organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl­cyclo­hexyl p-toluene­sulfonate

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 5 March 2016; accepted 7 March 2016; online 11 March 2016)

The title compound, C14H20O3S, demonstrates a trans conformation. The cyclo­hexyl ring in the structure exhibits a flattening, with average C—C—C angles of 111.2° and average C—C—C—C torsion angles of 55.6°. No significant inter­molecular inter­actions are noted in the solid state.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Substituted cyclo­hexane rings often exhibit a flattening from the ideal chair configuration where average C—C—C angles of 109.5° and average C—C—C—C torsion angles of 60° should exist. The parent cyclo­hexyl-p-toluene­sulfonate demonstrates a slight flattening, with angles of 109.7 and 57.5°, respectively, being reported (James & McConnell, 1971[James, V. J. & McConnell, J. F. (1971). Tetrahedron, 27, 5475-5480.]). The structure of trans-4-tert-butyl­cyclo­hexyl p-toluene­sulfonate has been reported from both X-ray (Johnson et al., 1972[Johnson, P. L., Cheer, C. J., Schaefer, J. P., James, V. J. & Moore, F. H. (1972). Tetrahedron, 28, 2893-2900.]) and neutron (James & Moore, 1975[James, V. J. & Moore, F. H. (1975). Acta Cryst. B31, 1053-1058.]) studies and exhibits a greater flattening, with angles of 110.9 and 56.3°, respectively. Surprisingly, the title compound, trans-4-methyl­cyclo­hexyl-p-toluene­sulfonate (Fig. 1[link]) shows an even greater flattening, with average angles of 111.2 and 55.6°, respectively. Otherwise the three structures exhibit very similar bond lengths and angles. No significant inter­molecular inter­actions are observed in the solid state.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

Synthesis and crystallization

The title compound was prepared from 4-methyl­cyclo­hexa­nol and tosyl anhydride in a procedure similar to that published in Comagic & Schirrmacher (2004[Comagic, S. & Schirrmacher, R. (2004). Synthesis, pp. 885-888.]). A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its 4-methyl­cyclo­hexa­nol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C14H20O3S
Mr 268.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 11.390 (2), 10.9935 (18), 12.5613 (19)
β (°) 113.790 (9)
V3) 1439.3 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.99
Crystal size (mm) 0.3 × 0.1 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.635, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 17339, 2730, 1976
Rint 0.071
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.151, 1.09
No. of reflections 2730
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.34
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Experimental top

The title compound was prepared from 4-methylcyclohexanol and tosyl anhydride in a procedure similar to that published in Comagic & Schirrmacher (2004). A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its 4-methylcyclohexanol solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

Substituted cyclohexane rings often exhibit a flattening from the ideal chair configuration where average C—C—C angles of 109.5° and average C—C—C—C torsion angles of 60° should exist. The parent cyclohexyl-p-toluenesulfonate demonstrates a slight flattening, with angles of 109.7 and 57.5°, respectively, being reported (James & McConnell, 1971). The structure of trans-4-tert-butylcyclohexyl p-toluenesulfonate has been reported from both X-ray (Johnson et al., 1972) and neutron (James & Moore, 1975) studies and exhibits a greater flattening, with angles of 110.9 and 56.3°, respectively. Surprisingly, the title compound, trans-4-methylcyclohexyl-p-toluenesulfonate (Fig. 1) shows an even greater flattening, with average angles of 111.2 and 55.6°, respectively. Otherwise the three structures exhibit very similar bond lengths and angles. No significant intermolecular interactions are observed in the solid state.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
4-Methylcyclohexyl 4-methylbenzenesulfonate top
Crystal data top
C14H20O3SF(000) = 576
Mr = 268.36Dx = 1.238 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 6338 reflections
a = 11.390 (2) Åθ = 4.2–70.0°
b = 10.9935 (18) ŵ = 1.99 mm1
c = 12.5613 (19) ÅT = 200 K
β = 113.790 (9)°Needle, colourless
V = 1439.3 (4) Å30.3 × 0.1 × 0.04 mm
Z = 4
Data collection top
Bruker D8 Venture CMOS
diffractometer
2730 independent reflections
Radiation source: Cu1976 reflections with I > 2σ(I)
HELIOS MX monochromatorRint = 0.071
φ and ω scansθmax = 70.5°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1313
Tmin = 0.635, Tmax = 0.753k = 1313
17339 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.3146P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2730 reflectionsΔρmax = 0.19 e Å3
165 parametersΔρmin = 0.33 e Å3
Crystal data top
C14H20O3SV = 1439.3 (4) Å3
Mr = 268.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.390 (2) ŵ = 1.99 mm1
b = 10.9935 (18) ÅT = 200 K
c = 12.5613 (19) Å0.3 × 0.1 × 0.04 mm
β = 113.790 (9)°
Data collection top
Bruker D8 Venture CMOS
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1976 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.753Rint = 0.071
17339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.09Δρmax = 0.19 e Å3
2730 reflectionsΔρmin = 0.33 e Å3
165 parameters
Special details top

Experimental. Absorption correction: SADABS2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.1521 before and 0.0777 after correction. The Ratio of minimum to maximum transmission is 0.8423. The λ/2 correction factor is 0.00150.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21794 (7)0.40952 (6)0.43539 (5)0.0555 (2)
O10.33075 (16)0.38628 (14)0.55667 (13)0.0504 (4)
O20.2587 (2)0.38475 (19)0.34409 (16)0.0721 (6)
O30.1735 (2)0.52791 (17)0.44614 (18)0.0726 (6)
C10.4404 (3)0.2253 (2)0.6879 (2)0.0591 (7)
H1A0.35920.19800.69140.071*
H1B0.47950.28770.74880.071*
C20.5313 (3)0.1179 (3)0.7097 (3)0.0679 (8)
H2A0.55180.08570.78880.081*
H2B0.48780.05260.65330.081*
C30.6544 (3)0.1515 (3)0.6987 (2)0.0602 (7)
H30.69940.21310.76020.072*
C40.6252 (3)0.2108 (3)0.5822 (3)0.0719 (9)
H4A0.58700.14940.52000.086*
H4B0.70640.23910.57940.086*
C50.5332 (3)0.3185 (3)0.5586 (3)0.0691 (8)
H5A0.57480.38470.61460.083*
H5B0.51180.35000.47910.083*
C60.4134 (2)0.2788 (2)0.5703 (2)0.0467 (6)
H60.36720.21780.50850.056*
C70.7438 (3)0.0438 (3)0.7188 (3)0.0852 (10)
H7A0.76390.01010.79650.128*
H7B0.82310.07030.71310.128*
H7C0.70210.01870.66000.128*
C80.1017 (2)0.3018 (2)0.42833 (18)0.0490 (6)
C90.0655 (3)0.2116 (3)0.3445 (2)0.0626 (8)
H90.10550.20580.29130.075*
C100.0284 (3)0.1308 (3)0.3385 (2)0.0685 (8)
H100.05290.06920.28060.082*
C110.0887 (2)0.1364 (2)0.4146 (2)0.0553 (7)
C120.0512 (3)0.2275 (3)0.4980 (2)0.0612 (7)
H120.09090.23300.55130.073*
C130.0425 (3)0.3102 (3)0.5051 (2)0.0603 (7)
H130.06630.37260.56230.072*
C140.1925 (3)0.0476 (3)0.4064 (3)0.0712 (8)
H14A0.19950.01500.34860.107*
H14B0.27440.09080.38290.107*
H14C0.17120.00930.48240.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0583 (4)0.0607 (4)0.0519 (4)0.0160 (3)0.0268 (3)0.0123 (3)
O10.0476 (10)0.0512 (9)0.0523 (9)0.0085 (8)0.0202 (8)0.0014 (7)
O20.0769 (14)0.0932 (15)0.0572 (10)0.0193 (12)0.0385 (10)0.0190 (10)
O30.0795 (14)0.0564 (11)0.0892 (14)0.0250 (10)0.0416 (12)0.0210 (10)
C10.0592 (17)0.0634 (16)0.0668 (15)0.0077 (13)0.0380 (14)0.0132 (12)
C20.070 (2)0.0675 (17)0.0731 (17)0.0121 (15)0.0358 (16)0.0227 (14)
C30.0520 (16)0.0625 (16)0.0598 (15)0.0076 (13)0.0160 (13)0.0005 (12)
C40.0604 (19)0.079 (2)0.094 (2)0.0158 (16)0.0498 (17)0.0214 (16)
C50.0624 (18)0.0694 (18)0.093 (2)0.0152 (15)0.0496 (17)0.0295 (15)
C60.0462 (14)0.0460 (13)0.0491 (12)0.0059 (11)0.0204 (11)0.0001 (10)
C70.074 (2)0.092 (2)0.088 (2)0.034 (2)0.0324 (19)0.0216 (18)
C80.0439 (14)0.0593 (14)0.0389 (11)0.0150 (11)0.0116 (10)0.0013 (10)
C90.0622 (18)0.085 (2)0.0410 (12)0.0151 (16)0.0211 (12)0.0077 (12)
C100.0656 (19)0.0777 (19)0.0516 (14)0.0050 (16)0.0128 (14)0.0207 (13)
C110.0424 (14)0.0618 (15)0.0514 (13)0.0089 (12)0.0083 (11)0.0077 (11)
C120.0540 (16)0.0747 (18)0.0586 (14)0.0014 (14)0.0267 (13)0.0179 (13)
C130.0594 (17)0.0699 (17)0.0544 (14)0.0028 (14)0.0259 (13)0.0203 (12)
C140.0567 (18)0.0742 (19)0.0695 (17)0.0004 (15)0.0117 (14)0.0111 (14)
Geometric parameters (Å, º) top
S1—O11.5677 (17)C5—C61.496 (4)
S1—O21.4265 (19)C6—H61.0000
S1—O31.4226 (19)C7—H7A0.9800
S1—C81.752 (3)C7—H7B0.9800
O1—C61.477 (3)C7—H7C0.9800
C1—H1A0.9900C8—C91.383 (4)
C1—H1B0.9900C8—C131.385 (3)
C1—C21.520 (4)C9—H90.9500
C1—C61.502 (3)C9—C101.369 (4)
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C10—C111.385 (4)
C2—C31.510 (4)C11—C121.386 (3)
C3—H31.0000C11—C141.505 (4)
C3—C41.511 (4)C12—H120.9500
C3—C71.514 (4)C12—C131.376 (4)
C4—H4A0.9900C13—H130.9500
C4—H4B0.9900C14—H14A0.9800
C4—C51.529 (4)C14—H14B0.9800
C5—H5A0.9900C14—H14C0.9800
C5—H5B0.9900
O1—S1—C8104.21 (10)O1—C6—C1107.19 (18)
O2—S1—O1110.19 (11)O1—C6—C5108.6 (2)
O2—S1—C8108.35 (13)O1—C6—H6109.6
O3—S1—O1103.91 (11)C1—C6—H6109.6
O3—S1—O2119.66 (12)C5—C6—C1112.2 (2)
O3—S1—C8109.43 (13)C5—C6—H6109.6
C6—O1—S1118.50 (14)C3—C7—H7A109.5
H1A—C1—H1B108.2C3—C7—H7B109.5
C2—C1—H1A109.7C3—C7—H7C109.5
C2—C1—H1B109.7H7A—C7—H7B109.5
C6—C1—H1A109.7H7A—C7—H7C109.5
C6—C1—H1B109.7H7B—C7—H7C109.5
C6—C1—C2109.6 (2)C9—C8—S1120.7 (2)
C1—C2—H2A109.1C9—C8—C13119.9 (3)
C1—C2—H2B109.1C13—C8—S1119.35 (19)
H2A—C2—H2B107.8C8—C9—H9120.2
C3—C2—C1112.6 (2)C10—C9—C8119.5 (2)
C3—C2—H2A109.1C10—C9—H9120.2
C3—C2—H2B109.1C9—C10—H10119.1
C2—C3—H3107.5C9—C10—C11121.8 (2)
C2—C3—C4110.1 (2)C11—C10—H10119.1
C2—C3—C7112.3 (3)C10—C11—C12117.8 (3)
C4—C3—H3107.5C10—C11—C14121.3 (2)
C4—C3—C7111.7 (2)C12—C11—C14121.0 (3)
C7—C3—H3107.5C11—C12—H12119.3
C3—C4—H4A109.0C13—C12—C11121.4 (2)
C3—C4—H4B109.0C13—C12—H12119.3
C3—C4—C5112.8 (2)C8—C13—H13120.2
H4A—C4—H4B107.8C12—C13—C8119.5 (2)
C5—C4—H4A109.0C12—C13—H13120.2
C5—C4—H4B109.0C11—C14—H14A109.5
C4—C5—H5A109.7C11—C14—H14B109.5
C4—C5—H5B109.7C11—C14—H14C109.5
H5A—C5—H5B108.2H14A—C14—H14B109.5
C6—C5—C4109.6 (2)H14A—C14—H14C109.5
C6—C5—H5A109.7H14B—C14—H14C109.5
C6—C5—H5B109.7
S1—O1—C6—C1139.75 (19)C2—C3—C4—C553.4 (4)
S1—O1—C6—C598.8 (2)C3—C4—C5—C655.0 (4)
S1—C8—C9—C10178.0 (2)C4—C5—C6—O1175.4 (2)
S1—C8—C13—C12178.4 (2)C4—C5—C6—C157.1 (3)
O1—S1—C8—C9116.6 (2)C6—C1—C2—C356.1 (3)
O1—S1—C8—C1365.7 (2)C7—C3—C4—C5179.0 (3)
O2—S1—O1—C640.9 (2)C8—S1—O1—C675.12 (18)
O2—S1—C8—C90.7 (2)C8—C9—C10—C110.1 (4)
O2—S1—C8—C13177.0 (2)C9—C8—C13—C120.7 (4)
O3—S1—O1—C6170.28 (17)C9—C10—C11—C120.2 (4)
O3—S1—C8—C9132.7 (2)C9—C10—C11—C14179.5 (3)
O3—S1—C8—C1344.9 (2)C10—C11—C12—C130.2 (4)
C1—C2—C3—C454.0 (3)C11—C12—C13—C80.7 (4)
C1—C2—C3—C7179.2 (2)C13—C8—C9—C100.4 (4)
C2—C1—C6—O1177.0 (2)C14—C11—C12—C13179.1 (3)
C2—C1—C6—C557.8 (3)

Experimental details

Crystal data
Chemical formulaC14H20O3S
Mr268.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)11.390 (2), 10.9935 (18), 12.5613 (19)
β (°) 113.790 (9)
V3)1439.3 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.99
Crystal size (mm)0.3 × 0.1 × 0.04
Data collection
DiffractometerBruker D8 Venture CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.635, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
17339, 2730, 1976
Rint0.071
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.151, 1.09
No. of reflections2730
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.33

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComagic, S. & Schirrmacher, R. (2004). Synthesis, pp. 885–888.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJames, V. J. & McConnell, J. F. (1971). Tetrahedron, 27, 5475–5480.  CSD CrossRef CAS Web of Science Google Scholar
First citationJames, V. J. & Moore, F. H. (1975). Acta Cryst. B31, 1053–1058.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJohnson, P. L., Cheer, C. J., Schaefer, J. P., James, V. J. & Moore, F. H. (1972). Tetrahedron, 28, 2893–2900.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds