metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4,4′-Dimeth­­oxy-2,2′-bi­pyridine-κ2N,N′)bis­­[2-(pyridin-2-yl)phenyl-κC1]iridium(III) hexa­fluorido­phosphate unknown solvate

aDepartment of Chemistry, Interdisciplinary Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504, Japan, and bDepartment of Chemistry, Faculty of Science, Kanazawa University, Hiratsuka, Kanagawa 259-1293, Japan
*Correspondence e-mail: kataoka@riko.shimane-u.ac.jp

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 16 March 2016; accepted 23 March 2016; online 31 March 2016)

The asymmetric unit of the title complex, [Ir(C11H8N)2(C12H12N2O2)]PF6, comprises a [Ir(ppy)2(diMeO-bpy)]+ cation (Hppy = 2-phenyl­pyridine and diMeO-bpy = 4,4′-dimeth­oxy-2,2′-bi­pyridine) and a PF6 anion. The IrIII atom is coordinated by two anionic ppy ligands, each coordinating in a C^N cyclo­metalated mode, and one neutral diMeO-bpy ligand, leading to a distorted octa­hedral geometry defined by a cis-C2N4 donor set. Inter­molecular C—F⋯H contacts lead to a three-dimensional architecture that define columns parallel to a. Unknown disordered solvent mol­ecules reside in these columns with the electron density being treated with SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The unit-cell data do not reflect the presence of the unresolved solvent.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heteroleptic cyclo­metalated iridium complexes, [Ir(C^N)2(N^N)]+, which have long-lived and highly efficient phospho­rescence emission, are of inter­est for applications such as dopants for organic light emitting diodes, phospho­rescence sensors and photosensitizers for solar cells and for artificial photosynthesis (Lowry & Bernhard, 2006[Lowry, M. S. & Bernhard, S. (2006). Chem. Eur. J. 12, 7970-7977.]). Recently, it was reported that the counter-ions in these complexes greatly influence the performance of their applications in the solid state (Schneider et al., 2014[Schneider, G. E., Bolink, H. J., Constable, E. C., Ertl, C. D., Housecroft, C. E., Pertegàs, A., Zampese, J. A., Kanitz, A., Kessler, F. & Meier, S. B. (2014). Dalton Trans. 43, 1961-1964.]). One of the reasons for this may relate to the hydrogen-bonding inter­actions between the counter-ion and the N^N ligand in the [Ir(C^N)(N^N)]+ complexes. Thus, the crystal structure analyses of these complexes are considered to be important for providing insight into their applications.

As depicted in Fig. 1[link], the mol­ecular structure of the title compound, [Ir(ppy)2(diMeO-bpy)](PF6), reveals a distorted octa­hedral geometry for the IrIII atom within a cis-C2N4 donor set. The central IrIII atom is cyclo­metalated by two ppy (C^N) anions and further coordinated by a neutral diMeO-bpy (N^N) ligand. The Ir—N bond lengths trans to the Ir—C bonds are longer than the remaining Ir—N bonds, Table 1[link]. All three chelate ligands show small bite angles; range: 76.11 (12)–80.74 (14)°. Inter­molecular C—F⋯H contacts between the ions lead to a three-dimensional architecture that defines columns parallel to a, Table 2[link].

Table 1
Selected bond lengths (Å)

Ir1—C22 2.011 (4) Ir1—N2 2.056 (3)
Ir1—C11 2.012 (4) Ir1—N3 2.137 (3)
Ir1—N1 2.045 (3) Ir1—N4 2.135 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯F1i 0.95 2.39 3.290 (6) 158
C26—H26⋯F5ii 0.95 2.53 3.442 (5) 160
C29—H29⋯F1ii 0.95 2.46 3.296 (6) 146
C29—H29⋯F5ii 0.95 2.53 3.442 (5) 161
C33—H33C⋯F5 0.98 2.50 3.396 (5) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the asymmetric unit in the title salt showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

Synthesis and crystallization

A mixture of [IrCl(ppy)2]2 (214.4 mg, 0.20 mmol) and diMeO-bpy (95.1 mg, 0.44 mmol) was refluxed in 60 ml MeOH/CH2Cl2 (1:1, v:v) for 24 h. The solvent was evaporated under reduced pressure. The yellow residue was collected and washed with diethyl ether. The residue was redissolved in water and then an aqueous solution of NH4PF6 (717.2 mg, 0.44 mol) added. The yellow precipitate was filtered off, washed with water and dried under vacuum at 353 K for 5 h to give the product [Ir(ppy)2(diMeO-bpy)](PF6). Yield: 316.3 mg (0.37 mmol, 92.5%). The product was crystallized by vapour diffusion of (C2H5)O into a CH2Cl2 solution of the salt. Analysis: calculated for C34H28F6IrN4O2P (861.81) C 47.39, H 3.27, N 6.50%; found C 47.43, H 3.42, N 6.54%. 1H NMR (500 MHz, DMSO-d6): δ = 8.44 (d, 2H), 8.24 (d, 2H), 7.88–7.94 (m, 4H), 7.66 (d, 2H), 7.60 (d, 2H), 7.29 (dd, 2H), 7.17 (m, 2H), 6.99 (td, 2H), 6.87 (td, 2H), 6.18 (dd, 2H), 3.98 (s, 6H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Guest solvents in the title salt could not be determined because of the severe disorder. Thus, the data were treated with SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The estimated void volume and residual electron count per unit cell are 395.2 Å3 and 44 e, respectively. The unit-cell data do not reflect the presence of this feature of the structure.

Table 3
Experimental details

Crystal data
Chemical formula [Ir(C11H8N)2(C12H12N2O2)]PF6
Mr 861.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 9.4106 (12), 14.936 (2), 24.175 (4)
β (°) 90.290 (2)
V3) 3397.8 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.05
Crystal size (mm) 0.24 × 0.10 × 0.08
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku. (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.541, 0.723
No. of measured, independent and observed [I > 2σ(I)] reflections 26767, 7696, 6889
Rint 0.045
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.08
No. of reflections 7696
No. of parameters 433
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.05, −0.75
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Experimental top

A mixture of [IrCl(ppy)2]2 (214.4 mg, 0.20 mmol) and diMeO-bpy (95.1 mg, 0.44 mmol) was refluxed in 60 ml MeOH/CH2Cl2 (1:1, v:v) for 24 h. The solvent was evaporated under reduced pressure. The yellow residue was collected and washed with diethyl ether. The residue was redissolved in water and then an aqueous solution of NH4PF6 (717.2 mg, 0.44 mol) added. The yellow precipitate was filtered off, washed with water and dried under vacuum at 353 K for 5 h to give the product [Ir(ppy)2(diMeO-bpy)](PF6). Yield: 316.3 mg (0.37 mmol, 92.5%). The product was crystallized by vapour diffusion of (C2H5)O into a CH2Cl2 solution of the salt. Analysis: calculated for C34H28F6IrN4O2P (861.81) C 47.39, H 3.27, N 6.50%; found C 47.43, H 3.42, N 6.54%. 1H NMR (500 MHz, DMSO-d6): δ = 8.44 (d, 2H), 8.24 (d, 2H), 7.88–7.94 (m, 4H), 7.66 (d, 2H), 7.60 (d, 2H), 7.29 (dd, 2H), 7.17 (m, 2H), 6.99 (td, 2H), 6.87 (td, 2H), 6.18 (dd, 2H), 3.98 (s, 6H).

Refinement top

Guest solvents in the title salt could not be determined because of the severe disorder. Thus, the data were treated with SQUEEZE (Spek, 2015). The estimated void volume and residual electron count per unit cell are 395.2 Å3 and 44 e, respectively. The unit-cell data do not reflect the presence of this feature of the structure.

Structure description top

Heteroleptic cyclometalated iridium complexes, [Ir(C^N)2(N^N)]+, which have long-lived and highly efficient phosphorescence emission, are of interest for applications such as dopants for organic light emitting diodes, phosphorescence sensors and photosensitizers for solar cells and for artificial photosynthesis (Lowry & Bernhard, 2006). Recently, it was reported that the counter-ions in these complexes greatly influence the performance of their applications in the solid state (Schneider et al., 2014). One of the reasons for this may relate to the hydrogen-bonding interactions between the counter-ion and the N^N ligand in the [Ir(C^N)(N^N)]+ complexes. Thus, the crystal structure analyses of these complexes are considered to be important for providing insight into their applications.

As depicted in Fig. 1, the molecular structure of the title compound, [Ir(ppy)2(diMeO-bpy)](PF6), reveals a distorted octahedral geometry for the IrIII atom within a cis-C2N4 donor set. The central IrIII atom is cyclometalated by two ppy (C^N) anions and further coordinated by a neutral diMeO-bpy (N^N) ligand. The Ir—N bond lengths trans to the Ir—C bonds are longer than the remaining Ir—N bonds, Table 1. A l l three chelate ligands show small bite angles; range: 76.11 (12)–80.74 (14)°. Intermolecular C—F···H contacts between the ions lead to a three-dimensional architecture that defines columns parallel to a, Table 2.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit in the title salt showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.
(4,4'-Dimethoxy-2,2'-bipyridine-κ2N,N')bis[2-(pyridin-2-yl)phenyl-κC1]iridium(III) hexafluoridophosphate top
Crystal data top
[Ir(C11H8N)2(C12H12N2O2)]PF6F(000) = 1688
Mr = 861.77Dx = 1.685 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 9.4106 (12) ÅCell parameters from 10557 reflections
b = 14.936 (2) Åθ = 3.2–27.5°
c = 24.175 (4) ŵ = 4.05 mm1
β = 90.290 (2)°T = 150 K
V = 3397.8 (9) Å3Block, yellow
Z = 40.24 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn724
diffractometer
7696 independent reflections
Radiation source: rotating anode6889 reflections with I > 2σ(I)
Detector resolution: 7.111 pixels mm-1Rint = 0.045
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 129
Tmin = 0.541, Tmax = 0.723k = 1919
26767 measured reflectionsl = 2931
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0386P)2 + 5.431P]
where P = (Fo2 + 2Fc2)/3
7696 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 2.05 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Ir(C11H8N)2(C12H12N2O2)]PF6V = 3397.8 (9) Å3
Mr = 861.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4106 (12) ŵ = 4.05 mm1
b = 14.936 (2) ÅT = 150 K
c = 24.175 (4) Å0.24 × 0.10 × 0.08 mm
β = 90.290 (2)°
Data collection top
Rigaku Saturn724
diffractometer
7696 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
6889 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 0.723Rint = 0.045
26767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.08Δρmax = 2.05 e Å3
7696 reflectionsΔρmin = 0.75 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.29982 (2)0.59502 (2)0.20275 (2)0.02079 (6)
P10.03812 (14)0.78800 (9)0.01015 (5)0.0459 (3)
F10.1028 (6)0.7975 (3)0.05066 (15)0.1163 (19)
F20.0467 (6)0.8783 (3)0.0019 (2)0.1134 (19)
F30.0820 (5)0.7333 (4)0.0143 (3)0.171 (3)
F40.0156 (6)0.7788 (3)0.07105 (18)0.1084 (17)
F50.1341 (3)0.6998 (2)0.01565 (12)0.0578 (8)
F60.1660 (4)0.8445 (3)0.03404 (19)0.0887 (12)
O10.1882 (3)0.4604 (2)0.04687 (14)0.0440 (8)
O20.4844 (3)0.2444 (2)0.08318 (12)0.0393 (7)
N10.3942 (3)0.6549 (2)0.13632 (13)0.0279 (7)
N20.2077 (3)0.5505 (2)0.27465 (13)0.0279 (7)
N30.1204 (3)0.5503 (2)0.15575 (12)0.0225 (6)
N40.3652 (3)0.4682 (2)0.17102 (13)0.0259 (6)
C10.3360 (5)0.6619 (3)0.08563 (17)0.0358 (9)
H10.24600.63510.07890.043*
C20.4016 (5)0.7065 (3)0.04331 (19)0.0444 (11)
H20.35780.71060.00790.053*
C30.5321 (5)0.7451 (3)0.0530 (2)0.0452 (11)
H30.57950.77620.02420.054*
C40.5935 (5)0.7384 (3)0.1045 (2)0.0415 (10)
H40.68360.76490.11140.050*
C50.5235 (4)0.6929 (3)0.14636 (17)0.0298 (8)
C60.5770 (4)0.6784 (3)0.20330 (18)0.0317 (8)
C70.7082 (4)0.7084 (3)0.22131 (19)0.0388 (10)
H70.76640.74260.19720.047*
C80.7541 (5)0.6893 (4)0.2731 (2)0.0465 (12)
H80.84310.71180.28550.056*
C90.6709 (5)0.6364 (4)0.3088 (2)0.0483 (12)
H90.70510.62130.34460.058*
C100.5374 (5)0.6062 (3)0.29088 (18)0.0353 (9)
H100.48110.57010.31460.042*
C110.4865 (4)0.6291 (3)0.23786 (16)0.0274 (8)
C120.2039 (4)0.4656 (3)0.29191 (17)0.0354 (9)
H120.24410.42040.26920.042*
C130.1433 (5)0.4415 (3)0.34178 (19)0.0410 (10)
H130.14350.38060.35320.049*
C140.0826 (5)0.5061 (3)0.37484 (19)0.0438 (11)
H140.04120.49080.40930.053*
C150.0838 (5)0.5935 (3)0.35638 (18)0.0370 (10)
H150.04190.63890.37850.044*
C160.1449 (4)0.6164 (3)0.30635 (16)0.0285 (8)
C170.1532 (4)0.7069 (3)0.28270 (15)0.0265 (8)
C180.0974 (4)0.7831 (3)0.30829 (17)0.0332 (9)
H180.05220.77820.34320.040*
C190.1081 (5)0.8654 (3)0.28283 (19)0.0379 (10)
H190.07030.91730.30010.045*
C200.1749 (5)0.8724 (3)0.2315 (2)0.0386 (10)
H200.18150.92890.21370.046*
C210.2321 (4)0.7961 (3)0.20633 (17)0.0332 (9)
H210.27850.80180.17170.040*
C220.2224 (4)0.7117 (2)0.23108 (15)0.0239 (7)
C230.0041 (4)0.5937 (2)0.15193 (16)0.0249 (7)
H230.01800.64500.17450.030*
C240.1127 (4)0.5679 (3)0.11716 (17)0.0285 (8)
H240.19970.60020.11610.034*
C250.0925 (4)0.4936 (3)0.08373 (16)0.0290 (8)
C260.0371 (4)0.4467 (3)0.08738 (16)0.0293 (8)
H260.05350.39540.06500.035*
C270.1396 (4)0.4764 (2)0.12398 (14)0.0235 (7)
C280.2779 (4)0.4304 (3)0.13203 (15)0.0243 (7)
C290.3185 (4)0.3547 (3)0.10299 (15)0.0289 (8)
H290.25710.32950.07580.035*
C300.4498 (4)0.3158 (3)0.11396 (16)0.0303 (8)
C310.5355 (4)0.3513 (3)0.15557 (17)0.0338 (9)
H310.62340.32410.16530.041*
C320.4886 (4)0.4273 (3)0.18210 (17)0.0324 (9)
H320.54770.45230.21010.039*
C330.3191 (5)0.5088 (3)0.0402 (2)0.0441 (11)
H33A0.37900.47850.01270.053*
H33B0.36900.51120.07560.053*
H33C0.29860.56980.02760.053*
C340.6225 (5)0.2046 (4)0.0921 (2)0.0503 (13)
H34A0.63420.15340.06720.060*
H34B0.69650.24910.08460.060*
H34C0.63050.18430.13050.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02019 (9)0.02285 (8)0.01933 (8)0.00084 (5)0.00028 (5)0.00115 (5)
P10.0481 (7)0.0470 (7)0.0428 (7)0.0148 (6)0.0160 (5)0.0147 (6)
F10.188 (5)0.121 (4)0.0394 (19)0.090 (4)0.004 (2)0.014 (2)
F20.142 (4)0.106 (3)0.093 (3)0.089 (3)0.039 (3)0.035 (3)
F30.060 (3)0.162 (5)0.293 (8)0.012 (3)0.052 (4)0.154 (6)
F40.161 (4)0.078 (3)0.085 (3)0.006 (3)0.065 (3)0.008 (2)
F50.075 (2)0.0509 (18)0.0474 (17)0.0219 (15)0.0047 (15)0.0001 (14)
F60.081 (3)0.067 (2)0.119 (3)0.007 (2)0.020 (2)0.022 (2)
O10.0334 (16)0.0473 (18)0.0509 (19)0.0081 (14)0.0193 (14)0.0176 (15)
O20.0467 (18)0.0430 (17)0.0281 (15)0.0215 (14)0.0023 (13)0.0071 (13)
N10.0252 (16)0.0324 (17)0.0261 (16)0.0016 (13)0.0013 (12)0.0006 (13)
N20.0330 (18)0.0297 (17)0.0209 (15)0.0053 (13)0.0009 (12)0.0001 (13)
N30.0214 (15)0.0246 (15)0.0215 (14)0.0005 (12)0.0003 (11)0.0009 (12)
N40.0239 (16)0.0300 (16)0.0238 (15)0.0066 (13)0.0025 (12)0.0033 (13)
C10.037 (2)0.041 (2)0.030 (2)0.0038 (18)0.0005 (17)0.0021 (18)
C20.044 (3)0.058 (3)0.031 (2)0.005 (2)0.0030 (19)0.006 (2)
C30.045 (3)0.055 (3)0.036 (2)0.003 (2)0.010 (2)0.011 (2)
C40.032 (2)0.043 (2)0.049 (3)0.0041 (19)0.0080 (19)0.000 (2)
C50.027 (2)0.031 (2)0.031 (2)0.0004 (15)0.0046 (15)0.0031 (16)
C60.026 (2)0.0281 (19)0.041 (2)0.0021 (15)0.0046 (16)0.0069 (17)
C70.029 (2)0.045 (2)0.042 (2)0.0047 (18)0.0003 (18)0.007 (2)
C80.024 (2)0.057 (3)0.058 (3)0.004 (2)0.003 (2)0.015 (2)
C90.046 (3)0.057 (3)0.042 (3)0.006 (2)0.018 (2)0.008 (2)
C100.035 (2)0.042 (2)0.030 (2)0.0018 (18)0.0084 (17)0.0037 (17)
C110.0238 (18)0.0286 (18)0.0298 (19)0.0024 (15)0.0019 (14)0.0059 (16)
C120.044 (3)0.031 (2)0.030 (2)0.0023 (17)0.0054 (18)0.0001 (16)
C130.056 (3)0.031 (2)0.036 (2)0.004 (2)0.007 (2)0.0060 (18)
C140.051 (3)0.048 (3)0.033 (2)0.006 (2)0.0114 (19)0.005 (2)
C150.040 (2)0.044 (3)0.027 (2)0.0047 (18)0.0048 (18)0.0066 (17)
C160.0222 (18)0.035 (2)0.0286 (19)0.0032 (15)0.0004 (15)0.0066 (16)
C170.0204 (17)0.0322 (19)0.0267 (18)0.0031 (15)0.0024 (14)0.0066 (15)
C180.029 (2)0.039 (2)0.032 (2)0.0006 (17)0.0016 (16)0.0118 (18)
C190.035 (2)0.035 (2)0.044 (2)0.0057 (18)0.0017 (18)0.0125 (19)
C200.039 (2)0.028 (2)0.048 (3)0.0009 (18)0.0088 (19)0.0018 (19)
C210.035 (2)0.031 (2)0.033 (2)0.0005 (17)0.0012 (16)0.0008 (17)
C220.0190 (17)0.0272 (18)0.0256 (17)0.0002 (14)0.0028 (13)0.0050 (15)
C230.0233 (18)0.0242 (18)0.0271 (19)0.0030 (14)0.0008 (14)0.0038 (14)
C240.0231 (19)0.0291 (19)0.033 (2)0.0031 (15)0.0023 (15)0.0014 (16)
C250.0262 (19)0.032 (2)0.0288 (19)0.0013 (15)0.0063 (15)0.0008 (16)
C260.029 (2)0.0293 (19)0.0294 (19)0.0036 (16)0.0023 (15)0.0075 (16)
C270.0222 (17)0.0265 (17)0.0217 (16)0.0009 (14)0.0009 (13)0.0012 (14)
C280.0249 (18)0.0265 (18)0.0214 (17)0.0043 (14)0.0000 (14)0.0006 (14)
C290.030 (2)0.034 (2)0.0228 (18)0.0053 (16)0.0021 (14)0.0029 (15)
C300.038 (2)0.0292 (19)0.0242 (18)0.0112 (16)0.0019 (15)0.0022 (15)
C310.030 (2)0.041 (2)0.031 (2)0.0150 (17)0.0024 (16)0.0018 (17)
C320.029 (2)0.040 (2)0.028 (2)0.0102 (17)0.0086 (16)0.0045 (17)
C330.032 (2)0.047 (3)0.052 (3)0.0062 (19)0.019 (2)0.006 (2)
C340.056 (3)0.058 (3)0.037 (2)0.035 (2)0.002 (2)0.006 (2)
Geometric parameters (Å, º) top
Ir1—C222.011 (4)C10—H100.9500
Ir1—C112.012 (4)C12—C131.384 (6)
Ir1—N12.045 (3)C12—H120.9500
Ir1—N22.056 (3)C13—C141.379 (6)
Ir1—N32.137 (3)C13—H130.9500
Ir1—N42.135 (3)C14—C151.380 (6)
P1—F31.517 (4)C14—H140.9500
P1—F41.560 (4)C15—C161.385 (6)
P1—F21.580 (4)C15—H150.9500
P1—F61.581 (4)C16—C171.471 (6)
P1—F11.594 (4)C17—C181.399 (5)
P1—F51.603 (3)C17—C221.412 (5)
O1—C251.357 (5)C18—C191.379 (6)
O1—C331.437 (5)C18—H180.9500
O2—C301.341 (5)C19—C201.398 (7)
O2—C341.445 (5)C19—H190.9500
N1—C11.344 (5)C20—C211.401 (6)
N1—C51.364 (5)C20—H200.9500
N2—C121.336 (5)C21—C221.398 (5)
N2—C161.381 (5)C21—H210.9500
N3—C231.342 (5)C23—C241.375 (5)
N3—C271.358 (5)C23—H230.9500
N4—C321.338 (5)C24—C251.387 (6)
N4—C281.369 (5)C24—H240.9500
C1—C21.370 (6)C25—C261.409 (5)
C1—H10.9500C26—C271.379 (5)
C2—C31.375 (7)C26—H260.9500
C2—H20.9500C27—C281.483 (5)
C3—C41.373 (7)C28—C291.386 (5)
C3—H30.9500C29—C301.389 (5)
C4—C51.389 (6)C29—H290.9500
C4—H40.9500C30—C311.391 (6)
C5—C61.479 (6)C31—C321.378 (6)
C6—C71.382 (6)C31—H310.9500
C6—C111.405 (6)C32—H320.9500
C7—C81.352 (7)C33—H33A0.9800
C7—H70.9500C33—H33B0.9800
C8—C91.411 (8)C33—H33C0.9800
C8—H80.9500C34—H34A0.9800
C9—C101.401 (6)C34—H34B0.9800
C9—H90.9500C34—H34C0.9800
C10—C111.408 (6)
C22—Ir1—C1187.40 (15)C10—C11—Ir1127.9 (3)
C22—Ir1—N192.75 (14)N2—C12—C13122.1 (4)
C11—Ir1—N180.74 (14)N2—C12—H12118.9
C22—Ir1—N280.62 (14)C13—C12—H12118.9
C11—Ir1—N295.51 (14)C14—C13—C12119.7 (4)
N1—Ir1—N2172.57 (13)C14—C13—H13120.1
C22—Ir1—N4175.44 (13)C12—C13—H13120.1
C11—Ir1—N497.08 (14)C13—C14—C15118.1 (4)
N1—Ir1—N488.79 (13)C13—C14—H14121.0
N2—Ir1—N498.07 (13)C15—C14—H14121.0
C22—Ir1—N399.50 (13)C14—C15—C16121.4 (4)
C11—Ir1—N3171.37 (13)C14—C15—H15119.3
N1—Ir1—N393.67 (12)C16—C15—H15119.3
N2—Ir1—N390.76 (12)N2—C16—C15119.3 (4)
N4—Ir1—N376.11 (12)N2—C16—C17114.5 (3)
F3—P1—F494.7 (4)C15—C16—C17126.2 (4)
F3—P1—F291.8 (3)C18—C17—C22121.7 (4)
F4—P1—F291.9 (3)C18—C17—C16123.7 (4)
F3—P1—F6178.3 (3)C22—C17—C16114.6 (3)
F4—P1—F686.9 (3)C19—C18—C17120.0 (4)
F2—P1—F688.7 (3)C19—C18—H18120.0
F3—P1—F188.3 (4)C17—C18—H18120.0
F4—P1—F1176.5 (3)C18—C19—C20119.8 (4)
F2—P1—F189.9 (2)C18—C19—H19120.1
F6—P1—F190.1 (3)C20—C19—H19120.1
F3—P1—F590.7 (3)C19—C20—C21120.1 (4)
F4—P1—F591.7 (2)C19—C20—H20120.0
F2—P1—F5175.4 (3)C21—C20—H20120.0
F6—P1—F588.7 (2)C22—C21—C20121.4 (4)
F1—P1—F586.38 (19)C22—C21—H21119.3
C25—O1—C33117.1 (3)C20—C21—H21119.3
C30—O2—C34117.7 (3)C21—C22—C17117.1 (3)
C1—N1—C5119.3 (3)C21—C22—Ir1127.6 (3)
C1—N1—Ir1125.0 (3)C17—C22—Ir1115.3 (3)
C5—N1—Ir1115.7 (3)N3—C23—C24123.6 (3)
C12—N2—C16119.4 (3)N3—C23—H23118.2
C12—N2—Ir1125.7 (3)C24—C23—H23118.2
C16—N2—Ir1115.0 (3)C23—C24—C25118.5 (3)
C23—N3—C27118.2 (3)C23—C24—H24120.8
C23—N3—Ir1125.0 (2)C25—C24—H24120.8
C27—N3—Ir1116.6 (2)O1—C25—C24125.6 (4)
C32—N4—C28117.8 (3)O1—C25—C26115.5 (3)
C32—N4—Ir1125.8 (3)C24—C25—C26118.9 (3)
C28—N4—Ir1116.1 (2)C27—C26—C25118.9 (3)
N1—C1—C2122.4 (4)C27—C26—H26120.6
N1—C1—H1118.8C25—C26—H26120.6
C2—C1—H1118.8N3—C27—C26122.0 (3)
C1—C2—C3118.8 (4)N3—C27—C28114.9 (3)
C1—C2—H2120.6C26—C27—C28123.1 (3)
C3—C2—H2120.6N4—C28—C29121.3 (3)
C4—C3—C2119.7 (4)N4—C28—C27115.0 (3)
C4—C3—H3120.2C29—C28—C27123.8 (3)
C2—C3—H3120.2C28—C29—C30119.5 (4)
C3—C4—C5119.8 (4)C28—C29—H29120.3
C3—C4—H4120.1C30—C29—H29120.3
C5—C4—H4120.1O2—C30—C29116.4 (4)
N1—C5—C4120.0 (4)O2—C30—C31124.2 (4)
N1—C5—C6113.8 (3)C29—C30—C31119.4 (3)
C4—C5—C6126.2 (4)C32—C31—C30117.7 (4)
C7—C6—C11121.7 (4)C32—C31—H31121.2
C7—C6—C5123.0 (4)C30—C31—H31121.2
C11—C6—C5115.2 (3)N4—C32—C31124.3 (4)
C8—C7—C6120.3 (4)N4—C32—H32117.9
C8—C7—H7119.9C31—C32—H32117.9
C6—C7—H7119.9O1—C33—H33A109.5
C7—C8—C9120.6 (4)O1—C33—H33B109.5
C7—C8—H8119.7H33A—C33—H33B109.5
C9—C8—H8119.7O1—C33—H33C109.5
C10—C9—C8119.4 (4)H33A—C33—H33C109.5
C10—C9—H9120.3H33B—C33—H33C109.5
C8—C9—H9120.3O2—C34—H34A109.5
C9—C10—C11120.2 (4)O2—C34—H34B109.5
C9—C10—H10119.9H34A—C34—H34B109.5
C11—C10—H10119.9O2—C34—H34C109.5
C6—C11—C10117.7 (4)H34A—C34—H34C109.5
C6—C11—Ir1114.3 (3)H34B—C34—H34C109.5
C5—N1—C1—C20.3 (6)C17—C18—C19—C200.0 (6)
Ir1—N1—C1—C2176.9 (4)C18—C19—C20—C210.7 (7)
N1—C1—C2—C30.2 (7)C19—C20—C21—C221.0 (6)
C1—C2—C3—C40.1 (8)C20—C21—C22—C170.4 (6)
C2—C3—C4—C50.1 (7)C20—C21—C22—Ir1178.8 (3)
C1—N1—C5—C40.2 (6)C18—C17—C22—C210.3 (5)
Ir1—N1—C5—C4177.3 (3)C16—C17—C22—C21179.4 (3)
C1—N1—C5—C6178.6 (4)C18—C17—C22—Ir1178.2 (3)
Ir1—N1—C5—C63.9 (4)C16—C17—C22—Ir12.1 (4)
C3—C4—C5—N10.0 (7)C27—N3—C23—C240.7 (6)
C3—C4—C5—C6178.6 (4)Ir1—N3—C23—C24173.4 (3)
N1—C5—C6—C7177.5 (4)N3—C23—C24—C250.7 (6)
C4—C5—C6—C71.2 (7)C33—O1—C25—C243.0 (6)
N1—C5—C6—C110.6 (5)C33—O1—C25—C26177.2 (4)
C4—C5—C6—C11179.2 (4)C23—C24—C25—O1179.1 (4)
C11—C6—C7—C81.1 (7)C23—C24—C25—C261.1 (6)
C5—C6—C7—C8176.8 (4)O1—C25—C26—C27180.0 (4)
C6—C7—C8—C92.0 (7)C24—C25—C26—C270.2 (6)
C7—C8—C9—C102.3 (8)C23—N3—C27—C261.7 (5)
C8—C9—C10—C110.5 (7)Ir1—N3—C27—C26172.9 (3)
C7—C6—C11—C103.8 (6)C23—N3—C27—C28177.9 (3)
C5—C6—C11—C10174.3 (4)Ir1—N3—C27—C287.5 (4)
C7—C6—C11—Ir1178.9 (3)C25—C26—C27—N31.3 (6)
C5—C6—C11—Ir13.1 (4)C25—C26—C27—C28178.3 (4)
C9—C10—C11—C63.4 (6)C32—N4—C28—C293.0 (6)
C9—C10—C11—Ir1179.7 (3)Ir1—N4—C28—C29171.0 (3)
C16—N2—C12—C132.4 (6)C32—N4—C28—C27176.9 (3)
Ir1—N2—C12—C13178.0 (3)Ir1—N4—C28—C279.1 (4)
N2—C12—C13—C141.0 (7)N3—C27—C28—N41.1 (5)
C12—C13—C14—C150.5 (7)C26—C27—C28—N4178.5 (4)
C13—C14—C15—C160.5 (7)N3—C27—C28—C29179.0 (4)
C12—N2—C16—C152.3 (6)C26—C27—C28—C291.4 (6)
Ir1—N2—C16—C15178.0 (3)N4—C28—C29—C300.6 (6)
C12—N2—C16—C17178.8 (3)C27—C28—C29—C30179.3 (4)
Ir1—N2—C16—C170.8 (4)C34—O2—C30—C29177.6 (4)
C14—C15—C16—N20.9 (7)C34—O2—C30—C313.1 (6)
C14—C15—C16—C17179.6 (4)C28—C29—C30—O2178.0 (4)
N2—C16—C17—C18179.5 (3)C28—C29—C30—C312.8 (6)
C15—C16—C17—C180.7 (6)O2—C30—C31—C32177.2 (4)
N2—C16—C17—C220.8 (5)C29—C30—C31—C323.5 (6)
C15—C16—C17—C22179.6 (4)C28—N4—C32—C312.2 (6)
C22—C17—C18—C190.6 (6)Ir1—N4—C32—C31171.2 (3)
C16—C17—C18—C19179.1 (4)C30—C31—C32—N41.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F1i0.952.393.290 (6)158
C26—H26···F5ii0.952.533.442 (5)160
C29—H29···F1ii0.952.463.296 (6)146
C29—H29···F5ii0.952.533.442 (5)161
C33—H33C···F50.982.503.396 (5)152
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z.
Selected bond lengths (Å) top
Ir1—C222.011 (4)Ir1—N22.056 (3)
Ir1—C112.012 (4)Ir1—N32.137 (3)
Ir1—N12.045 (3)Ir1—N42.135 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F1i0.952.393.290 (6)158
C26—H26···F5ii0.952.533.442 (5)160
C29—H29···F1ii0.952.463.296 (6)146
C29—H29···F5ii0.952.533.442 (5)161
C33—H33C···F50.982.503.396 (5)152
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ir(C11H8N)2(C12H12N2O2)]PF6
Mr861.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.4106 (12), 14.936 (2), 24.175 (4)
β (°) 90.290 (2)
V3)3397.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.05
Crystal size (mm)0.24 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn724
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.541, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
26767, 7696, 6889
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.08
No. of reflections7696
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.05, 0.75

Computer programs: CrystalClear (Rigaku, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2014).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (Nos. 15 K17897, 15H00877 and 25620145) and the Strategic Research Base Development Program for Private Universities of the Ministry of Education, Culture, Sports and Technology (MEXT), Japan. YK acknowledges support from the JAPAN PRIZE Foundation and the Electronic Technology Research Foundation of Chugoku.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLowry, M. S. & Bernhard, S. (2006). Chem. Eur. J. 12, 7970–7977.  CrossRef PubMed CAS Google Scholar
First citationRigaku. (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchneider, G. E., Bolink, H. J., Constable, E. C., Ertl, C. D., Housecroft, C. E., Pertegàs, A., Zampese, J. A., Kanitz, A., Kessler, F. & Meier, S. B. (2014). Dalton Trans. 43, 1961–1964.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds