organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Chloro-1-(prop-2-yn­yl)indoline-2,3-dione

aResearch Department of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 February 2016; accepted 8 March 2016; online 15 March 2016)

In the title isatin derivative, C11H6ClNO2, the indoline ring is planar (r.m.s. deviation = 0.009 Å), with the two ketone O atoms lying in the plane and the chlorine atom displaced by 0.036 (1) Å. The dihedral angle between the mean plane of the indoline ring system with that of the propynyl chain is 73 (8)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains propagating along the b-axis direction. The chains are linked via weak ππ inter­actions [inter-centroid distance = 3.728 (1) Å], forming slabs parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatins (indole-2,3-diones) are used in the synthesis of a large variety of heterocylic compounds (da Silva et al., 2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]). Isatin and its derivatives have been reported to show pharmacological actions such as anti­microbial, anti­cancer, anti­viral, anti­convulsant, anti-inflammatory and analgesic (Bhrigu et al., 2010[Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res, 2, 229-235.]). Biological properties of isatin include a range of actions in the brain and offer protection against certain types of infections (Pandeya et al., 2005[Pandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27-46.]). They have been evaluated for anti­bacterial and anti­fungal activities (Ramachandran, 2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289-294.]), and have been reported to possess anti-MES activity (Smitha et al., 2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]).

In the title compound, Fig. 1[link], the indoline ring is planar (r.m.s. deviation = 0.009 Å). Atom Cl1 is displaced from this mean plane by 0.036 (1) Å, while the O atoms, O1 and O2, lie in the plane of the ring system. The indoline ring is nearly perpendicular to the mean plane passing through the 1-propynyl chain as indicated by the C8—N1—C9—C10 torsion angle of 91.0 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along the b-axis direction (Table 1[link] and Fig. 2[link]). The chains are linked by slipped parallel ππ inter­actions, forming slabs lying parallel to the bc plane [Cg1⋯Cg2i = 3.728 (1) Å, inter-planar distance = 3.327 (1) Å, slippage = 1.71 Å, Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively; symmetry code: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.33 3.236 (3) 164
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound, viewed along the a axis. The C—H⋯O hydrogen bonds are shown as dotted lines (see Table 1[link]).

Synthesis and crystallization

To a solution of 5-chloro­indoline-2,3-dione (0.82 g, 5 mmol) in DMF (20 ml) potassium carbonate (1.04 g, 7.5 mmol) was added and the solution was stirred at room temperature. Propargyl bromide (0.7 ml, 7.5 mmol) was added dropwise and the resulting mixture was stirred overnight. After completion of the reaction (monitored by TLC), the mixture was partitioned between CH2Cl2 and water, and the CH2Cl2 layer was collected. The aqueous layer was extracted three times with CH2Cl2. The combined organic extracts were dried over anhydrous Na2SO4, and concentrated under vacuum to obtain the desired product. Colourless block-like crystals were obtained by slow evaporation of a solution in chloro­form.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H6ClNO2
Mr 219.62
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 15.0004 (4), 7.9035 (3), 16.8880 (6)
β (°) 101.057 (1)
V3) 1965.00 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.897, 0.913
No. of measured, independent and observed [I > 2σ(I)] reflections 5667, 1723, 1429
Rint 0.020
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.06
No. of reflections 1723
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.25
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

To a solution of 5-chloroindoline-2,3-dione (0.82 g, 5 mmol) in DMF (20 ml) potassium carbonate (1.04 g, 7.5 mmol) was added and the solution was stirred at room temperature. Propargyl bromide (0.7 ml, 7.5 mmol) was added dropwise and the resulting mixture was stirred overnight. After completion of the reaction (monitored by TLC), the mixture was partitioned between CH2Cl2 and water, and the CH2Cl2 layer was collected. The aqueous layer was extracted three times with CH2Cl2. The combined organic extracts were dried over anhydrous Na2SO4, and concentrated under vacuum to obtain the desired product. Colourless block-like crystals were obtained by slow evaporation of a solution in chloroform.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Isatins (indole-2,3-diones) are used in the synthesis of a large variety of heterocylic compounds (da Silva et al., 2001). Isatin and its derivatives have been reported to show pharmacological actions such as antimicrobial, anticancer, antiviral, anticonvulsant, anti-inflammatory and analgesic (Bhrigu et al., 2010). Biological properties of isatin include a range of actions in the brain and offer protection against certain types of infections (Pandeya et al., 2005). They have been evaluated for antibacterial and antifungal activities (Ramachandran, 2011), and have been reported to possess anti-MES activity (Smitha et al., 2008).

In the title compound, Fig. 1, the indoline ring is planar (r.m.s. deviation = 0.009 Å). Atom Cl1 is displaced from this mean plane by 0.036 (1) Å, while the O atoms, O1 and O2, lie in the plane of the ring system. The indoline ring is nearly perpendicular to the mean plane passing through the 1-propynyl chain as indicated by the C8—N1—C9—C10 torsion angle of 91.0 (2) °.

In the crystal, molecules are linked by C—H···O hydrogen bonds, forming chains along the b-axis direction (Table 1 and Fig. 2). The chains are linked by slipped parallel ππ interactions, forming slabs lying parallel to the bc plane [Cg1···Cg2i = 3.728 (1) Å, inter-planar distance = 3.327 (1) Å, slippage = 1.71 Å, Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively; symmetry code: (i) −x + 3/2, −y + 1/2, −z + 1].

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis. The C—H···O hydrogen bonds are shown as dotted lines (see Table 1).
5-Chloro-1-(prop-2-ynyl)indoline-2,3-dione top
Crystal data top
C11H6ClNO2F(000) = 896
Mr = 219.62Dx = 1.485 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.0004 (4) ÅCell parameters from 1429 reflections
b = 7.9035 (3) Åθ = 2.5–25.0°
c = 16.8880 (6) ŵ = 0.36 mm1
β = 101.057 (1)°T = 296 K
V = 1965.00 (12) Å3Block, colourless
Z = 80.30 × 0.25 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1429 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
ω and φ scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1712
Tmin = 0.897, Tmax = 0.913k = 97
5667 measured reflectionsl = 2020
1723 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0391P)2 + 1.521P]
where P = (Fo2 + 2Fc2)/3
1723 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H6ClNO2V = 1965.00 (12) Å3
Mr = 219.62Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.0004 (4) ŵ = 0.36 mm1
b = 7.9035 (3) ÅT = 296 K
c = 16.8880 (6) Å0.30 × 0.25 × 0.25 mm
β = 101.057 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1723 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1429 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.913Rint = 0.020
5667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
1723 reflectionsΔρmin = 0.25 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62704 (12)0.4097 (2)0.47196 (10)0.0358 (4)
C20.54523 (12)0.3261 (3)0.46003 (12)0.0459 (5)
H20.50350.33700.41190.055*
C30.52684 (13)0.2247 (3)0.52229 (13)0.0483 (5)
H30.47170.16760.51600.058*
C40.58942 (12)0.2078 (2)0.59317 (12)0.0435 (5)
C50.67249 (12)0.2900 (2)0.60527 (11)0.0390 (4)
H50.71460.27760.65310.047*
C60.69011 (11)0.3908 (2)0.54372 (10)0.0342 (4)
C70.76974 (12)0.4937 (2)0.53727 (11)0.0378 (4)
C80.74633 (13)0.5761 (2)0.45251 (11)0.0409 (4)
C90.61323 (16)0.5719 (3)0.33937 (11)0.0528 (5)
H9A0.63270.68450.32750.063*
H9B0.54860.57630.33910.063*
C100.62976 (14)0.4554 (3)0.27659 (11)0.0505 (5)
C110.64529 (17)0.3631 (4)0.22730 (13)0.0708 (7)
H110.65770.28940.18790.085*
Cl10.56412 (4)0.08187 (8)0.67021 (4)0.0692 (2)
N10.66111 (11)0.5215 (2)0.41938 (8)0.0420 (4)
O10.79434 (10)0.67110 (19)0.42323 (8)0.0563 (4)
O20.84013 (9)0.51612 (19)0.58385 (8)0.0544 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0398 (9)0.0333 (10)0.0348 (9)0.0067 (8)0.0081 (7)0.0063 (7)
C20.0385 (10)0.0474 (12)0.0479 (11)0.0040 (9)0.0014 (8)0.0099 (9)
C30.0369 (10)0.0430 (12)0.0663 (13)0.0032 (9)0.0135 (9)0.0109 (10)
C40.0454 (10)0.0377 (11)0.0530 (11)0.0018 (8)0.0238 (9)0.0007 (9)
C50.0403 (10)0.0408 (11)0.0367 (9)0.0064 (8)0.0096 (8)0.0012 (8)
C60.0341 (9)0.0337 (10)0.0358 (9)0.0026 (7)0.0090 (7)0.0049 (8)
C70.0381 (10)0.0354 (10)0.0408 (10)0.0027 (8)0.0094 (8)0.0056 (8)
C80.0504 (11)0.0339 (10)0.0424 (10)0.0053 (9)0.0186 (9)0.0031 (8)
C90.0693 (13)0.0506 (13)0.0364 (10)0.0156 (11)0.0051 (9)0.0035 (9)
C100.0578 (12)0.0583 (14)0.0336 (10)0.0107 (10)0.0038 (9)0.0031 (10)
C110.0820 (17)0.0843 (18)0.0424 (12)0.0237 (14)0.0027 (11)0.0117 (12)
Cl10.0749 (4)0.0646 (4)0.0789 (4)0.0021 (3)0.0422 (3)0.0151 (3)
N10.0526 (9)0.0411 (9)0.0317 (8)0.0054 (8)0.0067 (7)0.0000 (7)
O10.0687 (9)0.0482 (9)0.0598 (9)0.0010 (7)0.0316 (7)0.0062 (7)
O20.0406 (8)0.0610 (10)0.0586 (9)0.0075 (7)0.0016 (7)0.0006 (7)
Geometric parameters (Å, º) top
C1—C21.374 (3)C6—C71.466 (2)
C1—C61.395 (2)C7—O21.203 (2)
C1—N11.416 (2)C7—C81.550 (3)
C2—C31.391 (3)C8—O11.210 (2)
C2—H20.9300C8—N11.363 (2)
C3—C41.379 (3)C9—N11.459 (2)
C3—H30.9300C9—C101.461 (3)
C4—C51.385 (3)C9—H9A0.9700
C4—Cl11.7367 (19)C9—H9B0.9700
C5—C61.375 (2)C10—C111.163 (3)
C5—H50.9300C11—H110.9300
C2—C1—C6120.91 (17)O2—C7—C6131.19 (18)
C2—C1—N1128.89 (17)O2—C7—C8123.86 (17)
C6—C1—N1110.20 (15)C6—C7—C8104.95 (15)
C1—C2—C3117.85 (17)O1—C8—N1127.83 (18)
C1—C2—H2121.1O1—C8—C7126.21 (18)
C3—C2—H2121.1N1—C8—C7105.95 (15)
C4—C3—C2120.75 (18)N1—C9—C10112.24 (16)
C4—C3—H3119.6N1—C9—H9A109.2
C2—C3—H3119.6C10—C9—H9A109.2
C3—C4—C5121.73 (18)N1—C9—H9B109.2
C3—C4—Cl1119.72 (15)C10—C9—H9B109.2
C5—C4—Cl1118.55 (15)H9A—C9—H9B107.9
C6—C5—C4117.27 (17)C11—C10—C9178.3 (2)
C6—C5—H5121.4C10—C11—H11180.0
C4—C5—H5121.4C8—N1—C1111.27 (15)
C5—C6—C1121.47 (16)C8—N1—C9123.39 (17)
C5—C6—C7130.92 (16)C1—N1—C9125.34 (17)
C1—C6—C7107.61 (15)
C6—C1—C2—C31.1 (3)C1—C6—C7—C80.14 (18)
N1—C1—C2—C3178.77 (17)O2—C7—C8—O10.2 (3)
C1—C2—C3—C40.7 (3)C6—C7—C8—O1180.00 (17)
C2—C3—C4—C50.1 (3)O2—C7—C8—N1179.26 (17)
C2—C3—C4—Cl1179.38 (14)C6—C7—C8—N10.98 (18)
C3—C4—C5—C60.4 (3)O1—C8—N1—C1179.53 (18)
Cl1—C4—C5—C6179.05 (13)C7—C8—N1—C11.47 (19)
C4—C5—C6—C10.0 (3)O1—C8—N1—C90.4 (3)
C4—C5—C6—C7179.80 (17)C7—C8—N1—C9179.41 (15)
C2—C1—C6—C50.8 (3)C2—C1—N1—C8178.69 (18)
N1—C1—C6—C5179.11 (15)C6—C1—N1—C81.5 (2)
C2—C1—C6—C7179.39 (16)C2—C1—N1—C90.4 (3)
N1—C1—C6—C70.73 (19)C6—C1—N1—C9179.44 (16)
C5—C6—C7—O20.3 (3)C10—C9—N1—C890.9 (2)
C1—C6—C7—O2179.88 (19)C10—C9—N1—C188.1 (2)
C5—C6—C7—C8179.97 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.333.236 (3)164
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.333.236 (3)164
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H6ClNO2
Mr219.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)15.0004 (4), 7.9035 (3), 16.8880 (6)
β (°) 101.057 (1)
V3)1965.00 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.897, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
5667, 1723, 1429
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.06
No. of reflections1723
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank The Department of Chemistry, IIT, Chennai, for the data collection.

References

First citationBhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res, 2, 229–235.  CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27–46.  PubMed CAS Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds