3.

Refinement top

All hydrogen atoms were located in geometrically idealized positions but were constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) (aromatic H atoms) and 0.96 Å Uiso(H) = 1.5Ueq(C) (methyl H atoms). The nitrate counter anion (N1, O1, O2, O3) is disordered about an inversion centre and each of the atoms consequently has an occupancy of 0.5.

Experimental top

Reaction of AgNO3 (85 mg, 0.5 mmol) with PPh3 (262 mg, 1 mmol) in chloroform/DMSO/ethanol/water (12 ml, v/v/v/v = 1:1:1:1) under ultrasonic treatment (160 W, 40 kHz, 373 K, 10 min) led to a colourless solution that was allowed to slowly evaporate at room temperature for two weeks to give colourless crystals of the title compound. Yield: ca 55% based on AgNO3.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The nitrate counter-anion (N1, O1, O2, O3) is disordered about an inversion centre and each of the atoms consequently has an occupancy of 0.5.

Structure description top

The AgI atom in the complex cation is coordinated by two P atoms from triphenylphosphine ligands, the bridging Cl atom, and one O atom from the dimethyl sulfoxide ligand in a distorted tetrahedral environment [bond angle range 95.62 (11)–120.71 (4) °; Fig. 1]. The nitrate anion does not coordinate to the metal cation and is statistically disordered about a centre of inversion. The molecular configuration of the cation is stabilized by an intramolecular hydrogen bond between a phenyl CH group (C1) and the dimethyl sulfoxide O atom (O4). Other intermolecular C—H···O hydrogen-bonding interactions involving the phenyl and methyl H atoms of the cation and neighbouring anions (Table 1) lead to the formation of a three-dimensional network structure. The crystal structures of similar silver compounds were reported by Cassel (1979) and Bowmaker et al. (1993).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the cation and anion in the title structure. Displacement ellipsoids are displayed at the 50% probability level. Non-labelled symmetry-related atoms are generated by symmetry code (−x, −y, −z + 1).
µ-Chlorido-bis[(dimethyl sulfoxide-κO)bis(triphenylphosphane-κP)silver(I)] nitrate top
Crystal data top
[Ag2Cl(C2H6OS)2(C18H15P)4]NO3Z = 1
Mr = 1518.56F(000) = 778
Triclinic, P1Dx = 1.499 Mg m3
a = 12.440 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.070 (3) ÅCell parameters from 4355 reflections
c = 13.579 (3) Åθ = 2.3–28.4°
α = 93.489 (5)°µ = 0.83 mm1
β = 117.157 (4)°T = 173 K
γ = 115.354 (4)°Block, colourless
V = 1682.6 (7) Å30.3 × 0.15 × 0.12 mm
Data collection top
Agilent CCD Xcalibur
diffractometer
5941 independent reflections
Radiation source: sealed X-ray tube5298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1414
Tmin = 0.861, Tmax = 0.905k = 1015
8521 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0478P)2 + 6.8934P]
where P = (Fo2 + 2Fc2)/3
5868 reflections(Δ/σ)max = 0.004
430 parametersΔρmax = 2.39 e Å3
6 restraintsΔρmin = 2.12 e Å3
Crystal data top
[Ag2Cl(C2H6OS)2(C18H15P)4]NO3γ = 115.354 (4)°
Mr = 1518.56V = 1682.6 (7) Å3
Triclinic, P1Z = 1
a = 12.440 (3) ÅMo Kα radiation
b = 13.070 (3) ŵ = 0.83 mm1
c = 13.579 (3) ÅT = 173 K
α = 93.489 (5)°0.3 × 0.15 × 0.12 mm
β = 117.157 (4)°
Data collection top
Agilent CCD Xcalibur
diffractometer
5941 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
5298 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.905Rint = 0.062
8521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0646 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.12Δρmax = 2.39 e Å3
5868 reflectionsΔρmin = 2.12 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.04619 (4)0.07560 (4)0.71100 (4)0.03575 (17)
Cl10.00000.00000.50000.0484 (6)
S10.26857 (16)0.19692 (13)0.61116 (14)0.0371 (4)
P10.03902 (14)0.25182 (12)0.76647 (13)0.0288 (3)
P20.23582 (14)0.03943 (12)0.82202 (12)0.0251 (3)
O40.1809 (5)0.0643 (3)0.6687 (4)0.0434 (11)
C10.2383 (6)0.1576 (5)0.5935 (5)0.0388 (14)
H10.24480.08410.59420.047*
C20.3545 (6)0.1622 (6)0.5162 (6)0.0492 (17)
H20.43900.09200.46390.059*
C30.3452 (7)0.2706 (6)0.5167 (6)0.0474 (17)
H30.42430.27330.46490.057*
C40.2228 (7)0.3735 (6)0.5912 (6)0.0419 (15)
H40.21780.44660.59100.050*
C50.1055 (6)0.3694 (5)0.6674 (5)0.0360 (14)
H50.02080.44020.71790.043*
C60.1124 (6)0.2614 (5)0.6697 (5)0.0311 (12)
C70.0046 (7)0.3372 (6)0.9310 (6)0.0418 (15)
H70.07510.34260.86950.050*
C80.0251 (8)0.3725 (6)1.0423 (7)0.0527 (18)
H80.02580.40051.05570.063*
C90.1299 (8)0.3659 (6)1.1330 (6)0.0483 (17)
H90.15200.39151.20870.058*
C100.2021 (8)0.3221 (6)1.1131 (6)0.0500 (17)
H100.27330.31771.17500.060*
C110.1699 (7)0.2845 (6)1.0020 (6)0.0434 (15)
H110.21720.25190.98850.052*
C120.0678 (6)0.2942 (5)0.9094 (5)0.0326 (13)
C130.2916 (6)0.4746 (5)0.8694 (5)0.0322 (13)
H130.29120.48030.93780.039*
C140.4001 (6)0.5616 (5)0.8674 (5)0.0393 (14)
H140.47350.62620.93460.047*
C150.4027 (7)0.5555 (6)0.7684 (6)0.0423 (15)
H150.47770.61570.76810.051*
C160.2943 (7)0.4603 (6)0.6687 (6)0.0402 (15)
H160.29470.45590.60020.048*
C170.1862 (6)0.3723 (5)0.6717 (5)0.0331 (13)
H170.11350.30700.60500.040*
C180.1828 (5)0.3786 (5)0.7719 (5)0.0271 (12)
C190.1706 (6)0.0051 (5)0.9879 (5)0.0352 (13)
H190.07830.03390.92420.042*
C200.1975 (7)0.0112 (5)1.0988 (6)0.0385 (14)
H200.12350.02561.11040.046*
C210.3331 (7)0.0716 (5)1.1915 (5)0.0353 (13)
H210.35120.07561.26650.042*
C220.4416 (6)0.1257 (5)1.1763 (5)0.0352 (14)
H220.53350.16801.24070.042*
C230.4167 (6)0.1187 (5)1.0660 (5)0.0283 (12)
H230.49150.15551.05540.034*
C240.2808 (5)0.0571 (4)0.9716 (4)0.0241 (11)
C250.4200 (6)0.2558 (5)0.8256 (5)0.0308 (12)
H250.35400.27630.81730.037*
C260.5389 (6)0.3362 (5)0.8317 (5)0.0373 (14)
H260.55410.41170.82850.045*
C270.6363 (7)0.3075 (5)0.8425 (5)0.0391 (14)
H270.71750.36280.84670.047*
C280.6125 (7)0.1958 (6)0.8472 (6)0.0439 (16)
H280.67790.17530.85380.053*
C290.4949 (6)0.1148 (5)0.8422 (6)0.0379 (14)
H290.48050.03960.84590.046*
C300.3966 (6)0.1437 (5)0.8317 (4)0.0256 (11)
C310.2194 (6)0.1782 (5)0.8462 (5)0.0313 (12)
H310.24120.15160.92160.038*
C320.1942 (7)0.2895 (5)0.8046 (6)0.0395 (14)
H320.19920.33790.85190.047*
C330.1624 (6)0.3291 (5)0.6954 (6)0.0377 (14)
H330.14490.40480.66770.045*
C340.1555 (6)0.2580 (5)0.6247 (5)0.0341 (13)
H340.13430.28540.54970.041*
C350.1797 (6)0.1470 (5)0.6648 (5)0.0315 (12)
H350.17410.09930.61680.038*
C360.2125 (5)0.1056 (4)0.7768 (5)0.0264 (11)
C370.3516 (8)0.2205 (7)0.4597 (6)0.0544 (19)
H37A0.40950.30480.41850.082*
H37B0.28150.18470.44040.082*
H37C0.40910.18510.43750.082*
C380.1502 (7)0.2429 (6)0.6253 (6)0.0446 (16)
H38A0.20080.32790.58970.067*
H38B0.08210.22200.70650.067*
H38C0.10290.20400.58730.067*
N10.511 (4)0.506 (6)0.5173 (15)0.035 (3)0.50
O10.5480 (17)0.4748 (12)0.4527 (14)0.070 (3)0.50
O20.4006 (13)0.5016 (13)0.4696 (13)0.063 (3)0.50
O30.5750 (14)0.5105 (11)0.6173 (10)0.082 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0243 (2)0.0216 (2)0.0448 (3)0.01288 (18)0.0063 (2)0.00570 (18)
Cl10.0594 (15)0.0553 (14)0.0419 (12)0.0347 (12)0.0295 (12)0.0205 (11)
S10.0315 (8)0.0279 (7)0.0414 (9)0.0084 (6)0.0193 (7)0.0046 (6)
P10.0220 (7)0.0212 (7)0.0362 (8)0.0121 (6)0.0098 (6)0.0078 (6)
P20.0242 (7)0.0225 (7)0.0265 (7)0.0146 (6)0.0099 (6)0.0066 (5)
O40.042 (2)0.025 (2)0.057 (3)0.0083 (19)0.032 (2)0.0002 (19)
C10.027 (3)0.031 (3)0.045 (4)0.013 (3)0.012 (3)0.012 (3)
C20.023 (3)0.045 (4)0.051 (4)0.010 (3)0.007 (3)0.013 (3)
C30.033 (3)0.065 (5)0.050 (4)0.035 (3)0.017 (3)0.027 (4)
C40.046 (4)0.043 (4)0.048 (4)0.033 (3)0.023 (3)0.018 (3)
C50.032 (3)0.032 (3)0.039 (3)0.019 (3)0.013 (3)0.011 (3)
C60.025 (3)0.032 (3)0.038 (3)0.020 (2)0.014 (3)0.011 (2)
C70.044 (4)0.046 (4)0.047 (4)0.028 (3)0.028 (3)0.022 (3)
C80.070 (5)0.055 (4)0.070 (5)0.042 (4)0.052 (4)0.032 (4)
C90.066 (5)0.041 (4)0.045 (4)0.023 (3)0.037 (4)0.017 (3)
C100.049 (4)0.057 (4)0.040 (4)0.027 (4)0.020 (3)0.023 (3)
C110.039 (4)0.043 (4)0.052 (4)0.024 (3)0.024 (3)0.019 (3)
C120.030 (3)0.020 (3)0.038 (3)0.010 (2)0.015 (3)0.010 (2)
C130.032 (3)0.028 (3)0.030 (3)0.015 (2)0.012 (3)0.006 (2)
C140.034 (3)0.030 (3)0.039 (3)0.009 (3)0.016 (3)0.003 (3)
C150.033 (3)0.035 (3)0.063 (4)0.020 (3)0.025 (3)0.022 (3)
C160.054 (4)0.043 (4)0.043 (4)0.033 (3)0.032 (3)0.020 (3)
C170.036 (3)0.025 (3)0.030 (3)0.015 (3)0.013 (3)0.006 (2)
C180.022 (3)0.022 (3)0.039 (3)0.015 (2)0.014 (2)0.010 (2)
C190.031 (3)0.037 (3)0.033 (3)0.017 (3)0.014 (3)0.007 (3)
C200.038 (3)0.038 (3)0.048 (4)0.018 (3)0.029 (3)0.017 (3)
C210.045 (4)0.044 (3)0.033 (3)0.030 (3)0.024 (3)0.016 (3)
C220.032 (3)0.035 (3)0.026 (3)0.019 (3)0.006 (3)0.005 (2)
C230.027 (3)0.029 (3)0.032 (3)0.017 (2)0.016 (2)0.009 (2)
C240.025 (3)0.022 (3)0.027 (3)0.016 (2)0.012 (2)0.007 (2)
C250.034 (3)0.027 (3)0.031 (3)0.017 (2)0.016 (3)0.009 (2)
C260.042 (3)0.024 (3)0.040 (3)0.017 (3)0.018 (3)0.010 (3)
C270.034 (3)0.036 (3)0.045 (4)0.017 (3)0.021 (3)0.016 (3)
C280.038 (3)0.046 (4)0.064 (4)0.028 (3)0.032 (3)0.026 (3)
C290.036 (3)0.031 (3)0.048 (4)0.023 (3)0.019 (3)0.016 (3)
C300.027 (3)0.029 (3)0.021 (3)0.017 (2)0.011 (2)0.008 (2)
C310.034 (3)0.029 (3)0.032 (3)0.018 (3)0.016 (3)0.010 (2)
C320.045 (4)0.031 (3)0.049 (4)0.023 (3)0.025 (3)0.016 (3)
C330.032 (3)0.027 (3)0.053 (4)0.018 (3)0.021 (3)0.006 (3)
C340.032 (3)0.033 (3)0.032 (3)0.017 (3)0.015 (3)0.003 (2)
C350.035 (3)0.035 (3)0.029 (3)0.023 (3)0.016 (3)0.012 (2)
C360.022 (3)0.022 (3)0.030 (3)0.013 (2)0.009 (2)0.004 (2)
C370.052 (4)0.053 (4)0.037 (4)0.026 (4)0.010 (3)0.009 (3)
C380.043 (4)0.037 (3)0.046 (4)0.023 (3)0.017 (3)0.010 (3)
N10.019 (10)0.022 (10)0.037 (9)0.002 (11)0.010 (12)0.010 (16)
O10.087 (9)0.061 (8)0.107 (8)0.044 (8)0.078 (9)0.026 (9)
O20.043 (6)0.072 (9)0.093 (9)0.036 (6)0.043 (6)0.038 (9)
O30.073 (8)0.080 (8)0.051 (6)0.026 (7)0.015 (6)0.019 (6)
Geometric parameters (Å, º) top
Ag1—Cl12.6799 (8)C17—H170.9300
Ag1—P12.4303 (15)C17—C181.379 (8)
Ag1—P22.4200 (14)C19—H190.9300
Ag1—O42.371 (4)C19—C201.374 (9)
Cl1—Ag1i2.6799 (8)C19—C241.374 (8)
S1—O41.497 (4)C20—H200.9300
S1—C371.762 (7)C20—C211.362 (9)
S1—C381.755 (7)C21—H210.9300
P1—C61.804 (5)C21—C221.349 (9)
P1—C121.808 (6)C22—H220.9300
P1—C181.810 (6)C22—C231.372 (8)
P2—C241.813 (5)C23—H230.9300
P2—C301.811 (6)C23—C241.371 (7)
P2—C361.811 (5)C25—H250.9300
C1—H10.9300C25—C261.358 (9)
C1—C21.376 (9)C25—C301.381 (7)
C1—C61.377 (8)C26—H260.9300
C2—H20.9300C26—C271.365 (9)
C2—C31.370 (9)C27—H270.9300
C3—H30.9300C27—C281.371 (8)
C3—C41.351 (9)C28—H280.9300
C4—H40.9300C28—C291.357 (9)
C4—C51.378 (8)C29—H290.9300
C5—H50.9300C29—C301.379 (8)
C5—C61.381 (8)C31—H310.9300
C7—H70.9300C31—C321.372 (8)
C7—C81.376 (10)C31—C361.379 (8)
C7—C121.365 (9)C32—H320.9300
C8—H80.9300C32—C331.348 (9)
C8—C91.365 (10)C33—H330.9300
C9—H90.9300C33—C341.375 (9)
C9—C101.361 (10)C34—H340.9300
C10—H100.9300C34—C351.368 (8)
C10—C111.367 (10)C35—H350.9300
C11—H110.9300C35—C361.384 (8)
C11—C121.382 (9)C37—H37A0.9600
C13—H130.9300C37—H37B0.9600
C13—C141.356 (9)C37—H37C0.9600
C13—C181.366 (8)C38—H38A0.9600
C14—H140.9300C38—H38B0.9600
C14—C151.357 (9)C38—H38C0.9600
C15—H150.9300N1—O11.27 (4)
C15—C161.376 (9)N1—O21.20 (4)
C16—H160.9300N1—O31.20 (2)
C16—C171.366 (9)
P1—Ag1—Cl1120.71 (4)C18—C17—H17119.4
P2—Ag1—Cl197.42 (4)C13—C18—P1124.8 (5)
P2—Ag1—P1125.89 (5)C13—C18—C17118.4 (5)
O4—Ag1—Cl196.95 (11)C17—C18—P1116.6 (4)
O4—Ag1—P195.62 (11)C20—C19—H19120.2
O4—Ag1—P2117.80 (12)C24—C19—H19120.2
Ag1i—Cl1—Ag1180.0C24—C19—C20119.7 (6)
O4—S1—C37106.2 (3)C19—C20—H20120.2
O4—S1—C38105.7 (3)C21—C20—C19119.5 (6)
C38—S1—C3797.4 (4)C21—C20—H20120.2
C6—P1—Ag1118.66 (19)C20—C21—H21119.5
C6—P1—C12104.4 (3)C22—C21—C20121.0 (6)
C6—P1—C18103.3 (3)C22—C21—H21119.5
C12—P1—Ag1117.58 (19)C21—C22—H22119.9
C12—P1—C18103.6 (3)C21—C22—C23120.2 (5)
C18—P1—Ag1107.40 (18)C23—C22—H22119.9
C24—P2—Ag1111.65 (17)C22—C23—H23120.3
C30—P2—Ag1112.26 (17)C24—C23—C22119.5 (5)
C30—P2—C24105.6 (2)C24—C23—H23120.3
C36—P2—Ag1119.52 (17)C19—C24—P2116.7 (4)
C36—P2—C24102.2 (2)C23—C24—P2123.3 (4)
C36—P2—C30104.3 (2)C23—C24—C19120.1 (5)
S1—O4—Ag1130.5 (2)C26—C25—H25119.8
C2—C1—H1119.9C26—C25—C30120.4 (5)
C2—C1—C6120.2 (6)C30—C25—H25119.8
C6—C1—H1119.9C25—C26—H26119.6
C1—C2—H2120.1C25—C26—C27120.8 (5)
C3—C2—C1119.8 (6)C27—C26—H26119.6
C3—C2—H2120.1C26—C27—H27120.5
C2—C3—H3119.5C26—C27—C28119.0 (6)
C4—C3—C2121.0 (6)C28—C27—H27120.5
C4—C3—H3119.5C27—C28—H28119.5
C3—C4—H4120.3C29—C28—C27120.9 (6)
C3—C4—C5119.5 (6)C29—C28—H28119.5
C5—C4—H4120.3C28—C29—H29119.9
C4—C5—H5119.6C28—C29—C30120.2 (6)
C4—C5—C6120.7 (6)C30—C29—H29119.9
C6—C5—H5119.6C25—C30—P2118.6 (4)
C1—C6—P1118.9 (4)C29—C30—P2122.6 (4)
C1—C6—C5118.9 (5)C29—C30—C25118.7 (5)
C5—C6—P1122.2 (4)C32—C31—H31119.9
C8—C7—H7119.4C32—C31—C36120.3 (6)
C12—C7—H7119.4C36—C31—H31119.9
C12—C7—C8121.1 (6)C31—C32—H32119.8
C7—C8—H8120.2C33—C32—C31120.4 (6)
C9—C8—C7119.5 (7)C33—C32—H32119.8
C9—C8—H8120.2C32—C33—H33119.8
C8—C9—H9119.9C32—C33—C34120.3 (5)
C10—C9—C8120.3 (7)C34—C33—H33119.8
C10—C9—H9119.9C33—C34—H34120.0
C9—C10—H10120.0C35—C34—C33120.0 (6)
C9—C10—C11120.0 (7)C35—C34—H34120.0
C11—C10—H10120.0C34—C35—H35119.9
C10—C11—H11119.6C34—C35—C36120.1 (5)
C10—C11—C12120.8 (6)C36—C35—H35119.9
C12—C11—H11119.6C31—C36—P2123.3 (4)
C7—C12—P1123.4 (5)C31—C36—C35118.9 (5)
C7—C12—C11118.3 (6)C35—C36—P2117.8 (4)
C11—C12—P1118.2 (5)S1—C37—H37A109.5
C14—C13—H13119.7S1—C37—H37B109.5
C14—C13—C18120.7 (6)S1—C37—H37C109.5
C18—C13—H13119.7H37A—C37—H37B109.5
C13—C14—H14119.6H37A—C37—H37C109.5
C13—C14—C15120.8 (6)H37B—C37—H37C109.5
C15—C14—H14119.6S1—C38—H38A109.5
C14—C15—H15120.1S1—C38—H38B109.5
C14—C15—C16119.9 (6)S1—C38—H38C109.5
C16—C15—H15120.1H38A—C38—H38B109.5
C15—C16—H16120.5H38A—C38—H38C109.5
C17—C16—C15119.0 (6)H38B—C38—H38C109.5
C17—C16—H16120.5O2—N1—O1117.3 (15)
C16—C17—H17119.4O3—N1—O1116 (3)
C16—C17—C18121.2 (5)O3—N1—O2125 (3)
Ag1—P1—C6—C124.1 (6)C12—P1—C6—C1109.1 (5)
Ag1—P1—C6—C5154.1 (5)C12—P1—C6—C572.6 (6)
Ag1—P1—C12—C7141.1 (5)C12—P1—C18—C136.2 (5)
Ag1—P1—C12—C1140.0 (5)C12—P1—C18—C17178.6 (4)
Ag1—P1—C18—C13118.9 (4)C12—C7—C8—C90.9 (10)
Ag1—P1—C18—C1756.3 (4)C13—C14—C15—C160.1 (10)
Ag1—P2—C24—C1945.1 (5)C14—C13—C18—P1175.2 (5)
Ag1—P2—C24—C23134.8 (4)C14—C13—C18—C170.2 (8)
Ag1—P2—C30—C2527.7 (5)C14—C15—C16—C170.8 (9)
Ag1—P2—C30—C29150.8 (4)C15—C16—C17—C181.2 (9)
Ag1—P2—C36—C31119.3 (4)C16—C17—C18—P1176.4 (5)
Ag1—P2—C36—C3557.7 (5)C16—C17—C18—C130.9 (8)
Cl1—Ag1—P1—C651.4 (2)C18—P1—C6—C1142.8 (5)
Cl1—Ag1—P1—C12178.7 (2)C18—P1—C6—C535.5 (6)
Cl1—Ag1—P1—C1865.0 (2)C18—P1—C12—C7100.6 (5)
Cl1—Ag1—P2—C24170.54 (18)C18—P1—C12—C1178.3 (5)
Cl1—Ag1—P2—C3071.10 (19)C18—C13—C14—C150.2 (9)
Cl1—Ag1—P2—C3651.5 (2)C19—C20—C21—C220.1 (9)
Cl1—Ag1—O4—S148.0 (4)C20—C19—C24—P2177.5 (4)
P1—Ag1—Cl1—Ag1i155 (100)C20—C19—C24—C232.6 (8)
P1—Ag1—P2—C2452.6 (2)C20—C21—C22—C231.3 (9)
P1—Ag1—P2—C3065.8 (2)C21—C22—C23—C240.5 (8)
P1—Ag1—P2—C36171.7 (2)C22—C23—C24—P2178.7 (4)
P1—Ag1—O4—S1169.9 (3)C22—C23—C24—C191.4 (8)
P2—Ag1—Cl1—Ag1i65 (100)C24—P2—C30—C2594.2 (5)
P2—Ag1—P1—C6179.4 (2)C24—P2—C30—C2987.4 (5)
P2—Ag1—P1—C1253.3 (2)C24—P2—C36—C314.6 (5)
P2—Ag1—P1—C1862.9 (2)C24—P2—C36—C35178.5 (4)
P2—Ag1—O4—S154.2 (4)C24—C19—C20—C211.8 (9)
O4—Ag1—Cl1—Ag1i55 (100)C25—C26—C27—C280.0 (10)
O4—Ag1—P1—C650.1 (3)C26—C25—C30—P2179.5 (4)
O4—Ag1—P1—C1277.2 (2)C26—C25—C30—C291.0 (8)
O4—Ag1—P1—C18166.6 (2)C26—C27—C28—C290.6 (10)
O4—Ag1—P2—C2468.6 (2)C27—C28—C29—C300.3 (10)
O4—Ag1—P2—C30173.0 (2)C28—C29—C30—P2178.9 (5)
O4—Ag1—P2—C3650.5 (3)C28—C29—C30—C250.4 (9)
C1—C2—C3—C40.8 (12)C30—P2—C24—C19167.4 (4)
C2—C1—C6—P1178.0 (5)C30—P2—C24—C2312.5 (5)
C2—C1—C6—C50.3 (10)C30—P2—C36—C31114.4 (5)
C2—C3—C4—C50.3 (11)C30—P2—C36—C3568.7 (5)
C3—C4—C5—C61.1 (10)C30—C25—C26—C270.8 (9)
C4—C5—C6—P1179.0 (5)C31—C32—C33—C340.4 (9)
C4—C5—C6—C10.8 (10)C32—C31—C36—P2177.0 (5)
C6—P1—C12—C77.2 (6)C32—C31—C36—C350.1 (8)
C6—P1—C12—C11173.8 (5)C32—C33—C34—C350.6 (9)
C6—P1—C18—C13114.9 (5)C33—C34—C35—C360.6 (9)
C6—P1—C18—C1769.9 (5)C34—C35—C36—P2177.4 (4)
C6—C1—C2—C31.1 (11)C34—C35—C36—C310.4 (8)
C7—C8—C9—C101.6 (11)C36—P2—C24—C1983.8 (5)
C8—C7—C12—P1177.5 (5)C36—P2—C24—C2396.3 (5)
C8—C7—C12—C111.4 (9)C36—P2—C30—C25158.5 (4)
C8—C9—C10—C110.0 (11)C36—P2—C30—C2920.0 (5)
C9—C10—C11—C122.3 (10)C36—C31—C32—C330.1 (9)
C10—C11—C12—P1176.0 (5)C37—S1—O4—Ag181.7 (4)
C10—C11—C12—C73.0 (9)C38—S1—O4—Ag121.0 (5)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.932.503.381 (8)159
C4—H4···O2ii0.932.453.14 (2)131
C16—H16···O1iii0.932.243.00 (2)138
C37—H37A···O3i0.962.433.321 (16)155
C38—H38A···O2i0.962.263.095 (18)145
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.932.503.381 (8)159
C4—H4···O2i0.932.453.14 (2)131
C16—H16···O1ii0.932.243.00 (2)138
C37—H37A···O3iii0.962.433.321 (16)155
C38—H38A···O2iii0.962.263.095 (18)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag2Cl(C2H6OS)2(C18H15P)4]NO3
Mr1518.56
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)12.440 (3), 13.070 (3), 13.579 (3)
α, β, γ (°)93.489 (5), 117.157 (4), 115.354 (4)
V3)1682.6 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.3 × 0.15 × 0.12
Data collection
DiffractometerAgilent CCD Xcalibur
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.861, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
8521, 5941, 5298
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.153, 1.12
No. of reflections5868
No. of parameters430
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.39, 2.12

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (lzujbky-2013–192).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBowmaker, G. A., Effendy, Hanna, J. V., Healy, P. C., Skelton, B. W. & White, A. H. (1993). J. Chem. Soc. Dalton Trans. pp. 1387–1397.  CSD CrossRef Web of Science Google Scholar
First citationCassel, A. (1979). Acta Cryst. B35, 174–177.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds